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I start with a quick presentation of classical Hoare Logic (HL) in Section |1} the study of which has
extended over nearly five decades — and this is why I call it ‘classical’. I present enough of HL to make
explicit connections with the more recent logics, relational Hoare Logic (RHL) in Section probabilistic
Hoare Logic (pHL) in Section |4} and probabilistic Relational Hoare Logic (pRHL) in Section

The material on classical HL is found in several excellent textbooks ([10, 12} 15], 16] among several
other), although the presentation here reflects my own slant and emphasis of what should be remem-
bered about HL. The material on RHL, pHL, and pRHL, is not in any textbook, as far as I know; I
have collected it, and also simplified it for pedagogical reasons, from several research articles.



1 Classical Hoare Logic

A Hoare Logic combines a programming language (PL) and a formal logic, the latter being typically
a fragment of first-order logic (FOL). Formulas of a Hoare Logic are usually written as triples of the
form { ¢ } P {1 } where P is a well-formed program or program phrase in the programming language,
and ¢ (called a pre-condition) and v (called a post-condition) are well-formed formulas of FOL.

There is no single ‘Hoare Logic’. There is a different one for every choice of PL and every choice of a
FOL fragment. We here choose PL to be the language of WHILE-programs, a very simple imperative
language often used for pedagogical purposes. In our definitions below, we allow pre-conditions ¢ and
post-conditions ¥ to be formulas of FOL in general, but in all the examples and exercises, it will suffice
to consider quantifier-free ¢ and 1. Informally, the intended meaning of a triple { ¢ } P {1} is:

If execution of P terminates when started from a state satisfying o,
then P terminates in a state satisfying 1.

Another informal way of saying the same thing is: When P is started from a state satisfying p, either
P diverges or P terminates in a state satisfying 1. The triple { ¢ } P {1 } is sometimes called a Hoare
triple and sometimes a partial correctness assertion (PCA); the reason for the latter appellation is
explained later. We prefer the expression ‘Hoare triple’ to make explicit the contrast with ‘Hoare
quadruple’ which later designates a formula of RHL or pRHLE

1.1 An Imperative Programming Language: WHILE

We precede the formal definition of WHILE-programs with motivational examples.

Example 1. The following is a small WHILE-program:

y:=1

z:=0;

while —(z = 2) do
z:=z+1
Y:i=y*z

od

The program is simple enough that we can correctly say that, if a non-negative integer n is initially
assigned to variable z, then the program computes the factorial n! and stores it in variable y. And so,
we may call this program fact.

There are pre-conditions, i.e., conditions on the input states, that will guarantee that fact operates
correctly. One condition is that the initial value n stored in variable x cannot be fractional, which can
be guaranteed by declaring all variables to be of type int (and we assume such type declarations are
done somewhere else in the program). Another condition is that n should not be a negative integer.
When such a pre-condition is satisfied, the output state is guaranteed to specify that n! is stored in

!The conventions for writing Hoare triples vary. Some like to write ¢ {P} 9 instead of {¢} P {%}, for example
in [I2]. Others invent a somewhat unusual notation as in (¢ )P (¢)), for example in [10]. In all cases, the idea is to
clearly separate the pre-condition ¢ and the post-condition 1 from the inserted code P.



variable y. We can therefore write the following Hoare triple:
{z>0}fact{y=2!}

which asserts that if execution of fact terminates when started at a state satisfying z > 0, then fact
ends in a state satisfying y = z!. O

Example 2. The following is a small WHILE-program, call it foo:

y:=0;
while yxy <z do y:=y+1 od;
y=y—1

Given an integer x > 0, foo computes the largest integer whose square is less than = and stores it in
y. Given z < 0, foo returns —1 in the variable y. So, appropriate Hoare triples involving foo are:

{z<0}foo{y=-1} and {2>0}foo{y? <z}

and there are many others. In general, we prefer a Hoare triple that says more about the program’s
behavior. Of the preceding two, we prefer the second, because it says more about foo’s computation,
though it does not say that the returned value in y is ‘the largest integer whose square is less than x’.
So, a more precise Hoare triple is:

{:1:>0}foo{(y2<:U)/\(y+1)2>:u}

In general, a Hoare triple is most informative if its pre-condition is weakest, i.e., it imposes the fewest
possible restrictions on input states. And the Hoare triple is also most informative if its post-condition
is strongest, i.e., it expresses the most precise properties or restrictions satisfied by output states. [

Definition 3 (Syntaxr of WHILE Programs). Let x range over a countable set of variables and n
range over all the numerals {...,—2,—1,0,1,2,...}. The syntax of integer expressions is given by an
extended BNF definition{

E:=n|z|E+E |Ei—Ey | E1xEy | -+

The ellipsis in the preceding line indicates that other standard forms of integer expressions may be
added according to need. The syntax of Boolean expressions is given by an extended BNF definition:

B:=true | false | ~B | BiVBy | BIABy | By =Ey | E1 < Ey | -
Program expressions or commands are specified by an extended BNF definition:
C = skip } r.=F } Cy;Cy | if B then C4 else (s fi ‘ while B do C od

Following standard practice for easier reading, we use indentation liberally when we write the text of
a WHILE-program. We may insert in-line comments by preceding them with ¢//’. ([l

2We are careful in distinguishing the syntax of WHILE programs from their semantics later in this section. So, for
example, you should think that the numeral ‘2’ is a constant symbol which is later interpreted as the number two, the
binary function symbol ‘+’ is later interpreted as addition, etc.



1.2 Formal Proof Rules of Classical HL

Classical Hoare Logic consists of Hoare triples, by which we specify the input-output behavior of
programs, and the axioms and inference rules for deriving valid triples.

= {@} skip {p} skip)
F{Ylz— B}z =E {v} [assignment]
H{e}Ci {0} F{0}Co {9} [sequencing]
F{e} Cri;C2 {9} !
F{enB} Ci{y} Flen-B} G {} [conditional]
F{p}if B then C; else C fi {9}
F{eAB}C{p} [while]
F{y} while Bdo C od {9 A—B}
Ee=o  H{o}C{y} E¢v—=¢ [weakening]

F{¢} C{y'}

Figure 1: Inference rules of Classical HL.

As with any formal logic, we assess the proof rules for what they are set out to accomplish by defining
a formal semantics for the logic. The relationship between proof rules and formal semantics is stated
by means of:

e Soundness: Every formula derivable by the proof rules is true w.r.t. the semantics.

e (Completeness: Every true formula w.r.t. the semantics is derivable by the proof rules.

