Lecture Notes
 Finite Automata and Büchi Automata

Assaf Kfoury

January 20, 2018

Section 1 in this handout is a brief review of finite automata and regular languages; this is material that students have normally seen in one or more undergraduate courses in the standard computerscience curriculum. I include it here because it is a good background for Section 2, which is a quick introduction to so-called Büchi automata and ω-regular languages. The latter material is rarely, if ever, covered in undergraduate courses.
As much as possible, I follow the notational conventions of the textbook [PMC]. Throughout, I mention facts without their proofs; I include references to the latter from [PMC] whenever appropriate.

1 Review: Regular Expressions and Finite Automata

In contrast to [PMC], I use two different script versions of the letter $L: \mathcal{L}$ and \mathscr{L}. The first script \mathcal{L} is a metavariable (appropriately decorated) ranging over languages, the second script \mathscr{L} is an operator (mapping regular expressions or automata to languages).
The next definition is [PMC, Definition 4.1, page 151].
Definition 1 (Nondeterministic Finite Automata). A nondeterministic finite automaton (NFA) is a 5 -tuple $\mathcal{A}=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ where:

- Q is a finite set of states,
- Σ is the alphabet,
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function,
- $Q_{0} \subseteq Q$ is the subset of initial states,
- $F \subseteq Q$ is the subset of final or accept states.

The language accepted/recognized by a NFA \mathcal{A} is denoted $\mathscr{L}(\mathcal{A})$. The transition function δ can be identified with the ternary relation $\rightarrow \subseteq Q \times \Sigma \times Q$ defined by $q \xrightarrow{A} q^{\prime}$ iff $q^{\prime} \in \delta(q, A)$.

The following example is part of [PMC, Example 4.2, pages 152-153].
Example 2. The following NFA, \mathcal{A}_{1}, recognizes the set of words/strings defined by the regular expression $(A+B)^{*} B(A+B)$.

The definitions of regular expressions and regular sets (also called regular languages) are given in one of the appendices of the book, [PMC, pages 914-915]. An important fact to keep in mind: Every regular expression defines a regular set, and every regular set is defined by a regular expression.

Fact 3. If \mathcal{A} is a NFA over alphabet Σ, then the set of finite words recognized/accepted by \mathcal{A} is a regular set over Σ.

Fact 4. If X is a regular set over alphabet Σ, then we can construct a NFA \mathcal{A} which recognizes/accepts the set X.

The two preceding facts show that $N F A$'s and regular expressions are two equivalent ways of defining regular languages/regular sets.

Example 5. The following NFA, \mathcal{A}_{2}, recognizes the set of words/strings defined by the regular expression $(A+B) B(A+B)^{*}$.

A formal definition of the synchronous product of two NFA's is given in [PMC, Definition 4.8, page 156]. It is illustrated in the next example.

Example 6. The synchronous product $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ of \mathcal{A}_{1} and \mathcal{A}_{2} is

$\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ recognizes the set of words defined by the regular expression $(A+B) B(A+B)+B B$.
Fact 7. Given NFA \mathcal{A}_{1} and NFA \mathcal{A}_{2}, it holds that $\mathscr{L}\left(\mathcal{A}_{1}\right) \cap \mathscr{L}\left(\mathcal{A}_{2}\right)=\varnothing$ if and only if $\mathscr{L}\left(\mathcal{A}_{1} \otimes \mathcal{A}_{2}\right)=\varnothing$.
For the next fact, equivalence of NFA's is defined in [PMC, Definition 4.6, page 155]. The definition of deterministic finite automaton (DFA) is given in [PMC, Definition 4.9, page 156], which is a particular NFA satisfying two conditions:

- $\left|Q_{0}\right| \leqslant 1$, and
- $|\delta(q, A)| \leqslant 1$ for every pair $(q, A) \in Q \times \Sigma$.

If the equality holds in these two conditions, the DFA is called total. $]^{1}$
Fact 8. If \mathcal{A} is a NFA, then we can construct a DFA \mathcal{B} equivalent to \mathcal{A}, i.e., such that $\mathscr{L}(\mathcal{A})=\mathscr{L}(\mathcal{B})$.
The proof of the preceding fact uses what is called the powerset construction, sometimes called the subset construction, which is described in [PMC, page 157]. The next example is [PMC, Example 4.10, page 158] which is obtained using the powerset construction.

