
Lecture Notes

Finite Automata and Büchi Automata

Assaf Kfoury

January 20, 2018

Section 1 in this handout is a brief review of finite automata and regular languages; this is material
that students have normally seen in one or more undergraduate courses in the standard computer-
science curriculum. I include it here because it is a good background for Section 2, which is a quick
introduction to so-called Büchi automata and ω-regular languages. The latter material is rarely, if
ever, covered in undergraduate courses.

As much as possible, I follow the notational conventions of the textbook [PMC]. Throughout, I mention
facts without their proofs; I include references to the latter from [PMC] whenever appropriate.

1 Review: Regular Expressions and Finite Automata

In contrast to [PMC], I use two different script versions of the letter L: L and L . The first script L is
a metavariable (appropriately decorated) ranging over languages, the second script L is an operator
(mapping regular expressions or automata to languages).

The next definition is [PMC, Definition 4.1, page 151].

Definition 1 (Nondeterministic Finite Automata). A nondeterministic finite automaton (NFA) is a
5-tuple A = (Q,Σ, δ, Q0, F) where:

• Q is a finite set of states,

• Σ is the alphabet,

• δ : Q× Σ→ 2Q is the transition function,

• Q0 ⊆ Q is the subset of initial states,

• F ⊆ Q is the subset of final or accept states.

The language accepted/recognized by a NFA A is denoted L
(
A
)
. The transition function δ can be

identified with the ternary relation → ⊆ Q× Σ×Q defined by q
A−→ q′ iff q′ ∈ δ(q, A). �

The following example is part of [PMC, Example 4.2, pages 152-153].

Example 2. The following NFA, A1, recognizes the set of words/strings defined by the regular expres-
sion (A+B)∗B(A+B).

1

q0start q1 q2

A

B

B
A

B

�

The definitions of regular expressions and regular sets (also called regular languages) are given in one
of the appendices of the book, [PMC, pages 914-915]. An important fact to keep in mind: Every
regular expression defines a regular set, and every regular set is defined by a regular expression.

Fact 3. If A is a NFA over alphabet Σ, then the set of finite words recognized/accepted by A is a regular
set over Σ.

Fact 4. If X is a regular set over alphabet Σ, then we can construct a NFA A which recognizes/accepts
the set X.

The two preceding facts show that NFA’s and regular expressions are two equivalent ways of defining
regular languages/regular sets.

Example 5. The following NFA, A2, recognizes the set of words/strings defined by the regular expres-
sion (A+B)B(A+B)∗.

r0start r1 r2

A

B

B
A

B

�

A formal definition of the synchronous product of two NFA’s is given in [PMC, Definition 4.8, page
156]. It is illustrated in the next example.

Example 6. The synchronous product A1 ⊗A2 of A1 and A2 is

2

q0, r0start q0, r1

q1, r1

q0, r2

q1, r2 q2, r2

A

B

B

B

B

B

A

B

A

B

A1 ⊗A2 recognizes the set of words defined by the regular expression (A+B)B (A+B) +BB. �

Fact 7. Given NFA A1 and NFA A2, it holds that L
(
A1

)
∩L

(
A2

)
= ∅ if and only if L

(
A1⊗A2

)
= ∅.

For the next fact, equivalence of NFA’s is defined in [PMC, Definition 4.6, page 155]. The definition of
deterministic finite automaton (DFA) is given in [PMC, Definition 4.9, page 156], which is a particular
NFA satisfying two conditions:

•
∣∣Q0

∣∣ 6 1, and

•
∣∣δ(q,A)

∣∣ 6 1 for every pair (q, A) ∈ Q× Σ.

If the equality holds in these two conditions, the DFA is called total.1

Fact 8. If A is a NFA, then we can construct a DFA B equivalent to A, i.e., such that L
(
A
)

= L
(
B
)
.

The proof of the preceding fact uses what is called the powerset construction, sometimes called the
subset construction, which is described in [PMC, page 157]. The next example is [PMC, Example 4.10,
page 158] which is obtained using the powerset construction.

Example 9. The DFA A3, given below, is total deterministic and equivalent to A1

1In many other textbooks, they require that the equality holds in these two conditions and they do not distinguish
between DFA’s and total DFA’s.

3

{q0}start {q0, q1}

{q0, q2} {q0, q1, q2}

A

B

A

B

A
B

A

B

The language recognized/accepted by A3 is L
(
A3

)
= L

(
(A+B)∗B(A+B)

)
. �

More material, with numerous examples, on finite automata is in [PMC, Section 4.1, pages 151-158].