If the axioms (i.e., the initial formulas) are valid (i.e., true), then soundness means that the proof
rules preserves validity (i.e., truth) of formulas. Soundness is a minimum requirement for the proof
rules of any formal logic. Completeness may or may not be achieved, but if it is, then we have an
exact match between proof rules and formal semantics. Hence, before we discuss the soundness and
completeness of the proof rules of Classical HL, we need to define its formal semanticsﬂ

1.3 Formal Semantics of Classical HL

In a Hoare formula { ¢ } P {4 }, the formal meaning of the program P may be defined in one of several
ways, all mutually equivalent (in some sense that can be made precise), but not all equally convenient
for all situations. They can be classified into two general groups, operational and denotational, and
each of these two include several varieties[]

31 tend to use the words ‘true’ and ‘truth’ where others use the words ‘valid’ and ‘validity’. Taken in a technical sense,
these words require a precise definition of the formal semantics.

“This is an interesting topic to pursue independently, but not for this handout, which is well covered in several
textbooks. The following is a very broad classification:

e Operational Semantics: The meaning of the program P is explained in terms of the execution of a hypothetical




By contrast, the formal meaning of the pre- and post-conditions ¢ and ¢ in { ¢ } P {4 } is straightfor-
ward and without alternatives to choose from, resulting from a model theory of first-order logic that
has simpler norms and conventions.

Depending on the approach one chooses to define the formal semantics of P, operational or denotational
and in one of their respective varieties, there is a corresponding definition of the formal semantics of
{¢} P {v}. In this handout, we do not give a survey of approaches to the formal semantics of WHILE
programs; it suffices to use one of them and we choose, most conveniently, a denotational approach —
except in one place where we need to invoke an operational approach, but without dwelling on it (see

Remark .

Let V be the set of variables. A state is a map from V to Z. We use the letter o, appropriately
decorated if need be, to denote a state. If o is a state, z € V, and n € Z, we write o[z — n| to denote
the state-update function; that is, for every v € V:

olz s n)(v) 2 n ifv=ux,
o(v) otherwise.

Let X be the set of states. If F is an integer expression, we write [E] : ¥ — Z for the interpretation
of E, which maps every ¢ € ¥ to a value in Z. Likewise, if B is a Boolean expression, we write
[B] : ¥ — B for the interpretation of B.

Exercise 4. Provide the details in the definitions of [E] : ¥ — Z and [B] : ¥ — B. Hint: You
have to assign an interpretation for each of the cases in the BNF definitions of integer expressions
and Boolean expressions. You can limit your answer to the cases explicitly mentioned in the BNF
definitions for £ and B in Definition Bl O

The interpretation [C] of a command C is a little more complicated. It turns out to be a partial
function [C] : ¥ — X, which may or may not be total, to account for the fact that execution of a
WHILE-program may diverge. We first define [C], as a relation between states, i.e., [C],.; C X x X,
and then show that this relation [C] ., is in fact the desired partial function [C] : ¥ — X, because it
turns out that if (0,01), (0,02) € [C], then 01 = 0. If X, Y C ¥ x ¥ are binary relation on states,

we write X oY to denote their composition:
XoY 2{(0,0') € £ x X |there is ¢” € ¥ such that (0,0”) € Y and (¢”,0") € X }.

Note that Y is applied first and X is applied second, even though they appear in the reverse order in

computer on which P is run, and this execution may in turn be defined in one of two ways:

1. Small-Step Operational Semantics, a framework for describing the execution of P as an iterative sequence
of small computational steps, definable in one of two styles:
(a) Structural Operational Semantics, which takes the form of a set of inference rules defining the allowed
transitions of a composite piece of syntax in terms of the transitions of its constituent parts, or
(b) Reduction Operational Semantics, based on the prior definition of what are called reduction contezts,
each such context being a program with a hole where a subterm ready to be executed can be plugged.

2. Big-Step Operational Semantics, the central idea of which is to evaluate P by recursively evaluating its
subterms and then combining the results.

e Denotational Semantics: The meaning of P is obtained by first attaching a mathematical function to each atomic
component of P, and then finally to P itself, by successive syntax-directed functional compositions.

Both forms of semantics have their purpose: the operational is closer to actual implementations of programming lan-
guages, the denotational is more mathematical at it invokes notions of category theory and domain theory.



‘X oY’. By induction on the syntax of commands:

[skipl,q = {(0,0) o €X}

[t :=E],, £ {(0,0[z—n])|oceX and n=[E]s}

rel

[[Cl; CQ]]rel = [[CQ]]rel ° [[Cl]]rel

£ {(o,0") | [B]o = true and (0,0’) € [C1],. }
U {(0,0") | [B]o = false and (0,0") € [Ca], }

[if B then C; else () fi]

rel

There are some subtleties in defining [while B do C od]
between the two program phrases:

o Suggested by the expected equivalence

while B do C od and if B then C;while B do C od else skip fi

where the second phrase is obtained from the first by unwinding the loop once. Hence, if R C ¥ x X is
the denotation of [while B do C od],,, as a relation between states, which is yet to be defined, then
we would like the following equality (§) to hold:

© | R = {(a, o) ‘ [Blo = true and (0,0") € Ro [[C’]]rel} U {(a, o) ] [Blo = false}

Note that R appears on both sides of (§). We can therefore view (§) as an equation to be solved for
the unknown R. The right-hand side of (§) can be written as a function F of the unknown R, namely:

F(R) £ {(0,0") | [B]o = true and (0,0") € Ro[C],y} U {(0,0) | [B]o = false}.

Note carefully that F is a function from relations to relations, F : 2%%* — 25X% je if AC ¥ x ¥ is
a specific relation between states (not an unknown relation), then F(A) C ¥ x ¥ is another specific
relation between states. Solving (§) means solving a fizpoint equation for the unknown R:

§) |[R=F(R)

If there is a specific R C ¥ x X such that R = .7-"(]?2), we say R is a fizpoint solution of equation (8).

Remark 5. Fixpoint equations are familiar to you from freshman calculus. Consider, for example,
the equation = f(x) where f(z) = 22 — 2z +2; it has two fixpoint solutions {1, 2} (which are usually
called the roots of the equation in calculus). Such an equation may or may not have integer solutions;
e.g., when f(x) £ 22 — 3z + 10, the two roots of x = f(z) are imaginary numbers Other fixpoint
equations x = f(x) may have one, or two, ..., or infinitely many solutions that are integers.

