
Lecture Notes

Properties of Transition Systems:

Linear-Time, Regular, ω-Regular

Assaf Kfoury

January 12, 2018 (last modified: January 24, 2018)

This handout is a guide through the main concepts in the first four chapters of the textbook Principles
of Model Checking [PMC] by C. Baier and J.-P. Katoen. I leave out most of the motivational examples,
though they are very important, and I mention just a few of the most crucial results and always without
their proofs (this is only a guide!). My focus here is on [PMC, Chapters 2, 3, 4] and my presentation
mostly follow, but not entirely, the order of the presentation in [PMC]. In later handouts I will discuss
material from Chapters 5-6 and later chapters in [PMC].

Although there are notational variations elsewhere in the literature for the material in this handout,
much of it is fairly standard and can be found by searching the Web, e.g., start by consulting the
Wikipedia article (click here), where they make a distinction between labelled transition systems and
unlabelled transition systems (and both of which are minor variants of transition systems as defined
below). When appropriate, I compare the notation in [PMC] with that in the textbook Logic in
Computer Science [LCS] by M. Huth and M. Ryan.

My presentation presumes you have the standard background from undergraduate courses in computer
science. You can refresh your memory by consulting the appendices in [PMC] on formal languages
[PMC, Appendix A.2], propositional logic [PMC, Appendix A.3], graphs [PMC, Appendix A.4], and
computational complexity [PMC, Appendix A.5].

1 Transition Systems

Using the conventions of [PMC, Definition 2.1, page 20], a transition system TS is a 6-tuple:

TS ,
(
S,Act ,→, I,AP , L

)
where:

• S is a set, finite or countably infinite, of states,

• Act is a set, finite or countably infinite, of actions,

• → ⊆ S ×Act × S is a ternary relation, called the transition relation,

• I ⊆ S is a finite set of initial states,

• AP is a set, finite or countably infinite, of atomic propositions,

• L : S → 2AP is a labeling function.

1

https://en.wikipedia.org/wiki/Transition_system

TS is called finite if the three sets S, Act , and AP , are all finite.

As usual, we write 2AP to denote the power set of AP , i.e., 2AP , {A | A ⊆ AP }. Instead of writing
formally (s, α, s′) ∈ →, we write s

α−−→ s′ to reflect our informal understanding of how the transition
relation works.

Remark 1. The definition of transition system in [PMC] is more general than the definition in many
other places in the literature. It all depends on how much system analysts want to abstract from the
details of the real-world systems that they model.

For example, in the book [LCS, Definition 3.4, page 178], a transition system, typically called M, is
simplified in the form of a triple:

M , (S,→, L)

where S and L are as in [PMC], but → ⊆ S × S is a binary relation instead of a ternary relation
because it omits any mention of action. This definition in [LCS] is closer to the definition of state
graph in [PMC, Definition 3.3, page 95], reproduced below to introduce Definition 3. �

Different notions can be used to formalize the behavior of a transition system, depending on how
much of that behavior needs to be observed in order to analyze a particular property of interest. We
mention three and, informally, what they are meant to describe; their precise definitions follow later:

• executions, which describe system runs
(denoted by the Greek letter ρ appropriately decorated),

• paths, which abstract/ignore some incidental parameters from system runs
(denoted by the Greek letter π appropriately decorated),

• traces, which describe observable behaviors occurring during system runs
(denoted by the Greek letter σ appropriately decorated),

and each of these three notions can be further qualified as being a fragment or maximal.

The next definition is identical to [PMC, Definition 2.6, page 24].

Definition 2 (Executions, Execution Fragments, Maximal Executions). A finite execution fragment
ρ of a transtion system TS , (S,Act ,→, I,AP , L) is an alternating sequence of states and actions
ending with a state:

ρ , s0 α1 s1 α2 s2 α3 · · · αn sn

where si
αi+1−−−→ si+1 for every 0 6 i < n. An infinite execution ρ′ of TS is an alternating sequence of

states and actions of the form:

ρ′ , s0 α1 s1 α2 s2 α3 · · ·

where si
αi+1−−−→ si+1 for every 0 6 i.

A state s ∈ S is terminal if there is no action α ∈ Act and no state s′ ∈ S such that s
α−→ s′. An

execution ρ is maximal if either ρ is infinite or ρ is a finite fragment ending in a terminal state.

