<u>Lecture Notes</u> Finite Automata and Büchi Automata

Assaf Kfoury

January 20, 2018

Section 1 in this handout is a brief review of *finite automata* and *regular languages*; this is material that students have normally seen in one or more undergraduate courses in the standard computerscience curriculum. I include it here because it is a good background for Section 2, which is a quick introduction to so-called *Büchi automata* and ω -regular languages. The latter material is rarely, if ever, covered in undergraduate courses.

As much as possible, I follow the notational conventions of the textbook [PMC]. Throughout, I mention facts without their proofs; I include references to the latter from [PMC] whenever appropriate.

1 Review: Regular Expressions and Finite Automata

In contrast to [PMC], I use two different script versions of the letter L: \mathcal{L} and \mathscr{L} . The first script \mathcal{L} is a metavariable (appropriately decorated) ranging over languages, the second script \mathscr{L} is an operator (mapping regular expressions or automata to languages).

The next definition is [PMC, Definition 4.1, page 151].

Definition 1 (Nondeterministic Finite Automata). A nondeterministic finite automaton (NFA) is a 5-tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of *states*,
- Σ is the *alphabet*,
- $\delta: Q \times \Sigma \to 2^Q$ is the transition function,
- $Q_0 \subseteq Q$ is the subset of *initial states*,
- $F \subseteq Q$ is the subset of *final* or *accept states*.

The language *accepted/recognized* by a NFA \mathcal{A} is denoted $\mathscr{L}(\mathcal{A})$. The transition function δ can be identified with the ternary relation $\to \subseteq Q \times \Sigma \times Q$ defined by $q \xrightarrow{A} q'$ iff $q' \in \delta(q, A)$.

The following example is part of [PMC, Example 4.2, pages 152-153].

Example 2. The following NFA, A_1 , recognizes the set of words/strings defined by the regular expression $(A + B)^* B(A + B)$.

The definitions of *regular expressions* and *regular sets* (also called *regular languages*) are given in one of the appendices of the book, [PMC, pages 914-915]. An important fact to keep in mind: Every *regular expression* defines a *regular set*, and every *regular set* is defined by a *regular expression*.

Fact 3. If \mathcal{A} is a NFA over alphabet Σ , then the set of finite words recognized/accepted by \mathcal{A} is a regular set over Σ .

Fact 4. If X is a regular set over alphabet Σ , then we can construct a NFA \mathcal{A} which recognizes/accepts the set X.

The two preceding facts show that *NFA*'s and *regular expressions* are two equivalent ways of defining regular languages/regular sets.

Example 5. The following NFA, A_2 , recognizes the set of words/strings defined by the regular expression $(A + B)B(A + B)^*$.

A formal definition of the *synchronous product* of two NFA's is given in [PMC, Definition 4.8, page 156]. It is illustrated in the next example.

Example 6. The synchronous product $\mathcal{A}_1 \otimes \mathcal{A}_2$ of \mathcal{A}_1 and \mathcal{A}_2 is

 $\mathcal{A}_1 \otimes \mathcal{A}_2$ recognizes the set of words defined by the regular expression (A + B) B (A + B) + B B. **Fact 7.** Given NFA \mathcal{A}_1 and NFA \mathcal{A}_2 , it holds that $\mathscr{L}(\mathcal{A}_1) \cap \mathscr{L}(\mathcal{A}_2) = \emptyset$ if and only if $\mathscr{L}(\mathcal{A}_1 \otimes \mathcal{A}_2) = \emptyset$.

For the next fact, *equivalence of NFA*'s is defined in [PMC, Definition 4.6, page 155]. The definition of *deterministic finite automaton* (DFA) is given in [PMC, Definition 4.9, page 156], which is a particular NFA satisfying two conditions:

- $|Q_0| \leq 1$, and
- $|\delta(q, A)| \leq 1$ for every pair $(q, A) \in Q \times \Sigma$.

If the equality holds in these two conditions, the DFA is called *total*.¹

Fact 8. If \mathcal{A} is a NFA, then we can construct a DFA \mathcal{B} equivalent to \mathcal{A} , i.e., such that $\mathscr{L}(\mathcal{A}) = \mathscr{L}(\mathcal{B})$.