What is new in the fixpoint equation R = F(R) above is that a solution R, if it exists, is not a number
but a relation — and not any relation, but a binary relation between states, i.e., R C ¥ x ¥, where
states in X are vectors or tuples (all of the same dimension, possibly infinite). And just as an equation
x = f(x) can be solved for z by an iterative process of successive approximations (under reasonable
assumptions about the function f), so too the equation R = F(R) can be solved by a process of
successive approximations. U

5Specifically, if you want to check it out, the two roots are 2 — iv/6 and 2 + iv/6.



We give a couple of examples to give some intuition for how a fixpoint equation R = F(R) can
be solved. In what follows, if 01,09 € X are vectors over the integers of the same finite or infinite
dimension, and iop is one of the standard binary operation on integers {+, div , mod , x,...} in
infix position, then oy iop o9 is pointwise application of iop to corresponding entries in o1 and os:

o1 iop oz £ (01(1) iop 02(1), 01(2) iop 02(2), ... )

where o; = <0i(1), 0i(2),... > We extend this operation to two sets of states Aj, Ao C X by defining;:
Aj iop Ao £ {01 iop o9 ‘ o1 € A; and o9 GAQ}

and similarly to two binary relations between states R, Ro C ¥ X X.

Example 6. Consider the following set A of integer pairs:
A2 {(n1+mdv2)-2)|neZandn>0} C ZxZ

Some of the pairs in A are { (0,1),(1,1),(2,3),(3,3), (4,5), (5,5),...}. An example of a fixpoint equa-
tion for an unknown relation R C Z X Z is the following:

(V) R = F(R) where F(R) £ AU (Rdiv (2,1))-(2,1)

Note carefully how the function F : 22%% — 22%Z ig defined: If R C Z x Z, then for every (z,y) € R
the action of F is to compute the pair:

((z,y) div (2,1)) - (2,1) = ((z div 2) - 2, (y div 1) - 1) = ((z div 2) - 2,7)

and place the resulting pair in F(R). It is easy to check that A is a fixpoint solution of equation (©),
but it is not the only fixpoint solution. For arbitrary non-empty and possibly infinite sets X,Y C Z,
consider the following set Bx y of integer pairs:

Bxy 2 U{{(Qi,j),<2i+1,j)} ieXandjeY}

It is readily checked that, for every X,Y C Z, the set of pairs AU Bx y is again a fixpoint solution of
equation (Q©).

There are therefore infinitely many fixpoint solutions of (©), one for every choice of X and Y. Of
these infinitely many solutions, there is one that is the least or smallest fixpoint, namely, the set of
pairs A defined in the opening paragraph of the current example.

It turns out that the least fixpoint solution A is the denotation [P],,, of the following WHILE-program
P over a single variable {} which is used for both input and output, thus allowing us to take input
states and output states to be each a single integer:

if z < 0 then diverge
else z: =1+ (xdiv2)-2;
while even(z) do skip od
fi

where ‘diverge’ is a shorthand for ‘while true do skip od’. It is easy to check, by inspection here,
that A describes the input-output relation of program P and A = [P],,;. O



In the preceding example we started from a specific set A of integer pairs, then defined a fixpoint
equation (O) for which A is the least solution, and finally defined a WHILE-program whose denotation
is A. In Example and we go in the reverse order: We start from a WHILE-program, then
define a fixpoint equation whose least solution is the denotation of the program.

Example 7. Consider the WHILE-program fact in Example(l] Since all the variables occurring in fact
are {z,y, 2} we can take every state o to be a tuple of dimension 3, i.e., the set of states is ¥ = Z3,
with the understanding that if 0 = (m,n,p) then m, n, and p are the integers assigned to x, y, and z,
in that order, i.e., 0(1), 0(2), and o(3) are the integers stored in z, y, and z, respectively.

By inspection, we first define the denotations of the simpler phrases in fact, namely, the initial two
instructions ‘y := 1;2 := 0" and the two instructions in the body of the loop ‘z := z + 1;y := y * 2/,
which we call Ry and R, respectively:

]5@0 =[y:==1; 2:=0],
- {(Uﬂal) ‘ 0= (m,n,p), o' = <m7170>}

R =[z:=2z2+1; Yi=y*z ]y
= {(0,0") | o = (m,n,p), o' =(m,nx(p+1),p+1)}

The denotation R of the while-do loop is a solution of the following fixpoint equation:
($) R=F(R) where

F(R) = {(0,0') | 0 = (m,n,p), o = (m/,n,p), [~(z = 2)]o = true, (0,0') € Ro El}
U{(o,0)| o= (m,n,p), [-(x =2)]o =false}
= {(070/) ’ 0= (m,n,p), o' = (m’,n',p'), m # p, (070/) € Roél}
U{(07J) |U: <m,n,p>, m:p}

We delay for a moment the question of how to systematically compute the least fixpoint solution Ry of
an equation such as ({). The while-do loop is simple enough so that, by inspection, we conjecture:

1. Ry ={(0,0) |0 = (m,n,p), m=p} U

2. {(0,0") | 0 = (m,n,p), o' = (m,nxm!/pl,m), m>p=>0}U

3. {(0,0") | 0 =(m,n,p), o’ =(m,0,m), m>0>p} U

4. {(0,0") | 0 = (m,n,p), o' = (m,nx(—p—1)!/(—m)!,m), 0 >m >p, m—piseven} U
5. {(0,0") | o =(m,n,p), o' = (m,—nx*(—p—1)!/(—=m),,m), 0>m >p, m—pisodd}

where z! is the factorial function which is only defined on the natural numbersﬁ Note that we only
consider m > p in our conjectured Rs, because if m < p, the while-do loop diverges.

We now check that R, is indeed a fixpoint solution of (<), which turns out to be the least fixpoint
solution. For the case when m = p corresponding to line 1 in the definition of Ry, it is easy to see
that all pairs of the form ((m, n,p), (m, n,p)) are in both Ry and F(R3).