Example 9. The DFA \mathcal{A}_{3}, given below, is total deterministic and equivalent to \mathcal{A}_{1}

[^0]

The language recognized/accepted by \mathcal{A}_{3} is $\mathscr{L}\left(\mathcal{A}_{3}\right)=\mathscr{L}\left((A+B)^{*} B(A+B)\right)$.
More material, with numerous examples, on finite automata is in [PMC, Section 4.1, pages 151-158].

2ω-Regular Expressions and Büchi Automata

As in Section 1 and in contrast to [PMC], I use two two different script versions of the letter $L: \mathcal{L}$ and \mathscr{L}, the first as a metavariable (appropriately decorated) ranging over languages and the second as an operator on ω-regular expressions and Büchi automata, as defined below - as well as an operator on regular expressions and finite automata.
The following is from [PMC, Definition 4.23, page 171].
Definition 10 (ω-Regular Expressions). An ω-regular expression G over the alphabet Σ has the form

$$
G=E_{1} \cdot F_{1}^{\omega}+\cdots+E_{n} \cdot F_{n}^{\omega} \quad\left(\text { sometimes written as } E_{1} F_{1}^{\omega}+\cdots+E_{n} F_{n}^{\omega}\right. \text { more compactly) }
$$

where $E_{1}, \ldots, E_{n}, F_{1}, \ldots F_{n}$ are regular expressions over Σ, with $n \geqslant 1$, and the empty string ε is not in $\mathscr{L}\left(F_{i}\right)$ for every $1 \leqslant i \leqslant n$.

Example 11. $(A+B)^{*} A(A A B+C)^{\omega}$ and $A(B+C)^{*} A^{\omega}+B(A+C)^{\omega}$ are examples of ω-regular expressions over the alphabet $\Sigma=\{A, B, C\}$.

For a language $\mathcal{L} \subseteq \Sigma^{*}$, let \mathcal{L}^{ω} be the set of words in $\Sigma^{*} \cup \Sigma^{\omega}$ that arise from the infinite concatenation of (arbitrary) words in Σ, i.e.,

$$
\mathcal{L}^{\omega} \triangleq\left\{w_{1} w_{2} w_{3} \cdots \mid w_{i} \in \mathcal{L} \text { and } i \geqslant 1\right\} .
$$

If \mathcal{L} does not contain the empty word ε, then $\mathcal{L}^{\omega} \cap \Sigma^{*}=\varnothing$ and \mathcal{L}^{ω} is an ω-language, i.e., every word in \mathcal{L}^{ω} is infinite. In this case, we also have that $\mathcal{L}^{\omega} \subseteq \Sigma^{\omega}$ (do you see why?). Note carefully that the superscripts here are operators:

- ()* and () ${ }^{\omega}$ are operators, i.e., the " $*$ " and the " ω " are not part of their argument names ${ }^{2}$

Let $\mathcal{L}_{1} \subseteq \Sigma^{*}$ and $\mathcal{L}_{2} \subseteq \Sigma^{\omega}$, i.e., \mathcal{L}_{1} is a language of finite words and \mathcal{L}_{2} a language of infinite words. We write $\mathcal{L}_{1} \cdot \mathcal{L}_{2}$ to denote the set of all the concatenations of two words, one from \mathcal{L}_{1} and one from \mathcal{L}_{2}, which is an ω-language:

$$
\mathcal{L}_{1} \cdot \mathcal{L}_{2} \triangleq\left\{w_{1} w_{2} \mid w_{1} \in \mathcal{L}_{1} \text { and } w_{2} \in \mathcal{L}_{2}\right\}
$$

The next definition is [PMC, Definition 4.24, page 172], written a little differently (there is no need to introduce an additional operator denoted " $\mathcal{L}()_{\omega}$ " as in $[\mathrm{PMC}]$, which may be a little confusing in the presence of several uses of ω in superscript position as an operator and in subscript position as part of an operator name).

Definition 12 (ω-Regular Languages). An ω-language $\mathcal{L} \subseteq \Sigma^{\omega}$ is called an ω-regular language if there an ω-regular expression G such that:

$$
\mathcal{L}=\mathscr{L}(G) \triangleq \mathscr{L}\left(E_{1}\right) \cdot\left(\mathscr{L}\left(F_{1}\right)\right)^{\omega} \cup \cdots \cup \mathscr{L}\left(E_{n}\right) \cdot\left(\mathscr{L}\left(F_{n}\right)\right)^{\omega}
$$

The following example is taken from the first paragraph after [PMC, Definition 4.24, page 172].
Example 13. 1. All infinite words over the alphabet $\{A, B\}$ that contain infinitely A 's is ω-regular. This ω-regular language is induced by the ω-regular expression $\left(B^{*} A\right)^{\omega}$.
2. All infinite words over $\{A, B\}$ that contain finitely many A 's is ω-regular. This ω-regular language is induced by the ω-regular expression $(A+B)^{*} B^{\omega}$.
3. The empty set is an ω-regular language induced by the ω-regular expression \varnothing^{ω}.