Note that if there is no terminal state in TS, then every maximal execution of TS is necessarily an
infinite execution. �

2

Let TS , (S,Act ,→, I,AP , L) be a transition system. If we do not need to keep track of the actions in
Act and the atomic propositions in AP encountered during executions of TS, we consider instead the
‘state graph’ of TS which abstracts further details from the real-world systems that we are interested
in modeling and analyzing.

The following is taken from [PMC, Definition 3.3, page 95]. The state graph of TS, denoted G(TS), is
the directed graph (V,E) where:

• the set of vertices is V = S, and

• the set of edges is E = { (s, s′) | s α−→ s′ for some α ∈ Act }.

If we write s −→ s′, this means there is a directed edge from s to s′ in the graph G(TS). Informally,
you can think that G(TS) is the representation of TS as a directed graph where anything related to
actions in Act or initial states in I has been erased.

The next definition is identical to [PMC, Definition 3.4, page 95].

Definition 3 (Paths, Path Fragments, Maximal Paths). Let TS , (S,Act ,→, I,AP , L) be a transition
system and G(TS) its state graph. A finite path fragment π of G(TS) (or of TS) is a finite sequence
of states of the form:

π , s0 s1 s2 · · · sn

where si −→ si+1 for every 0 6 i < n. An infinite path π′ of G(TS) (or of TS) is an infinite sequence
of states of the form:

π′ , s0 s1 s2 · · ·

where si −→ si+1 for every 0 6 i. A path π is maximal if either π is infinite or π is a finite path
fragment that ends in a terminal state.

If there is no terminal state in TS, then every maximal path of TS is necessarily an infinite path. �

In some analyses, what is considered ‘observable’ are the atomic propositions that may or may not be
true in the states visited during execution. The sequence of states themselves may not be ‘observable’
during execution, nor the sequence of actions inducing the execution, only the atomic propositions are
‘observable’. So, instead of focusing on the execution:

ρ , s0 α1 s1 α2 s2 α3 · · ·

or on the path:

π , s0 s1 s2 · · ·

we need to consider what is called the trace of the execution ρ or the path π.

The next definition is adapted from [PMC, Definition 3.8, page 98], though it is not exactly the same.

Definition 4 (Traces, Trace Fragments, Maximal Traces). Let TS , (S,Act ,→, I,AP , L) be a transi-
tion system and G(TS) its state graph. Let

π , s0 s1 s2 s3 · · ·

3

be an infinite path (resp. a finite path fragment, resp. a maximal path) of TS. The sequence:

trace(π) , L(s0) L(s1) L(s2) L(s3) · · ·

is called the trace of π, which is further qualified as an infinite trace (resp. a finite trace fragment,
resp. a maximal trace). Given that L : S → 2AP , traces are therefore finite on infinite words (i.e.,
sequences) over the alphabet 2AP .

If there is no terminal state in TS, then every maximal trace of TS is necessarily an infinite trace. �

Make sure you understand how traces are defined. For example, if AP = {a, b, c}, then the power set
2AP contains 8 elementss:

∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}

and a trace will be a finite or infinite sequence whose entries are all drawn from those 8 elements.

We extend the notion of ‘trace’ to a single state and to a set of states, as follows:1

• If s ∈ S, then Traces(s) , { trace(π) | π is a maximal path that starts in state s }.
• Traces(TS) ,

⋃
s∈I Traces(s).

Make sure you understand the definition of Traces(TS): This is the set of all maximal traces observable
when the transition system TS is started in one of its initial states. The book also considers the case
of finite trace fragments (presented somewhat differently in [PMC, page 98]):

• If s ∈ S, then Traces fin(s) , { trace(π) | π is a finite path fragment that starts in state s }.
• Traces fin(TS) ,

⋃
s∈I Traces fin(s).

Keep in mind that, if there is no terminal state in TS, then Traces(TS) is a set of infinite words while
Traces fin(TS) is a set of finite words.

Remark 5. Our presentation is rather dry and abstract. To get a better grasp of the definitions and
why they are useful for a rigorous analysis of system behavior, we need to go through examples. Some
of these will be presented in lectures, in handouts, and in homework assignments. �

Remark 6. Much of what follows makes sense, or best sense, when we deal with several transition
systems (or processes) running in parallel and communicating with each other. In the presence of
several transition systems, whether cooperating or competing, issues of parallelism, concurrency and
communication have to be formalized and amenable to a rigorous analysis. Parallelism can be asyn-
chronous or synchronous. Communication between parallel processes can be by interleaving and via
shared variables, or handshaking, or via channels.