Consider next the case when m > p > 0, which we divide into two subcases: m > p+ 1 > 0 and
m =p+ 1> 0. Consider the first of these two subcases. For every o = (m,n,p) withm >p+1>0

5Some have extended the factorial function to other kinds of numbers (negative integers, fractional numbers, imaginary
numbers). This should not be our concern here.



and every o', we have the following sequence of equivalences:

1. (0,0') € F(Ry) iff (0,0") € Ryo Ry
by right-hand side of ()

2. iff (0,0”) € Ry and (¢”,0") € Ry with 0" = (m,nx (p+1),p+ 1)
by the computed El

3. iff (0,0") € Ry and (¢”,0") € Ry with ¢’ = (m,n (p+ 1) xm!/(p+ 1), m)
by the conjectured Ry [by multiplying by (p+1)/(p + 1) in o]

4. iff (0,0") € Ry and (¢”,0") € Ry with o’ = (m,n % m!/p!, m)
by cancelling (p+1)/(p+ 1) in o’ [for some o”]

5. iff (0,0') € Ry with o’ = (m,n*m!/pl,m)
by the conjectured Ro

We can read these equivalences top-down or bottom-up, and for each equivalence we give a reason.
When reading them bottom-up, the reason for the equivalences on lines 3 and 4 are inserted in italics
between square brackets.

We next consider the second subcase m = p+ 1 > 0. For every 0 = (m,n,p) with m =p+ 1> 0 and
every o, we have the following sequence of equivalences:

1. (0,0") € F(Ry) iff (0,0') € Ryo Ry
by right-hand side of ()

2. iff (0,0") € Ry and (¢”,0") € Ry with 0" = (m,nx (p+1),p+ 1)
by the computed ﬁl

3. iff (0,0”) € Ry and (¢”,0") € Ry with o/ = 0" = (m,n* (p+ 1), m)
by the conjectured Eg when m =p+1

4. iff (0,0") € Ry and (¢”,0") € Ry with ¢/ = ¢” = (m,n xm!/pl,m)
because n* (p+ 1) =nxm!/pl when m =p+1

5. iff (0,0") € Ry with o’ = (m,n«m!/p!,m)
by the conjectured Eg

We are not yet done with proving Ry=F (Eg) We have to prove it again for the remaining cases:

(a)  m >0 > p, corresponding to line 3 in the definition of Ry,
(b) 0> m > p with (m — p) even, corresponding to line 4 in the definition of Ra,
(¢)  0>m > p with (m — p) odd, corresponding to line 5 in the definition of Rs.
This is done in a totally similar manner to the previous cases and I leave them as an exercise.
Finally, the denotation of the program fact is the composition Ry o Eo. Since
EO - {(070/) ’ 0= <m?n7p>a o' = <m7 170> }a
only lines 1 and 2 in the definition of EQ apply in the composition ég oﬁo. A little computation shows:
[[faCt]] §2 © EU = { (U’ OJ) | 0= <07nap>7 o' = <0> 170> } U

{(0,0") | o =(m,n,p), o' = (m,m!,m), m >0}

rel —

10



where we simplified n x m!/p! (in line 2 in the definition of ﬁg) to m! because n =1 and p = 0. O

Exercise 8. Provide the details proving the equality Ry = F(Rs) for cases (a), (b), and (c), at the
end of Example [7] O

Exercise 9. Consider the following WHILE-program P over the variables {z,y, z}:

y:=1
if z < z then skip
else while =(z = z) do
z:=z+1;

Yi=y*z
od
fi

There are two parts in this exercise:

1. Determine the denotation [P] . C ¥ x ¥ where ¥ = Z3.

2. Let ¢ 2 (z > 0) A (y = «!). Define a weakest pre-condition ¢ which makes the Hoare triple
{p} P {4} true. Justify your answer.

Hint: Observe that the while-do loop in the program P in this exercise is identical to the while-do
loop in the program fact in Example [I] and Example [7} O

Example 10. The following is a very simple WHILE-program P over the single variable {x}:
while z > 10do z := 2+ 1 od

There is only one variable x in the program and we can take the set of states ¥ = Z. We want to
determine the denotation of P, [P],., € Z x Z. It is clear that on any input integer m assigned to z,
if m > 10 then P diverges, and if m < 10 then P converges and returns the same m stored in z. Let
R be the denotation of the body of the while-do loop, which is:

R2[z:=x4+1],y={(mm+1) | meZ}
The denotation [P],, of P is a fixpoint solution of the equation R = F(R) where:
F(R) = {(m,n} ‘ m > 10 and (m,n) € Roé} U {(m,m) ‘ m < 10}
= {(m,n> ’ m > 10, there is p € Z s.t. (m,p) € R and (p,n) € R} U {(m,m) ’ m < 10}

Claim: There are infinitely many solutions of the fixpoint equation R = F(R):

e X 2 {(m,m)|m<10} is a fixpoint of R = F(R).
e For every k € Z, the relation Y, = X U { (m,k) | m > 10} is a fixpoint of R = F(R).

We leave the verification of this claim as an exercise. Clearly, X is the least of these fixpoint solutions,
and corresponds to the actual behavior of P. O

Exercise 11. Verify the claim at the end of Example O

11



Example 12. Consider the following WHILE-program P over the single variable {x}:

while x > 0 do
if xiseven thenz:=x+1elsez:=(x+3)/21i
od

Because there is only one variable x in the program, we can take the set of states ¥ = Z. The
denotation of P, which is yet to be defined, is therefore a binary relation on integers [P] ., € Z x Z.

Call R the denotation of the conditional statement in P, which is also the body of the while-do loop.
It is easy to see that, by inspection:

R 2 [if ziseven then z:=z+1 else z := (x + 3)/2 fi

rel

={(m,m+1) | meven}U{(m,(m+3)/2) | modd}

The denotation [P],,, of the full program is a fixpoint solution of the equation R = F(R) where:
F(R) & {(m,n) ‘ m >0 and (m,n) EROE} U {(m,m) ‘ m<0}
= {(m,n) ‘ m >0, there is p € Z s.t. (m,p) € R and (p,n) € R} U {(m,m> ‘ m < O}

Claim: There are infinitely many solutions of the fixpoint equation R = F(R) above, namely:

e X 2 {(m,m)|m<0}is a fixpoint of R = F(R).
e For every k € 7Z, the relation Y3 2 X U{(m,k) | m >0} is a fixpoint of R = F(R).

We leave the verification of this claim as an exercise. Observe that X is the least fizpoint solution
since X C Y}, for every k € Z. O

Exercise 13. There are two parts:

1. Verify the claim at the end of Example
2. Prove P in Example [12| converges for every x = m < 0 and diverges for every x = m > 0.