The following definition is part of [PMC, Definition 4.23, page 171].
Definition 14 (Equivalence of ω-Regular Expressions). Two ω-regular expressions G_{1} and G_{2} are equivalent, denoted $G_{1} \equiv G_{2}$, if and only if $\mathscr{L}\left(G_{1}\right)=\mathscr{L}\left(G_{2}\right)$.

Notation 15. If $\varepsilon \notin \mathscr{L}(E)$ where E is a regular expression, then we can view E^{ω} as an ω-regular expression, since E^{ω} can be identified with $E \cdot E^{\omega}$ or also with $\varepsilon \cdot E^{\omega}$.

The following fact is taken from the second paragraph after [PMC, Definition 4.24, page 172].
Fact 16. ω-regular languages, just like regular languages, are closed under: (i) union, (ii) intersection and (iii) complementation.

In Fact 16, the proof of (i) is easy (left to you); the proof of $(i i)$ is a consequence of [PMC, Corollary 4.60, page 198], which is proved after introducing a variant of NBA's called generalized nondeterministic Büchi automata (GNBA) [PMC, Definition 4.52, page 193]; and the proof of (iii) is more complicated and omitted in [PMC] (though references to the literature for this result are included).
The next definition is [PMC, Definition 4.27, page 174].

[^1]Definition 17 (Nondeterministic Büchi Automata). A nondeterministic Büchi automaton (NBA) \mathcal{A}_{B} is a 5 -tuple $\mathcal{A}_{B}=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ where:

- Q is a finite set of states,
- Σ is the alphabet,
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function,
- $Q_{0} \subseteq Q$ is the subset of initial states, and
- $F \subseteq Q$ is the subset of accept (or final) states, called the acceptance set.

Note that a NBA is defined just like a NFA, except that acceptance/recognition of words is defined differently, as we explain next ${ }_{3}^{3}$ A run σ for NBA \mathcal{A}_{B} is an ω-sequence over Σ, say,

$$
\sigma=A_{0} A_{1} A_{2} \cdots
$$

which induces an ω-sequence of states, say,
$q_{0} q_{1} q_{2} \cdots$
such that $q_{i} \xrightarrow{A_{i}} q_{i+1}$, i.e. $\delta\left(q_{i}, A_{i}\right)=q_{i+1}$, for every $i \geqslant 0$. The run σ is an accepting run if $q_{i} \in F$ for infinitely many i 's. The language accepted (or recognized) by \mathcal{A}_{B} is denoted $\mathscr{L}\left(\mathcal{A}_{B}\right)$ and defined by:

$$
\mathscr{L}\left(\mathcal{A}_{B}\right) \triangleq\left\{\sigma \in \Sigma^{\omega} \mid \text { there is an accepting run for } \sigma \text { in } \mathcal{A}_{B}\right\}
$$

The following is [PMC, Example 4.28, page 175].
Example 18. The following is a NBA \mathcal{A}_{B} over the alphabet $\Sigma=\{A, B, C\}$:

We can view the NBA \mathcal{A}_{B} as a NFA \mathcal{A}. As a NBA, \mathcal{A}_{B} recognizes the ω-regular language corresponding to the ω-regular expression $C^{*} A B\left(B+B C^{*} A B\right)^{\omega}$. As a NFA, \mathcal{A} recognizes the regular language corresponding to the regular expression $C^{*} A B\left(B+B C^{*} A B\right)^{*} .{ }^{4}$

The next result is [PMC, Theorem 4.32, page 178].
Fact 19. The languages accepted by NBA's are exactly the ω-regular languages.
The proof of the preceding fact is rather long [PMC, pages 178-184], but it includes many helpful examples.

Example 20. We should be careful when we compare the behaviours of NFA's and NBA's.

1. The following finite automata \mathcal{A}_{1} and \mathcal{A}_{2} accept the same finite words:

Namely, $\mathscr{L}\left(\mathcal{A}_{1}\right)=\mathscr{L}\left(\mathcal{A}_{2}\right)=\left\{A^{n} \mid n \geqslant 1\right\}$. As Büchi automata, however, $\mathscr{L}\left(\mathcal{A}_{1, B}\right)=\left\{A^{\omega}\right\}$ and $\mathscr{L}\left(\mathcal{A}_{2, B}\right)=\varnothing$.