2 ω-Regular Expressions and Büchi Automata

As in Section 1 and in contrast to [PMC], I use two two different script versions of the letter L: L and
L , the first as a metavariable (appropriately decorated) ranging over languages and the second as an
operator on ω-regular expressions and Büchi automata, as defined below – as well as an operator on
regular expressions and finite automata.

The following is from [PMC, Definition 4.23, page 171].

Definition 10 (ω-Regular Expressions). An ω-regular expression G over the alphabet Σ has the form

G = E1 · Fω
1 + · · ·+ En · Fω

n (sometimes written as E1 F
ω
1 + · · ·+ En F

ω
n more compactly)

where E1, . . . , En, F1, . . . Fn are regular expressions over Σ, with n > 1, and the empty string ε is not
in L

(
Fi

)
for every 1 6 i 6 n. �

Example 11. (A + B)∗A(AAB + C)ω and A(B + C)∗Aω + B(A + C)ω are examples of ω-regular
expressions over the alphabet Σ = {A,B,C}. �

For a language L ⊆ Σ∗, let Lω be the set of words in Σ∗∪Σω that arise from the infinite concatenation
of (arbitrary) words in Σ, i.e.,

Lω , {w1w2w3 · · · | wi ∈ L and i > 1 }.

If L does not contain the empty word ε, then Lω ∩ Σ∗ = ∅ and Lω is an ω-language, i.e., every word
in Lω is infinite. In this case, we also have that Lω ⊆ Σω (do you see why?). Note carefully that the
superscripts here are operators:

4

• ()∗ and ()ω are operators, i.e., the “∗” and the “ω” are not part of their argument names.2

Let L1 ⊆ Σ∗ and L2 ⊆ Σω, i.e., L1 is a language of finite words and L2 a language of infinite words.
We write L1 · L2 to denote the set of all the concatenations of two words, one from L1 and one from
L2, which is an ω-language:

L1 · L2 , {w1w2 | w1 ∈ L1 and w2 ∈ L2 }.

The next definition is [PMC, Definition 4.24, page 172], written a little differently (there is no need to
introduce an additional operator denoted “L()ω” as in [PMC], which may be a little confusing in the
presence of several uses of ω in superscript position as an operator and in subscript position as part
of an operator name).

Definition 12 (ω-Regular Languages). An ω-language L ⊆ Σω is called an ω-regular language if there
an ω-regular expression G such that:

L = L
(
G
)
, L

(
E1

)
·
(
L

(
F1

))ω ∪ · · · ∪L
(
En

)
·
(
L

(
Fn

))ω
�

The following example is taken from the first paragraph after [PMC, Definition 4.24, page 172].

Example 13. 1. All infinite words over the alphabet {A,B} that contain infinitely A’s is ω-regular.
This ω-regular language is induced by the ω-regular expression (B∗A)ω.

2. All infinite words over {A,B} that contain finitely manyA’s is ω-regular. This ω-regular language
is induced by the ω-regular expression (A+B)∗Bω.

3. The empty set is an ω-regular language induced by the ω-regular expression ∅ω. �

The following definition is part of [PMC, Definition 4.23, page 171].

Definition 14 (Equivalence of ω-Regular Expressions). Two ω-regular expressions G1 and G2 are
equivalent, denoted G1 ≡ G2, if and only if L

(
G1

)
= L

(
G2

)
. �

Notation 15. If ε /∈ L
(
E
)

where E is a regular expression, then we can view Eω as an ω-regular
expression, since Eω can be identified with E · Eω or also with ε · Eω.

The following fact is taken from the second paragraph after [PMC, Definition 4.24, page 172].

Fact 16. ω-regular languages, just like regular languages, are closed under: (i) union, (ii) intersection
and (iii) complementation.

In Fact 16, the proof of (i) is easy (left to you); the proof of (ii) is a consequence of [PMC, Corollary
4.60, page 198], which is proved after introducing a variant of NBA’s called generalized nondeter-
ministic Büchi automata (GNBA) [PMC, Definition 4.52, page 193]; and the proof of (iii) is more
complicated and omitted in [PMC] (though references to the literature for this result are included).

The next definition is [PMC, Definition 4.27, page 174].

2To be absolutely clear, we could write (Σ)∗, (L)∗, (Σ)ω, and (L)ω, instead of Σ∗, L∗, Σω, and Lω, respectively.
But it is a common practice to omit the parenthesis pairs and to remember that “∗” and “ω” are operators and not
parts of their argument names. Note also that “∗” appearing in regular expressions, and “∗” and “ω” appearing in
ω-regular expressions, are not operators; they are just symbols, like the symbols “+” and “·”, and these four symbols
{“∗”,“ω”, “+”,“·”} become operators when regular expressions and ω-regular expressions are interpreted as regular
languages and ω-regular languages.