The proof of the preceding fact uses what is called the *powerset construction*, sometimes called the *subset construction*, which is described in [PMC, page 157]. The next example is [PMC, Example 4.10, page 158] which is obtained using the powerset construction.

Example 9. The DFA \mathcal{A}_3 , given below, is total deterministic and equivalent to \mathcal{A}_1

 $^{^{1}}$ In many other textbooks, they require that the equality holds in these two conditions and they do not distinguish between DFA's and *total* DFA's.

The language recognized/accepted by \mathcal{A}_3 is $\mathscr{L}(\mathcal{A}_3) = \mathscr{L}((A+B)^*B(A+B))$.

More material, with numerous examples, on *finite automata* is in [PMC, Section 4.1, pages 151-158].

2 ω -Regular Expressions and Büchi Automata

As in Section 1 and in contrast to [PMC], I use two two different script versions of the letter L: \mathcal{L} and \mathscr{L} , the first as a metavariable (appropriately decorated) ranging over languages and the second as an operator on ω -regular expressions and Büchi automata, as defined below – as well as an operator on regular expressions and finite automata.

The following is from [PMC, Definition 4.23, page 171].

Definition 10 (ω -Regular Expressions). An ω -regular expression G over the alphabet Σ has the form

 $G = E_1 \cdot F_1^{\omega} + \dots + E_n \cdot F_n^{\omega}$ (sometimes written as $E_1 F_1^{\omega} + \dots + E_n F_n^{\omega}$ more compactly)

where $E_1, \ldots, E_n, F_1, \ldots, F_n$ are regular expressions over Σ , with $n \ge 1$, and the empty string ε is not in $\mathscr{L}(F_i)$ for every $1 \le i \le n$.

Example 11. $(A + B)^*A(AAB + C)^{\omega}$ and $A(B + C)^*A^{\omega} + B(A + C)^{\omega}$ are examples of ω -regular expressions over the alphabet $\Sigma = \{A, B, C\}$.

For a language $\mathcal{L} \subseteq \Sigma^*$, let \mathcal{L}^{ω} be the set of words in $\Sigma^* \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ , *i.e.*,

$$\mathcal{L}^{\omega} \triangleq \{ w_1 w_2 w_3 \cdots \mid w_i \in \mathcal{L} \text{ and } i \ge 1 \}.$$

If \mathcal{L} does not contain the empty word ε , then $\mathcal{L}^{\omega} \cap \Sigma^* = \emptyset$ and \mathcal{L}^{ω} is an ω -language, *i.e.*, every word in \mathcal{L}^{ω} is infinite. In this case, we also have that $\mathcal{L}^{\omega} \subseteq \Sigma^{\omega}$ (do you see why?). Note carefully that the superscripts here are operators:

• ()* and ()^{ω} are operators, *i.e.*, the "*" and the " ω " are not part of their argument names.²

Let $\mathcal{L}_1 \subseteq \Sigma^*$ and $\mathcal{L}_2 \subseteq \Sigma^{\omega}$, *i.e.*, \mathcal{L}_1 is a language of finite words and \mathcal{L}_2 a language of infinite words. We write $\mathcal{L}_1 \cdot \mathcal{L}_2$ to denote the set of all the *concatenations* of two words, one from \mathcal{L}_1 and one from \mathcal{L}_2 , which is an ω -language:

$$\mathcal{L}_1 \cdot \mathcal{L}_2 \triangleq \{ w_1 w_2 \mid w_1 \in \mathcal{L}_1 \text{ and } w_2 \in \mathcal{L}_2 \}.$$

The next definition is [PMC, Definition 4.24, page 172], written a little differently (there is no need to introduce an additional operator denoted " $\mathcal{L}(\)_{\omega}$ " as in [PMC], which may be a little confusing in the presence of several uses of ω in superscript position as an operator and in subscript position as part of an operator name).

Definition 12 (ω -Regular Languages). An ω -language $\mathcal{L} \subseteq \Sigma^{\omega}$ is called an ω -regular language if there an ω -regular expression G such that:

$$\mathcal{L} = \mathscr{L}(G) \triangleq \mathscr{L}(E_1) \cdot (\mathscr{L}(F_1))^{\omega} \cup \dots \cup \mathscr{L}(E_n) \cdot (\mathscr{L}(F_n))^{\omega} \Box$$

The following example is taken from the first paragraph after [PMC, Definition 4.24, page 172].