Based on these two parts, conclude that the correct denotation of P is [P] X. O

rel —

Remark 14. Examples [6] [7}, and [I2] show that in the presence of WHILE-loops, the denotation
[P]q € X x X of a program P is given by the least fixpoint solution of an equation of the form
R = F(R), and in each case the least fizpoint rather than any fixpoint matches the actual behavior
of the program. The denotational semantics of WHILE-programs by itself does not provide the means
for preferring the least fixpoint. We need to invoke the operational semantics of WHILE-programs, in
any of its several variants, in order to justify that the least fixpoint is the one to choose, i.e., the one
that matches the semantics obtained by using an operational approach. O

1.4 Soundness and Completeness of Classical HL

A first-order formula ¢ of arithmetic is a first-order formula over the signature of arithmetic, i.e., ¢
uses constant symbols, function symbols, and relation symbols of arithmetic {0,1,+, —, X,..., <,...}.
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In this handout, a state is a map from the set V of variables to the set Z of integers, and X is the set
of all states. We write [¢] for the set of states satisfying ¢:

[pl2{oceZ|oE¢}
In general, [¢] C 3. If [¢] = X, we say that ¢ is always true, i.e., satisfied by every state.

Definition 15 (Valid Hoare Triples). The Hoare triple { ¢} C {4} is true (i.e., valid), written
E{p} C{y},iff for all states 0,0’ € ¥ it holds that if o € [¢] and (o, 0’) € [C] then ¢’ € [¢]. O

A minimum requirement for a proof system, the set of axioms and inference rules for deriving formulas,
is that it be sound. This property is satisfied by the proof system presented in Section [1.2

Theorem 16 (Soundness of Classical HL). Let { o} C {¢ } be a Hoare triple. If = { o} C {9} then
F{erC{v}.

Proofs for Theorem (16| are in several standard textbooks, in particular in [16] [12].

We say a proof system is effective if it can be automated, i.e., its axioms and inference rules can
be used mechanically to derive formulas by strict pattern matching of syntactic expressions. In this
sense, the proof system in Section is not effective, the culprit being the rule ‘[weakening]’” which
mentions among its premises the validity (not the formal derivability) of two first-order formulas,

namely = ¢’ — ¢ and = ¢ — .

The completeness of a proof system is the converse implication: Every true formula can be formally
derived by the proof system. It turns out that a proof system for Hoare Logic cannot be complete in
this absolute sense, if the proof system is to be effective.

Godel’s Incompleteness Theorem says there is no effective proof system for first-order formulas of
arithmetic, i.e., a proof system that can formally derive all the first-order formulas that are true in the
standard model of arithmetic, whose universe is the set N of natural numbers, not Z. However, this
result implies there is no effective proof system that can formally derive all the first-order formulas
that are true in the model whose universe is Z equipped with the usual operations of arithmetic. From
this, deep consequences follow for Hoare Logic.

Proposition 17. There is no effective proof system for Hoare triples, in the sense that the set of all
formally derivable Hoare triples coincide with the set of all true Hoare triples.

Proof. There are two different ways of proving this result. First, for an arbitrary first-order formula
of arithmetic, we have that 1 is true iff the Hoare triple { true } skip { ¢ } is true, by our definitions
above. We can thus reduce the existence of an effective proof system for Hoare triples to the existence of
an effective proof system for first-order arithmetic. The latter is impossible, by Gédel’s Incompleteness
Theorem, which implies the desired result.

The second way is to consider all Hoare triples of the form {true } P {false} where P ranges over
all WHILE-programs. Such a triple is true iff P diverges for all input states. If we had an effective
proof system for Hoare triples, we would have a computable method for deciding that a WHILE-
program P diverges on all input states. The undecidability of the Halting Problem says that this is
not possible. O

Inspite of the preceding proposition, we do have a relative completeness result. This means that if we
have an oracle to decide the truth of formulas of first-order arithmetic — specifically, the truth of the

13



premises = ¢’ — ¢ and = 1) — ¢’ in the rule ‘(weakening]’ — then the proof system in Section is
complete relative to this oracle.

Theorem 18 (Relative Completeness of Classical HL). Let { ¢ } C {1 } be a Hoare triple. If we have
E{¢} C{¢}, then we also have - { o} C {¢} by the rules of Section[1.3

Once again, keep in mind that the proof system in Section[1.2]is not effective — or is effective relative to
the existence of an oracle that decides the truth of any first-order formula of arithmetic. Put differently
still, the proof system in Section [1.2]is complete if we take all first-order formulas of arithmetic that are
true as axioms, i.e., formulas whose truth we take for granted and do not need to formally establish.

Just as for Theorem proofs for Theorem |18 are in several textbooks, in particular in [16] [12].

1.5 Extensions of Classical Hoare Logic

Several useful extensions of Classical HL. have been proposed and studied over the years. Among those
are the following, which will be discussed in lecture and the homework exercises. They require each
careful adaptation or extension of the proof rules of Section [I.2] and formal semantics of Section [I.3}

e Straightforward extensions of the WHILE Language: for-loops, repeat-until-loops, arrays.

e Non-trivial, but still easy, extensions of the WHILE Language: concurrency, non-determinism.
There are other important extensions, separate from the preceding and from those later in this handout,
which are outside the scope of CS 512 this semester. Among these I include:

e Non-trivial and tricky extension of the WHILE Language: procedure calls.

e Separation logic, an extension of Hoare Logic to reason about shared mutable data structures.
Separation Logic is relatively new, starting in the early 2000’s. Work on WHILE programs augmented
with procedure calls goes back to the early years of Hoare Logic, as they come with many different

variations — depending on many features (recursive or non-recursive, with or without global variables,
with or without parameters, call-by-value or call-by-result or call-by-value-result, etc.).

14



2 Relational Hoare Logic (RHL)

RHL is a very simple variation on classical Hoare Logic. A judgement of classical HL asserts something
about a single command (or a single program). A judgement of RHL asserts something about two
commands (or two programs).

In the case of classical HL, we deal with assertions that denote predicates on states (this is what
pre-conditions and post-conditions are), and judgements that say that a command (or a program)
terminating in a state satisfying a pre-condition will yield a state satisfying a post-condition (this
is what a Hoare triple says). In the case of RHL, we compare two commands (or two programs)
according to whether they map a given pre-relation into a given post-relation. Pre-relations and post-
relations are binary relations on pairs of states which are here expressed as quantifier-free formulas of
first-order logic, over variables tagged with (1) or (2), if need be, to indicate which of the two states
in a pair they refer to. Other more advanced accounts of RHL allow quantifiers in the pre-relations
and post-relations, although always in restricted ways so as not to encounter some of the intractable
(or even undecidable) questions of full first-order logic.