These notions are discussed in [PMC, Section 2.2, pages 35-75]. I skip this material in this handout,
but you should try to read as much as you can of it, and at least a couple of examples (out of the
many in this section); on a first reading, you will have some difficulty in understanding many of the
notational conventions, but don’t despair.

1Although the book [PMC] does not do it, we can equivalently define Traces(s) relative to executions rather than paths,
i.e., we can set Traces(s) , { trace(ρ) | ρ is a maximal execution that starts in state s } where we can write “trace(ρ)”
instead of “trace(π)”, because traces consider only the labels of states and ignore the actions.

4

One concept I do not skip here is nondeterminism because it is fundamental, whose relevance exceeds
the scope of topics covered in this course, and because system properties we discuss later (e.g., fairness
in Section 4) are meaningful only in the presence of nondeterminism.2 �

The next definition is equivalent to [PMC, Definition 2.5, page 24], though written differently and
more simply.

Definition 7 (Deterministic Transition Systems). Let TS , (S,Act ,→, I,AP , L) be a transition sys-
tem. We say:

1. TS is Act-deterministic iff
∣∣I∣∣ 6 1 and for every s ∈ S and every α ∈ Act

there is at most one s′ ∈ S such that s
α−−→ s′.

2. TS is AP -deterministic iff
∣∣I∣∣ 6 1 and for every s ∈ S and every A ∈ 2AP

there is at most one s′ ∈ S such that s
α−−→ s′ for some α ∈ Act and L(s′) = A.

In general, if we just say TS is deterministic, we mean TS is Act-deterministic; in words, for every
combination (s, α) there is at most one state s′ to which state s connects under action α. If TS is not
deterministic, then TS is nondeterministic, naturally enough. Note that deterministic is a just special
case of nondeterministic, so that nondeterminism is a common feature of all systems we analyze. �

2 Linear-Time Properties

Linear-time properties of transition systems are named suggestively: invariance, safety, liveness, fair-
ness, persistence (which are among the most common), and there are several others. Before we define
these concepts precisely, we need to introduce some notational conventions.

Suppose X is a set of elements, say, X = {xj | j ∈ J } indexed with the elements in the set J . If X
is finite with n elements, then the index set J = {0, 1, . . . , n − 1}, an initial fragment of the natural
numbers. If X is infinite, then the index set J = N, the set of all natural numbers. We write Xω

to denote the set of all countably right-infinite words/sequences with entries drawn from X; that is,
every member of Xω is of the form;

xj0 xj1 xj2 xj3 · · · xjk · · ·

where k ranges over all the natural numbers and {j0, j1, j2, . . . , jk, . . .} ⊆ J . Be careful to note that,
even when X is a finite set (as it will often be), every word in Xω is infinite.

A ‘linear-time (LT) property’ is a requirement on the traces of a transition system, i.e., on the set
Traces(TS). The next two definitions are taken from [PMC, Definitions 3.10 and 3.11, page 100].

Definition 8 (LT Properties). A linear-time property (or LT property) P over the set AP of atomic
propositions is a subset of (2AP)ω.

Informally, we think of P as a set of ‘desirable’ or ‘good’ traces, so that traces in the complement(
(2AP)ω − P

)
are considered ‘undesirable’, because observation of the latter means that something

‘bad’ has occurred in the running of the transition system. �
2As a qualifier of how computations or processes may execute, nondeterministic is on a par with such fundamental

notions as random and probabilistic, which are used in different contexts and mean different things.

5

Definition 9 (Satisfaction of LT Properties). Let TS , (S,Act ,→, I,AP , L) be a transition system
without terminal states, so that all the words in Traces(TS) are infinite. Let P be a LT property as
in Definition 8.

• We say that TS satisfies P , denoted TS |= P , iff Traces(TS) ⊆ P .

• Let s ∈ S. We say that state s satisfies P , denoted s |= P , iff Traces(s) ⊆ P .

Informally, if TS satisfies P , then every trace observed during one of TS’s executions will be a ‘good’
trace, indicating that TS’s good operation (related to safety, or to fairness, or to any other desirable
property) has not been compromised. Note, however, that we do not require that every trace in
P is exhibited by some execution of TS; the latter requirement would be written as the equality
Traces(TS) = P . �

Let σ be a finite word in (2AP)∗, i.e., a finite sequence of elements in 2AP , and let σ′ be one of the
infinite words in (2AP)ω. The concatenation of σ and σ′, i.e., the sequence σ σ′ is again an infinite
word in (2AP)ω. We call σ a prefix of σ σ′ and σ′ a suffix of σ σ′.