- **Example 13.** 1. All infinite words over the alphabet $\{A, B\}$ that contain infinitely A's is ω -regular. This ω -regular language is induced by the ω -regular expression $(B^*A)^{\omega}$.
 - 2. All infinite words over $\{A, B\}$ that contain finitely many A's is ω -regular. This ω -regular language is induced by the ω -regular expression $(A + B)^* B^{\omega}$.
 - 3. The empty set is an ω -regular language induced by the ω -regular expression \emptyset^{ω} .

The following definition is part of [PMC, Definition 4.23, page 171].

Definition 14 (Equivalence of ω -Regular Expressions). Two ω -regular expressions G_1 and G_2 are equivalent, denoted $G_1 \equiv G_2$, if and only if $\mathscr{L}(G_1) = \mathscr{L}(G_2)$.

Notation 15. If $\varepsilon \notin \mathscr{L}(E)$ where E is a regular expression, then we can view E^{ω} as an ω -regular expression, since E^{ω} can be identified with $E \cdot E^{\omega}$ or also with $\varepsilon \cdot E^{\omega}$.

The following fact is taken from the second paragraph after [PMC, Definition 4.24, page 172].

Fact 16. ω -regular languages, just like regular languages, are closed under: (i) union, (ii) intersection and (iii) complementation.

In Fact 16, the proof of (i) is easy (left to you); the proof of (ii) is a consequence of [PMC, Corollary 4.60, page 198], which is proved after introducing a variant of NBA's called *generalized nondeter*ministic Büchi automata (GNBA) [PMC, Definition 4.52, page 193]; and the proof of (iii) is more complicated and omitted in [PMC] (though references to the literature for this result are included).

The next definition is [PMC, Definition 4.27, page 174].

²To be absolutely clear, we could write $(\Sigma)^*$, $(\mathcal{L})^*$, $(\Sigma)^{\omega}$, and $(\mathcal{L})^{\omega}$, instead of Σ^* , \mathcal{L}^* , Σ^{ω} , and \mathcal{L}^{ω} , respectively. But it is a common practice to omit the parenthesis pairs and to remember that "*" and " ω " are operators and not parts of their argument names. Note also that "*" appearing in regular expressions, and "*" and " ω " appearing in ω -regular expressions, are not operators; they are just symbols, like the symbols "+" and "·", and these four symbols {"*", " ω ", "+", "·"} become operators when regular expressions and ω -regular expressions are interpreted as regular languages and ω -regular languages.

Definition 17 (Nondeterministic Büchi Automata). A nondeterministic Büchi automaton (NBA) \mathcal{A}_B is a 5-tuple $\mathcal{A}_B = (Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of *states*,
- Σ is the *alphabet*,
- $\delta: Q \times \Sigma \to 2^Q$ is the transition function,
- $Q_0 \subseteq Q$ is the subset of *initial states*, and
- $F \subseteq Q$ is the subset of *accept* (or *final*) states, called the *acceptance set*.

Note that a NBA is defined just like a NFA, except that acceptance/recognition of words is defined differently, as we explain next.³ A run σ for NBA \mathcal{A}_B is an ω -sequence over Σ , say,

$$\sigma = A_0 A_1 A_2 \cdots$$

which induces an ω -sequence of states, say,

 $q_0 q_1 q_2 \cdots$

such that $q_i \xrightarrow{A_i} q_{i+1}$, *i.e.* $\delta(q_i, A_i) = q_{i+1}$, for every $i \ge 0$. The run σ is an *accepting run* if $q_i \in F$ for infinitely many *i*'s. The *language accepted* (or *recognized*) by \mathcal{A}_B is denoted $\mathscr{L}(\mathcal{A}_B)$ and defined by:

$$\mathscr{L}(\mathcal{A}_B) \triangleq \{ \sigma \in \Sigma^{\omega} \mid \text{ there is an accepting run for } \sigma \text{ in } \mathcal{A}_B \}$$

The following is [PMC, Example 4.28, page 175].