But what justifies the invention of RHL as another logic of programs? One obvious reason is that it is
common to specify a program by its relationship to another program. For example, when a compiler
optimizes an input program, the optimized program and the original program must be equivalent. For
another example, consider a client of an abstract data type which has two different implementations; we
may want to specify that a client is insensitive to the choice of the implementation, or that a client with
one implementation is (observationally) equivalent to another client with the other implementation.
There will be further justification after we introduce pHL in Section [ and later combine pHL and
RHL to obtain pRHL in Section

Classical Hoare Logic does not provide the means for specifying how two programs are related, at
least directly. Hoare triples { ¢ } P {1 } are good for specifying the input-output relation of a single
command (or a single program), but not for the equivalence between two programs — although there
are roundabout ways of using Hoare triples for analyzing program equivalence under some restrictions.

Relational Hoare Logic was precisely invented to compensate for this lack or weakness. The central
concept in RHL is what we may call a Hoare quadruple, which is written as:

{e}Ci~Co {V}

where Cy and Cy are commands or programs (here in the WHILE language), and ® and ¥ are binary
relations on statesm Informally, the intended meaning of such a quadruple is the following;:

When executions of C1 and Co are started from ®-related states,
either they both diverge or they both terminate in V-related states.

Various qualifications can be added to this informal meaning; one such qualification is to require that,
during execution, both C; and Cy access only memory cells (or variables) that the pre-relation @
guarantees to exist. Below are a few simple examples to make some of these ideas more concrete.

"Not all authors have adopted the same style in writing Hoare quadruples. The researcher who first introduced RHL
wrote Cp ~ Ca : & = U, see [6]. Others have written a Hoare quadruple as @g; U, e.g., in [I7].

Also, some write ‘pre-condition’ and ‘post-condition’ where we write ‘pre-relation’ and ‘post-relation’, respectively.
We prefer to keep these appellations separate, with the former used in the context of classical HL and the latter used
in RHL. We try to use lower-case Greek letters ¢, 1), ... to name ‘pre-conditions’ and ‘post-conditions’, and upper-case
Greek letters @, ¥, ... to name ‘pre-relations’ and ‘post-relations’.
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Example 19. Below are two tiny program phrases, P and P, each consisting of two instructions
over the same set of variables {x,y, z}:

Py Py
y:=x+1; z:=x 4+ 2;
z:=y+1; y:=z—1;

A state here is an assignment of integers (m,n,p) € Z3 to (x,y,2). For i = 1,2, we view P; as the
code for a state transformer, i.e., the code for a function [P;] from Z3 to Z3.

We want to write a Hoare quadruple asserting that P; and P are equivalent. More precisely, since the
values of y and z in the initial state do not affect the final state, we want to write a Hoare quadruple
asserting that if P, and P, are started at initial states whose x-components are equal, then P; and P
stop in final states that are equal. Our proposed Hoare quadruple is:

{®}PL~P{¥} where ® & (2(1)=2(2)) and
2 ([P (1), (1), (1) = [Pal(2(2),9(2), 2(2)) )

In the pre-relation and post-relation ® and \I/E|we tagged the variables with (i) as in (x(i), y(i), z(i)) to
distinguish the state on which [P;] operates, for i = 1,2. You should understand this Hoare quadruple
as saying: When executions of Py and Py start from states whose x-components are equal, either they
both diverge or they return states whose respective x-, y-, and z-components are equal. O

v

If the programs P; and P, that we want to compare use disjoint sets of variables, there is no need
to tag their respective variables with (1) and (2) in the pre-relation ® and post-relation ¥. In such
a case, we say that P; and P, are separable. The resulting syntax of Hoare quadruples is somewhat
lighter and easier to read, as illustrated by the next example.

Example 20. Below are two program phrases, P} and Py, the first over variables {k,n,x,y} and the
second over variables {k',n', 2’ y'}, i.e., P; and Py are separable:

Py Py

k= 0; K :=0;

while k < n do 2=y +1;
r:=y+1; while £’ <n' do
k:=k+x; kK =k + 2,

od od

P, is obtained from P; by a typical form of compiler optimization, invariant hoisting: in this case,
the invariant instruction ‘z := y 4+ 1’ is taken out of the loop. We have renamed the variables in Ps as
{K',n', 2", y'} to avoid using the tags (1) and (2) in the Hoare quadruple, which we can write as:

{®}Pr~Po{¥V} where & (n=n)A(y=y)) and
' ((k::k:')/\(n:n’)/\(az:x’)/\(y:y’))

AL

The pre-relation ® only requires that the n-component and the y-component of P;’s initial state and
Py’s initial state be the same, because the initial values of the other two variables {k, z} have no effect
on the final state. The post-relation ¥ requires that P, and P, return the same final state. O

8We cheated in the way ¥ is written! ¥ is supposed to be a first-order formula, and first-order logic does not allow
interpreted functions, here [P;] and [P-], to appear in well-formed formulas. Our lapsus in defining ¥ is to make explicit
that W is to be satisfied after P1 and P, terminate. It suffices to define ¥ £ ((x(1) = z(2))A(y(1) = y(2))A(2(1) = 2(2))).
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In general, a Hoare quadruple { ® } C1 ~ Cy { ¥ } asserts a relationship between distinct C and Cs.
A special case is when C7 and Cy are the same, as illustrated in the next example.

Example 21. Let C be the two instructions in sequence:

which can be part of a larger program that uses variables {x,y, z}. We may write the Hoare quadruple:

{2y =22} c~e{@m =22 =5) A 1) =y =8) A 1) =)}
————

(] 4

which is indeed true, after a moment of thought. O

The next example illustrates how to translate Hoare triples of classical HL into Hoare quadruples of
RHL and, thus, how to view the latter as an extension of the former.

Example 22. This is a continuation of Example [1| where we defined WHILE-program fact and the
Hoare triple { ¢ } fact {1 } where p £ (x > 0) and 1 = (y = !). The program fact is defined over the
variables {z,y, z}. As a state-transformer, fact defines a function [fact] from Z3 to Z3. Consider now
the Hoare quadruple:

WV

{®) fact ~fact { U} where & 2 ((m(l) o)A(x<2>>o)) and

v 2 ((y<1> = 2(1)!) A (y(2) :x<2>!))

where the pre-relation ® is obtained from the pre-condition ¢ by tagging the variables in ¢ with (1)
and (2), and the post-relation ¥ is obtained from the post-condition ¢ by tagging the variables in
with (1) and (2). The tag (1) qualifies the variables that the copy of fact on the left of ‘~’ acts on,
and the tag (2) qualifies the variables that the copy of fact on the right of ‘~’ acts on.