The next definition is from [PMC, Definition 3.20, page 107]. It defines a particular kind of LT
property, an ‘invariance property’. To understand the notation “Aj |= Φ” below, you should review
the first three pages in [PMC, Appendix A.3, pages 915-917] on propositional logic.

Definition 10 (Invariant Properties). An LT property P over AP is an invariant if there is a propositional-
logic formula Φ over AP such that

P =
{
A0A1A2 · · · ∈ (2AP)ω

∣∣ for every j > 0 it holds that Aj |= Φ
}
.

The formula Φ is called the invariant condition (or state condition) of P . �

The next definition is equivalent to [PMC, Definition 3.22, page 112], though it is not written in the
same way. Ours is simpler. A ‘safety property’ is a particular kind of LT property, which is meant to
formalize the intuitive idea that ‘bad things never happen’.

Definition 11 (Safety Properties). A LT property P over AP is a called a safety property iff there
is a set Σ of non-empty finite trace fragments, i.e., Σ ⊆ (2AP)+, called bad prefixes, satisfying two
conditions:

1. For every bad prefix σ ∈ Σ and every σ′ ∈ (2AP)ω, it holds that σ σ′ ∈
(
(2AP)ω − P

)
.

2. For every σ′′ ∈
(
(2AP)ω − P

)
, there is a bad prefix σ ∈ Σ which is a prefix of σ′′.

In words, Part 1 says that the extension of every bad prefix σ ∈ Σ to an infinite σ σ′ is a ‘bad’ trace.
Part 2 says that every ‘bad’ trace σ′′ is the extension of some bad prefix σ ∈ Σ.

Intuitively, a LP property P is a safety property if every violation of P occurs after a finite execution
of the transition system. �

The finite trace fragments in the set Σ in Definition 11 are called bad prefixes of P . However, the two
conditions 1 and 2 do not uniquely specify the bad prefixes of P , because if σ1 ∈ Σ and σ2 ∈ (2AP)+

then the concatenation σ1σ2 is again a bad prefix of P ; i.e., extending a bad prefix σ1 with any non-
empty finite word σ2 produces another bad prefix σ1σ2. To recover ‘uniqueness’ we can choose Σ to
be the largest set (or the smallest set) satisfying those two conditions, as in the next definition.

6

Definition 12 (Bad Prefixes). The largest set Σ satisfying conditions 1 and 2 in Definition 11 is the
set of all bad prefixes of P and denoted BadPref(P).

The smallest set Σ satisfying conditions 1 and 2 in Definition 11 is called the set of minimal bad
prefixes of P and denoted MinBadPref(P). �

It is easy to show from the definitions that:

• MinBadPref(P) and BadPref(P) are uniquely defined, and

• MinBadPref(P) (BadPref(P).

A pleasant fact about MinBadPref(P) is the following:

• If σ1, σ2 ∈ MinBadPref(P), then neither σ1 nor σ2 is a prefix of the other.

For any finite word σ ∈ (2AP)∗ or infinite word σ ∈ (2AP)ω, we denote the set of prefixes of σ by
pref(σ), i.e.:

pref(σ) ,
{
σ′ ∈ (2AP)∗

∣∣∣ σ′ is a finite prefix of σ
}

The next definition is taken from [PMC, Definition 3.33, page 121]. A ‘liveness property’ is another
particular kind of LT property, which is meant to formalize the intuitive idea that ‘good things even-
tually happen’.

Definition 13 (Liveness Properties). A LT property P over AP is a called a liveness property whenever
pref(P) = (2AP)∗.

In words, a LP property P is a liveness property if every finite word in (2AP)∗ can be extended to an
infinite word in P . �

A liveness property P can be further refined. For example, given two distinct propositional formulas
Φ and Ψ over AP , we may require that every finite word in (2AP)∗ can be extended to an infinite
word σ ∈ P such that:3

• there is at least one entry A ∈ 2AP along σ such that A |= Φ, or

• there are infinitely many entries A ∈ 2AP along σ such that A |= Φ, or

• every entry A along σ such that A |= Φ precedes an entry B along σ such that B |= Ψ.

