
BU CLA MA 531: Computability and Logic

Fall 1995

Handout 2 Assaf Kfoury

Tableaux Systems, Gentzen Systems, Natural-Deduction Systems

There are formal proof systems other than Hilbert-style for classical logic, whether propositional,

first-order, or higher-order. Among these alternatives are tableaux, Gentzen, and natural deduction

systems. None of these are discussed in Enderton’s book.

In a Hilbert system, finding a derivation for a wff may be a tricky business, as one has to guess

which axiom and which inference rule to use without systematic reliance on the syntax of the given

wff. In tableaux, Gentzen, and natural deduction systems, there is less of this kind of guesswork,

and derivations (or refutations) are largely syntax-directed. In particular, these alternative systems

are more suitable for automatic theorem-proving1 and allow for elegant presentations of intuition-

istic logic2. One distinctive feature of these systems, not shared by Hilbert systems, is that they

systematically and more efficiently produce a formal proof for a given wff — if it is indeed a valid

wff, and if it is not, these systems will sometimes (but not always!) produce a counterexample to

its validity. (Of course, we can also use a Hilbert system to produce a formal proof for a valid

wff, typically by some exhaustive listing of all possible derivations, but this is not efficient at all!)

Actually, in some variants of these alternative proof systems, it becomes very clear that a formal

proof is basically a record of “an unsuccessful attempt to produce a counterexample”. This is a

simple idea, but it seems to be an insight of considerable importance in many applications.3

Not to give the wrong impression, there have been attempts to do automatic theorem-proving

as well as presentations of intuitionistic logic based on Hilbert systems (of one form or another),

but these are generally ill-suited for a computational task and often seem to obscure it by syntactic

details. Of course, there are also subjective considerations (e.g. personal taste, familiarity, etc.)

in choosing an appropriate proof system to work with. Moreover, although Hilbert systems are

“inefficient and barbarously unintuitive”,4 they have advantages. First, the simplicity of their

relatively few inference rules makes them suitable for encoding into arithmetic.5 Second, it is

relatively easy to tamper with the axiom schemes of Hilbert systems in order to adapt them to

non-classical logics.6

1Automatic theorem-proving is a very active research area in computer science, where the “resolution” methods
are essentially based on Gentzen systems or tableaux systems. For further reading on this, see [4] or [9] or [2].

2Intuitionistic logic is important in several foundational areas of computer science, notably in relation to typed
λ-calculi and programming language theory.

3Further elaboration on this last point can be found in Chapter 14 of [9].
4Direct quote from [6], page 32.
5Without arithmetization of syntax we cannot reach Gödel’s Incompleteness Theorem. See Ch. 3 in Enderton’s.
6One such logic is intuitionism, for which we nevertheless prefer to use a proof system based on natural deduction.
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Concerning tableaux systems, Smullyan gives a particularly lucid presentation in [10] (where

tableaux are called “analytic tableaux”) for classical logic, both propositional and first-order. Bell

and Machover in [1], and then more recently Nerode and Shore in [8], also give presentations of

classical logic and intuitionistic logic, both propositional and first-order, based on tableaux.

I will not say anything more about tableaux systems, in part because they are really duals

of Gentzen systems: Whereas a Gentzen system systematically searches for a formal proof in tree

form, a tableaux system systematically searches for a refutation in upside-down tree form. A node

in a Gentzen proof tree corresponds to a branch in a tableau (more or less), and the Elimination

Theorem for tableaux corresponds to Gentzen’s Hauptsatz — for a definition of all these concepts,

see the forementioned references (in relation to tableaux sysems) and the references in Handout 3

(in relation to Gentzen systems). One of the best expositions of the relationship between tableaux

and Gentzen systems can be found in [10]. The view that tableaux are just a variant of Gentzen

systems is discussed in some detail in [11].

Handout 3 and Handout 4 present a Gentzen system and a natural-deduction system, respec-

tively, for classical logic.

Subsequent handouts (Handouts 5, 6, . . . as many as time permits) will be devoted to intuition-

istic logic. Formal proof systems for intuitionism can be of the Hilbert, or tableaux, or Gentzen,

or natural-deduction variety. However, as already indicated, Hilbert systems are the least capable

of revealing the computational aspects of the logic and its connections with typed λ-calculi.7 By

the “computational” aspects we mean this: When confronted with a sentence σ, instead of asking

“when is σ true?” or “when is σ derivable?”, we ask “what is a proof of σ?”. While tableaux and

Gentzen systems are better adapted to the task than Hilbert systems, the simplest way to consider

this computational content of intuitionism is to use natural deduction. In particular, using natural

deduction, it is easy to exhibit the so-called Curry-Howard isomorphism between intuitionistic log-

ics and typed λ-calculi (“wff’s and types are the same, proofs and λ-terms are the same”). More

can be found in the early chapters of [5] on the beneficial effects of natural deduction.

The proof system in Handouts 5 and 6 (and later) will therefore be the natural-deduction system

in Handout 4 appropriately restricted to intuitionistic logic, both propositional and first-order.

7A presentation of Hilbert systems for intuitionism can be found in Sections 9.8 and 9.9 of [1], or in Sections 19
and 23 of [7]. One advantage of the presentation in [7] is that it is extendable to a Hilbert system for classical logic
by adding just one axiom scheme, namely (¬¬α → α) or (¬α ∨ α), the law of “excluded middle” – see Handout 5.
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