On reflection, it is easy to see that the Hoare triple { ¢} fact {9} is true iff the Hoare quadruple
{®} fact ~ fact { ¥} is true. O

2.1 Formal Proof Rules of RHL

To facilitate our presentation, we henceforth assume that, in a Hoare quadruple {® } Cy ~ Cy { ¥ },
the commands or programs C and Cs are separable, in the sense explained before Example If need
be, we rename variables ad [ib in our presentation below in order to keep the two programs separable,
although in actual implementations of the rules such renaming may be unwieldy and tricky.

Relational Hoare Logic consists of Hoare quadruples, by which we specify how two programs are
related, and the axioms and inference rules for deriving valid quadruples. We start with a version
which has been called Minimal Relational Hoare Logic (Minimal RHL) [2]. We use the same notational
conventions that are used in Section for Classical HL.
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F{®} skip ~ skip { @} [skip]

F{U[z; — Fi]laa — E3]} a1 :=FEy ~a9:=Fy {U} [assignment)

F{®}C, ~C{O} F{e}C;~CL{U} . .
101 00 ~ (i 0l (U] [sequencing]

|:(I)—)(B1:BQ) F{@ABl}ClNCQ{‘l/} F{@AﬁBl}CiNCé{\I/} [ diti 1]
- {® ) if By then C; else C! fi ~ if B then C» else C, fi { U} conditiona

F {®} while B; do C; od ~ while By do C5 od {®}

=o' — @ F{® ~ v v — o

| - {0}~ Ca{V} Y- [weakening]

F{®'}C1 ~Cy {T'}

Figure 2: Inference rules of Minimal RHL.

Minimal RHL requires that both commands, C; and Co, in a Hoare quadruple {®} C; ~ Cy { ¥ }
execute in lockstep and that both must have the same shape. As a result, it is not possible to derive
a Hoare quadruple as simple as {® } C;skip ~ C { ¥ }. To obviate this weakness, we can extend
Minimal RHL to what has been called Core Relational Hoare Logic (Core RHL) [2], which introduces
rules that allow for the separate analysis of the C; and (5. The extra rules for Core RHL are shown
in Figure

F{®xz— E]} skip~C {TU}
F{®} 2:=E~C {U}

[assignment-L]

F{®[z— E]} C~skip {V}
F{®} C~az:=FE {T}

[assignment-R]

F{®AB} C1~C {¥U} F{®A-B} Co~C {T}
F{®} if BthenC, else C; i~ C {VU}

[conditional-L]

F{®ABY C~C {U}  F{®A-B} O~y {T)
F{®} C~if Bthen C; else Cy fi {T}

[conditional-R]

Figure 3: Additional inference rules for Core RHL.

One more rule for RHL is shown in Figure 4] called [self-composition], which is added to the rules of
Core RHL to obtain what I call Eztended Core Relational Hoare Logic (Extended Core RHL). The
justification for [self-composition] is not immediately obvious; we come back to this when we discuss
the formal semantics of RHL[

Observe carefully that the premise in [self-composition] is a Hoare triple { ® } C1;Ca { ¥ }, not a Hoare
quadruple. In the comments preceding Examples [21| and we explain how to view a Hoare triple as

9The idea of ‘self-composition’ was first introduced in [3, ]. The rule [self-composition] here is an adaptation and
formalization of that idea in [2].
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a Hoare quadruple, by using the tags (1) and (2). Specifically here, to avoid the use of tags, we can
view the triple { ® } C1;C2 { ¥} as the quadruple:

{oAd'} C;0y~CCy {TAT' )

after appropriate renaming of variables to keep the two copies of the program, Ci;Co and C}; CY,
separable and where ® and ¥’ are ® and VU after this renaming of variables, respectively.

H{®} CiCh {¥}

self-composition
F{®} Ci~Cy {V} | P ]

Figure 4: One more rule for Extended Core RHL.

2.2 Formal Semantics of RHL
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3 Notions of Probability
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4 Probabilistic Hoare Logic (pHL)

4.1 A Probabilistic Imperative Programming Language: pWHILE

Starting from a given initial state (i.e., contents of memory) an imperative program returns at most one
state. The returned state is entirely determined by the program and the initial state. This is no longer
the case when we deal with probabilistic programs. Running the same probabilistic program several
times, starting with the same initial state, the returned states may be different. The distribution of
returned states can be represented by a random variable, whose value is a probability distribution over
the set of possible states.

An example of a randomized expression is x 4+ random(10) where the subexpression random(10) returns
with uniform distribution an integer k& € {0,...,10}. Another example is (x < y) V flip where the
subexpression flip returns the Boolean true or false, each with probability 1/2 (in the case of a fair
coin). If the expression (x < y) evaluates to true, then (z < y) V flip returns true with probability
= 1; and if (x < y) evaluates to false, then (z < y) V flip returns true with probability = 1/2.

Randomization may be also introduced by using a probabilistic choice between two deterministic
instructions; for example, if C' is the following probabilistic choice:

C 2 ((x:zl)@1/4(x::5)>

then starting C' from the state (w, z,y, z) = (30, 30, 30, 30) returns the state (w, z,y, z) = (30, 1, 30, 30)
with probability = 1/4 and the state (w, z,y, z) = (30,5, 30, 30) with probability = 3/4.

A remark is in order regarding: randomized versus non-deterministic. These correspond to two forms
of possible event or possible outcome in the execution of programs, which have been called the non-
deterministic form and the probabilistic form. In the former, events are either possible or impossible,
with no further distinction. In the latter, events occur according to a probability distribution. It is
tempting to equate ‘possible’ in the non-deterministic form with ‘nonzero probability’ in the proba-
bilistic form, but this correspondence goes only so far. This is illustrated in the next example, which
uses the randomized prim op flip.

Example 23. The following is a pWHILE program, call it HeadsOrTails, where flip is a randomized
primitive operator which returns the Boolean true with probability p, and the Boolean false with
probability 1 — p, where 0 < p < 1:

heads := true;

tails := false;

x := flip;

while z = heads do z:=flip od

HeadsOrTails always terminates or, more precisely, terminates with probability = 1 because the prob-
ability that flip always returns true and that the program does not terminate is lim, ,,, p" = 0.
However, non-deterministically, HeadsOrTails does not always terminate, since one possible execution
path is indeed infinite, when flip is allowed to always return true. O

The next example gives an idea of how we may want to write a Hoare triple in the presence of

probabilistic behavior. The example uses the prim op random defined in the opening paragraph of this
section.
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Example 24. Let C be the single instruction y := x + 2. A Hoare triple in standard HL may be:

{z=1}C{y=3}

which asserts that if an initial state maps x to 1 and we start execution of C' from that state, then the
resulting state maps y to 3, assuming this execution terminates (which it obviously does!). Let now
C’ be the single instruction y := x 4+ random(2). A Hoare triple in the logic pHL, which is yet to be
defined, may be written as:

{Pr(e=1)=3/a} ¢ {pr(y=3)>1/4}

which asserts that if an initial state maps x to 1 with probability > 3/4, and we start execution of C’
from that state, then the resulting state maps y to 3 with probability > 1/4, assuming this execution
terminates. A moment of thought shows that this Hoare triple of pHL is valid. O

A simple but less trivial example of a randomized program follows. To understand its input-output
behavior requires a careful probability analysis.