The first of these refinements may be called an ‘eventually’ liveness, the second may be called a
‘repeated eventually’ liveness, and the third may be called a ‘starvation-freedom’ liveness. These three
refinements of liveness properties are discussed in [PMC, Example 3.34, page 121]. The next result is
a remarkable connection between safety and liveness, given in [PMC, Theorem 3.37, page 124]:

Theorem 14 (Decomposition Theorem). For every LT property P over AP there exist a safety property
Psafe and a liveness property Plive, both over the same AP, such that P = Psafe ∩ Plive.

Connections between ‘safety properties’ and ‘liveness properties’ are discussed further in [PMC, Sub-
section 3.4.2, pp. 122-126], in particular, the important question of when a LT property P can be

3Again here, to understand the notation “A |= Φ”, read the first three pages in [PMC, Appendix A.3, pages 915-917]
on propositional logic.

7

required to be simultaneously a ‘safety property’ and a ‘liveness property’ [PMC, Lemma 3.35, page

133]. More of the connections between safety and liveness are taken up in a later handout here .

The next definition is taken from [PMC, Definition 4.61, page 199]. A ‘persistence property’ is a
special kind of ‘liveness property’, which asserts that from a certain moment, a state condition Φ
holds continuously.

Definition 15 (Persistence Properties). A persistence property P over AP is an LT property P ⊆
(2AP)ω if there is a propositional-logic formula Φ such that:

P =
{
A0A1A2 · · · ∈ (2AP)ω

∣∣ there i > 0 such that for every j > i it holds that Aj |= Φ
}
.

The formula Φ is called the persistence condition (or state condition) of P . �

From the preceding definitions, we have the following implications (and in each case the reverse
implication does not hold):

1. Every invariant property (Definition 10) is a persistence property (Definition 15).

2. Every persistence property (Definition 15) is a liveness property (Definition 13).

3 Regular Safety Properties and ω-Regular Properties

The next definition is taken from [PMC, Definition 4.11, page 159]. It is an additional requirement on
‘safety properties’.

Definition 16 (Regular Safety Properties). A safety property P over AP as given in Definition 11
and Definition 12 is called a regular safety property if the set BadPref(P) of bad prefixes is a regular
language over 2AP . �

In [PMC, Lemma 4.12, page 161], it is shown that the definition of regular safety property can be
equivalently given using the set of minimal bad prefixes:

• A safety property P is regular iff the set MinBadPref(P) is regular.

Not every safety property is a regular safety property. An example of a safety property which is not
regular is [PMC, Example 4.15, page 163].

Further discussion of regular safety properties are in [PMC, Section 4.2, pages 159-170], including
several examples and efficient verification using automata theory.

The next definition is [PMC, Definition 4.25, page 172].

Definition 17 (ω-Regular Properties). A LT property P over AP is called ω-regular if P is an ω-regular
language over the alphabet 2AP . �

LT properties that are ω-regular are particularly expressive, in that they subsume the expressive power
of several other LT properties, as indicated by the following implications (and in each case the reverse
implication does not hold):

1. Every invariant property over AP (Definition 10) is an ω-regular property over AP .

8

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents/Math_Background/topology.pdf

2. Every regular safety property over AP (Definition 11) is an ω-regular property over AP .

3. Many liveness properties over AP are ω-regular properties over AP .

4. Looking ahead: Every LTL-formula over AP expresses an ω-regular property over AP .

Fact 1 is already noted in [PMC, top of page 173]. Fact 2 and Fact 3 require each an argument and a
proof. For Fact 4, see [PMC, Remark 5.43, page 286].

4 Fairness Properties

In the book [PMC], fairness properties are introduced and discussed, along with other LT properties,
in the same chapter [PMC, Chapter 3, pages 126-141]. However, there are several subtle aspects about
fairness that make it a little harder to understand than other LT properties. I decided to include them
here in a separate section which, I suggest, should be read only after you have a reasonable grasp
of the preceding sections in this handout. A good statement about why and how we can deal with
fairness is in [PMC, pages 128-129]:

In general, fairness assumptions are needed to prove liveness or other properties stating
that the system makes some progress (“something good will eventually happen”). This is of
vital importance if the transition system to be checked contains nondeterminism. Fairness
is then concerned with resolving nondeterminism in such a way that it is not biased to
consistently ignore a possible option.

[· · ·]
A fair execution (or trace) is characterized by the fact that certain fairness constraints are
fulfilled. Fairness constraints are used to rule out computations that are considered to be
unreasonable for the system under consideration. Fairness constraints come in different
flavors:

• Unconditional fairness: e.g., “Every process gets its turn infinitely often.”