Example 18. The following is a NBA \mathcal{A}_B over the alphabet $\Sigma = \{A, B, C\}$:

We can view the NBA \mathcal{A}_B as a NFA \mathcal{A} . As a NBA, \mathcal{A}_B recognizes the ω -regular language corresponding to the ω -regular expression $C^*AB(B + BC^*AB)^{\omega}$. As a NFA, \mathcal{A} recognizes the regular language corresponding to the regular expression $C^*AB(B + BC^*AB)^{\omega}$.

The next result is [PMC, Theorem 4.32, page 178].

Fact 19. The languages accepted by NBA's are exactly the ω -regular languages.

The proof of the preceding fact is rather long [PMC, pages 178-184], but it includes many helpful examples.

Example 20. We should be careful when we compare the behaviours of NFA's and NBA's.

1. The following finite automata \mathcal{A}_1 and \mathcal{A}_2 accept the same finite words:

Namely, $\mathscr{L}(\mathcal{A}_1) = \mathscr{L}(\mathcal{A}_2) = \{A^n | n \ge 1\}$. As Büchi automata, however, $\mathscr{L}(\mathcal{A}_{1,B}) = \{A^\omega\}$ and $\mathscr{L}(\mathcal{A}_{2,B}) = \emptyset$.

³This is why I use " \mathcal{A}_B " as a name for a Büchi automaton: The subscript "B" indicates that the automaton is used as a Büchi automaton, not as a finite automaton. As a rule, if a NFA is called \mathcal{A} , I will call \mathcal{A}_B its counterpart as a NBA; and if a NBA is called \mathcal{A}_B , I will call \mathcal{A} its counterpart as a NFA.

⁴In [PMC, Example 4.28, page 175], the ω -regular expression defined by \mathcal{A}_B is given as $C^*AB(B^+ + BC^*AB)^{\omega}$ – note the "+" on the second occurrence of "B", but this "+" is not necessary (can you see why?).

2. The following Büchi automata $\mathcal{A}_{1,B}$ and $\mathcal{A}_{2,B}$ accept the same infinite words:

Namely, $\mathscr{L}(\mathcal{A}_{1,B}) = \mathscr{L}(\mathcal{A}_{2,B}) = \{A^{\omega}\}$. As finite automata, however, $\mathscr{L}(\mathcal{A}_1) = \{A^{2n} | n \ge 0\}$ and $\mathscr{L}(\mathcal{A}_2) = \{A^{2n+1} | n \ge 0\}$.

The definition of a *deterministic Büchi automaton* (DBA) is from [PMC, Definition 4.48, page 188] and is the same as that of a *deterministic finite automaton* (DFA) given before Fact 8 above. Specifically, we say the Büchi automaton $\mathcal{A}_B = (Q, \Sigma, \delta, Q_0, F)$ is a DBA iff:

- $|Q_0| \leq 1$, and
- $|\delta(q, A)| \leq 1$ for every pair $(q, A) \in Q \times \Sigma$.

If the equality holds in these two conditions, the DBA is called *total*.

The following result is mentioned at the end of [PMC, page 186]; its proof is not too difficult.

Fact 21. Let A_1 and A_2 be DFA's, and $A_{1,B}$ and $A_{2,B}$ their counterparts as DBA's. If $\mathscr{L}(A_1) = \mathscr{L}(A_2)$, then $\mathscr{L}(A_{1,B}) = \mathscr{L}(A_{2,B})$.

Two important comments regarding Fact 21:

- If we lift the restriction to *deterministic* automata, then Fact 21 does not hold. (This is readily shown using Fact 22 below.)
- The converse implication in Fact 21 is not true; a counter-example is part 2 in Example 20.

The following result is [PMC, Theorem 4.50, page 190], in sharp contrast with finite automata, where NFA's and DFA's are equally expressive.

Fact 22. NBA's are more powerful than DBA's. Specifically, there does not exist a DBA \mathcal{A}_B such that $\mathscr{L}(\mathcal{A}_B) = \mathscr{L}((A+B)^*B^{\omega})$ (the proof is not trivial, given in [PMC, pages 190-191]).