5

Definition 17 (Nondeterministic Büchi Automata). A nondeterministic Büchi automaton (NBA) AB

is a 5-tuple AB = (Q,Σ, δ, Q0, F) where:

• Q is a finite set of states,

• Σ is the alphabet,

• δ : Q× Σ→ 2Q is the transition function,

• Q0 ⊆ Q is the subset of initial states, and

• F ⊆ Q is the subset of accept (or final) states, called the acceptance set.

Note that a NBA is defined just like a NFA, except that acceptance/recognition of words is defined
differently, as we explain next.3 A run σ for NBA AB is an ω-sequence over Σ, say,

σ = A0A1A2 · · ·

which induces an ω-sequence of states, say,

q0 q1 q2 · · ·

such that qi
Ai−−→ qi+1, i.e.δ(qi, Ai) = qi+1, for every i > 0. The run σ is an accepting run if qi ∈ F for

infinitely many i’s. The language accepted (or recognized) by AB is denoted L
(
AB

)
and defined by:

L
(
AB

)
, {σ ∈ Σω | there is an accepting run for σ in AB } �

The following is [PMC, Example 4.28, page 175].

Example 18. The following is a NBA AB over the alphabet Σ = {A,B,C}:

q1start q2 q3

C B

A B

B

We can view the NBAAB as a NFAA. As a NBA,AB recognizes the ω-regular language corresponding
to the ω-regular expression C∗AB (B + BC∗AB)ω. As a NFA, A recognizes the regular language
corresponding to the regular expression C∗AB (B +BC∗AB)∗. 4 �

The next result is [PMC, Theorem 4.32, page 178].

Fact 19. The languages accepted by NBA’s are exactly the ω-regular languages.

The proof of the preceding fact is rather long [PMC, pages 178-184], but it includes many helpful
examples.

Example 20. We should be careful when we compare the behaviours of NFA’s and NBA’s.

1. The following finite automata A1 and A2 accept the same finite words:

Namely, L
(
A1

)
= L

(
A2

)
= {An|n > 1}. As Büchi automata, however, L

(
A1,B

)
= {Aω} and

L
(
A2,B

)
= ∅.

3This is why I use “AB” as a name for a Büchi automaton: The subscript “B” indicates that the automaton is used
as a Büchi automaton, not as a finite automaton. As a rule, if a NFA is called A, I will call AB its counterpart as a
NBA; and if a NBA is called AB , I will call A its counterpart as a NFA.

4In [PMC, Example 4.28, page 175], the ω-regular expression defined by AB is given as C∗AB (B+ + BC∗AB)ω –
note the “+” on the second occurrence of “B”, but this “+” is not necessary (can you see why?).

6

start
A

A

(a) A1

start
A

A

(b) A2

2. The following Büchi automata A1,B and A2,B accept the same infinite words:

start

A

A

(c) A1,B

start

A

A

(d) A2,B

Namely, L
(
A1,B

)
= L

(
A2,B

)
= {Aω}. As finite automata, however, L

(
A1

)
= {A2n|n > 0}

and L
(
A2

)
= {A2n+1|n > 0}. �

The definition of a deterministic Büchi automaton (DBA) is from [PMC, Definition 4.48, page 188] and
is the same as that of a deterministic finite automaton (DFA) given before Fact 8 above. Specifically,
we say the Büchi automaton AB = (Q,Σ, δ, Q0, F) is a DBA iff:

•
∣∣Q0

∣∣ 6 1, and

•
∣∣δ(q, A)

∣∣ 6 1 for every pair (q, A) ∈ Q× Σ.

If the equality holds in these two conditions, the DBA is called total.

The following result is mentioned at the end of [PMC, page 186]; its proof is not too difficult.

Fact 21. Let A1 and A2 be DFA’s, and A1,B and A2,B their counterparts as DBA’s. If L
(
A1

)
=

L
(
A2

)
, then L

(
A1,B

)
= L

(
A2,B

)
.

Two important comments regarding Fact 21:

• If we lift the restriction to deterministic automata, then Fact 21 does not hold.
(This is readily shown using Fact 22 below.)

• The converse implication in Fact 21 is not true; a counter-example is part 2 in Example 20.

The following result is [PMC, Theorem 4.50, page 190], in sharp contrast with finite automata, where
NFA’s and DFA’s are equally expressive.

Fact 22. NBA’s are more powerful than DBA’s. Specifically, there does not exist a DBA AB such that
L

(
AB

)
= L

(
(A+B)∗Bω

)
(the proof is not trivial, given in [PMC, pages 190-191]).

7

	Review: Regular Expressions and Finite Automata
	-Regular Expressions and Büchi Automata