[^2]
(a) \mathcal{A}_{1}

(b) \mathcal{A}_{2}
2. The following Büchi automata $\mathcal{A}_{1, B}$ and $\mathcal{A}_{2, B}$ accept the same infinite words:

(c) $\mathcal{A}_{1, B}$

(d) $\mathcal{A}_{2, B}$

Namely, $\mathscr{L}\left(\mathcal{A}_{1, B}\right)=\mathscr{L}\left(\mathcal{A}_{2, B}\right)=\left\{A^{\omega}\right\}$. As finite automata, however, $\mathscr{L}\left(\mathcal{A}_{1}\right)=\left\{A^{2 n} \mid n \geqslant 0\right\}$ and $\mathscr{L}\left(\mathcal{A}_{2}\right)=\left\{A^{2 n+1} \mid n \geqslant 0\right\}$.

The definition of a deterministic Büchi automaton (DBA) is from [PMC, Definition 4.48, page 188] and is the same as that of a deterministic finite automaton (DFA) given before Fact 8 above. Specifically, we say the Büchi automaton $\mathcal{A}_{B}=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ is a DBA iff:

- $\left|Q_{0}\right| \leqslant 1$, and
- $|\delta(q, A)| \leqslant 1$ for every pair $(q, A) \in Q \times \Sigma$.

If the equality holds in these two conditions, the DBA is called total.
The following result is mentioned at the end of [PMC, page 186]; its proof is not too difficult.
Fact 21. Let \mathcal{A}_{1} and \mathcal{A}_{2} be DFA's, and $\mathcal{A}_{1, B}$ and $\mathcal{A}_{2, B}$ their counterparts as DBA's. If $\mathscr{L}\left(\mathcal{A}_{1}\right)=$ $\mathscr{L}\left(\mathcal{A}_{2}\right)$, then $\mathscr{L}\left(\mathcal{A}_{1, B}\right)=\mathscr{L}\left(\mathcal{A}_{2, B}\right)$.

Two important comments regarding Fact 21

- If we lift the restriction to deterministic automata, then Fact 21 does not hold.
(This is readily shown using Fact 22 below.)
- The converse implication in Fact 21 is not true; a counter-example is part 2 in Example 20 .

The following result is [PMC, Theorem 4.50, page 190], in sharp contrast with finite automata, where NFA's and DFA's are equally expressive.

Fact 22. $N B A$'s are more powerful than DBA's. Specifically, there does not exist a $D B A \mathcal{A}_{B}$ such that $\mathscr{L}\left(\mathcal{A}_{B}\right)=\mathscr{L}\left((A+B)^{*} B^{\omega}\right)$ (the proof is not trivial, given in [PMC, pages 190-191]).

[^0]: ${ }^{1}$ In many other textbooks, they require that the equality holds in these two conditions and they do not distinguish between DFA's and total DFA's.

[^1]: ${ }^{2}$ To be absolutely clear, we could write $(\Sigma)^{*},(\mathcal{L})^{*},(\Sigma)^{\omega}$, and $(\mathcal{L})^{\omega}$, instead of $\Sigma^{*}, \mathcal{L}^{*}, \Sigma^{\omega}$, and \mathcal{L}^{ω}, respectively. But it is a common practice to omit the parenthesis pairs and to remember that "*" and " ω " are operators and not parts of their argument names. Note also that "*" appearing in regular expressions, and " $*$ " and " ω " appearing in ω-regular expressions, are not operators; they are just symbols, like the symbols " + " and ".", and these four symbols $\{" * ", " \omega ", "+", " . "\}$ become operators when regular expressions and ω-regular expressions are interpreted as regular languages and ω-regular languages.

[^2]: ${ }^{3}$ This is why I use " \mathcal{A}_{B} " as a name for a Büchi automaton: The subscript " B " indicates that the automaton is used as a Büchi automaton, not as a finite automaton. As a rule, if a NFA is called \mathcal{A}, I will call \mathcal{A}_{B} its counterpart as a NBA; and if a NBA is called \mathcal{A}_{B}, I will call \mathcal{A} its counterpart as a NFA.
 ${ }^{4}$ In [PMC, Example 4.28, page 175], the ω-regular expression defined by \mathcal{A}_{B} is given as $C^{*} A B\left(B^{+}+B C^{*} A B\right)^{\omega}-$ note the " + " on the second occurrence of " B ", but this " + " is not necessary (can you see why?).