Example 25. The following is a pWHILE program, call it factA, a variation on WHILE program fact
in Example

y:=1

z = 0;

while flip do // substitute ‘flip’ for ‘—=(z = z)’ in program fact in Example
z:=z+1
Yy =yx*xz

od

This program is simple enough that we can analyze it by inspection. Let (z,y,z) = (k, ¢, m) be the
initial state and (x,y,z) = (K, ¢, m’) be the final state, right before and right after the execution of
factA, respectively, where k, ¢, m, k', ¢/, m’ € Z.

First, note k = &/, since variable x is not updated at any step of the execution. Moreover, the
initial {£,m} have no effect on the final {¢', m'}. The latter are not uniquely determined and obey a
probability distribution. The loop in factA is executed as many times as the primitive operator flip
returns true in consecutive iterations before flip returns false for the first time. If the loop is iterated
n > 0 times, this means the first n Booleans returned by flip are true and the (n + 1)-st is false.

The table below shows the possible values of the final state (k',¢,m’) in the first column, the prob-
ability with which each final state occurs in the second column, and the corresponding number n of
loop iterations in the third column.

(K',¢',;m’) | probability | n (number of loop iterations)
(k,1,0) 1/2! 0
(k,1,1) 1/22 1
(k,2,2) 1/23 2
(k,6,3) 1/24 3
(k,i!,4) 1/206+1) i
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To compute the probabilities in the second column above we can use a simple inductive reasoning:

e The first flip is false with probability 1/2 (inducing 0 loop iterations) and true with probability
1/2 (inducing 1 or more loop iterations).

e Assuming that the first flip is true (an outcome which occurs with probability 1/2), the second
flip is false with probability 1/2 (inducing 0 loop iterations beyond the first) and true with
probability 1/2 (inducing 1 or more loop iterations beyond the first).

e Assuming that the first and second flip are true (an outcome which occurs with probability
1/22), the third flip is false with probability 1/2 (inducing 0 loop iterations beyond the first
and second), and true with probability 1/2 (inducing 1 or more loop iterations beyond the first
and second).

e More generally, assuming that the first ¢ > 1 values of flip are true (an outcome which occurs
with probability 1/2%), the (i +1)-st flip is false with probability 1/2 (inducing 0 loop iterations
beyond the first i iterations), and true with probability 1/2 (inducing 1 or more loop iterations
beyond the first i iterations).

If our reasoning is correct, then the sum of the probabilities in the second column should add to 1,
corresponding to a (full) probability distribution among all possible outcomes. So, here, we need to
verify that the sum S of the reciprocals of powers of 2 is 1:

S=> 1/2'=1.
i>1
This is indeed the casell]] O

Definition 26 (Syntazx of Probabilistic WHILE Programs). This extends the syntax of WHILE-programs
as given in Definition [3] There are basically two approaches to doing this.

Approach 1: This uses the definitions of integer expressions E and Boolean expressions B exactly
as given in Definition 3] and then extends the BNF for commands to include an additional case:

C = skip } r:=F } Cq;Cy | if B then C else (s fi ‘ while B do C od ‘ C1 ®,Co

The new case is the probabilistic choice C @, Cy where p is a probability in the open interval (0, 1). The
interpretation of C; @, Cs is a probabilistic decision resulting in the execution of C7 with probability
p and the execution of Co with probability 1— p. This is the approach in [7, 8, 9], among other reports.

Approach 2: An alternative is to introduce randomized primitive operators and extend the syntax
of integer expressions and Boolean expressions accordingly. For example, this approach adds a case
to the BNF for integer expressions:

E:::n’x ‘ E1+E2’E1—EQ ‘ El*Eg‘ ‘ iop . (En,. .., Eg)

The new case in the preceding BNF is iop ,(Ei,...,Ey) where iop, is a randomized primitive
operator of arity k£ > 0. An example of such a prim op iop, when k£ =1 is random in Example

0T here are different ways of proving this. One way is to observe that S is the sum of an infinite geometric series with
a common ratio less than 1, and then use the formula for such a sum. Another way is to define S; £ Zlgigj 1/2° first,
for every j > 1, so that:

2.8 =2( ) 12)= > =N 2= Y 2=

1<) 1<) 1<y 1<igi—1

Hence, 27 - S; = 27, which implies S; = 1 for every j > 1, so that S = lim; _,0,S; = 1.
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Similarly, a new case may be added to the BNF of Boolean expressions involving randomized primitive
operators denoted bop ,, each with its own arity ¢ > 0. An example of a prim op bop , with £ = 0 is
flip in Examples [23| and The second approach is adopted in [T}, Bl 1], 13), 14], among other reports.

Each of these two approaches involves somewhat different technical issues, and each can simulate at
least parts of the other (also depending on the kind of randomized prim ops that are available). And,
of course, it is also possible to combine both approaches. O
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5 Probabilistic Relational Hoare Logic (pRHL)

A judgment of RHL has the form:
F{®}C1 ~Cy {¥}

where C7 and Cy are commands (or program phrases) in the language of WHILE programs, and ® and
U are relations on states (or contents of memories).

A judgment of pRHL has exactly the same form, except that C1 and Cs are now in the language of
PWHILE programs. Evaluation of a pWHILE command w.r.t. an initial state returns a sub-distribution
over states. Hence, giving a meaning to a pRHL judgment requires interpreting post-relations over
sub-distributions. To this end, pRHL relies on a lifting operator £ which transforms a binary relation
on states into a binary relation on sub-distributions over states.

Lifting can be used to define validity of a pRHL judgment: For any two pWHILE commands C; and
(3, and binary relations ® and ¥ on states, the judgment - {®} C; ~ Cy { ¥} is valid if for every
pair of states s; and s, it holds that s;®sg implies ([C1]s1) L(¥) ([Co]s2).
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