• Strong fairness: e.g., “Every process that is enabled infinitely often gets its turn
infinitely often.”

• Weak fairness: e.g., “Every process that is continuously enabled, from a certain time
instant on, gets its turn infinitely often.”

Note carefully from the preceding paragraph: Fairness is about defining assumptions/restrictions on
the scheduling of actions to enforce good things to happen in the presence of nondeterminism. Without
such assumptions/restrictions, a scheduler can be unfair, as it can take advantage of nondeterminism
to prevent good things from happening.

Instead of referring to examples in the books [PMC] and [LCS], I depart from my plan for this handout
and include a very simple example to illustrate the differences between the three flavors.

Example 18. I use the so-called Guarded Command Language (GCL). For more details on GCL, you
can consult the Wikipedia article (click here). Below is a very short code written in GCL:

test1 := false ; test2 := false ;
do

9

https://en.wikipedia.org/wiki/Guarded_Command_Language

true → test1 := true ; · · · # process A
| test1 → test2 := true ; · · · # process B
| test2 → test2 := false ; · · · # process C

od

In GCL, the matching pair do-od enloses a repetitive construct, which is to be executed repeatedly
as long as one of the guards is true. The guards here are: ‘true’, ‘test1’, and ‘test2’. We assume
that the ellipsis ‘· · ·’ in the code above do not change the value of the variables test1 and test2.
The do-od command stops executing when none of its guards is true; otherwise one of the guards
that has value true is chosen nondeterministically and the corresponding process is executed, after
which the repetition is executed again.

An unfair scheduler may never execute process B and/or process C. An unconditionally-fair sched-
uler will eventually give every of the three processes a chance to execute without checking its eligibility.
We take a process to be eligible for a run if its guard becomes true.

A weakly-fair scheduler will eventually execute process A and process B, but not process C,
because only the first two processes have their guards become continuously true from a certain time
instant on: the guard of process A is true and remains so from the moment the do-od is entered,
and the guard of process B is true and remains so after process A is executed once.

Finally, a strongly-fair scheduler will eventually give a chance to all three processes to run infinitely
many times: the guard of process A is always true, the guard of process B becomes true and
remains so after process A is executed once, and the guard of process C alternates between true
and false forever (it becomes true after process B is executed, it becomes false after process
C is executed).

A possible representation (not the only one) by a transition system TS = (S,Act ,→, I,AP , L) of the
GCL code is specified by:

• S = {s0, s1, s2, s3, s4},

• Act = ∅,

• → ⊆ S × (Act ∪ {τ}) × S is the transition relation depicted in Figure 1 where τ is a special
constant outside Act , 4

• I = {s0},

• AP = { test1,test2 } ∪ { A, B, C} which we abbreviate as { t1,t2 } ∪ { A, B, C} ,

• L : S → 2AP such that:

s0 7→∅, s1 7→ {t1,A}, s2 7→ {t1,t2,B}, s3 7→ {t1,t2,A}, s4 7→ {t1,C}.

We write “L(s1) = {t1,A}”, say, to mean that “when the transition system is in state s1 it holds
that t1 = true and process A has been executed once”. And we write “L(s2) = {t1,t2,B}” to
mean that “when the transition system is in state s2 it holds that t1 = t2 = true and process
B has been executed once”. And similarly for the intended meanings of L(s0), L(s3), and L(s4).

A graphical representation of TS is shown in Figure 1. �

4Following a common practice, I write τ to denote a special constant, assumed outside the set Act of actions. The
constant τ is used to represent so-called silent steps in the transition system, modeling events that are not observable to
any witness of the system. In this example we assume that the scheduler’s actions cannot be observed, hence Act = ∅.

10

s0

t1,A

s1

t1,C

s4

t1,t2,B

s2

t1,t2,A

s3

τ

τ
τ

ττ

τ

ττ

τ

τ

τ

Figure 1: Transition system TS for Example 18. All the transition steps here are silent, denoted by τ .

In [PMC, Section 3.5], action-based notions of fairness are defined, i.e., they are defined in terms of
executions and the sequences of actions inducing these executions. Later in [PMC], a state-based view
of fairness is considered which is defined in terms of traces, in [PMC, Subsection 5.1.6, pages 257-270],
where connections between action-based and state-based fairness are also studied.

The following is taken from [PMC, Definition 3.43, page 130], written a little differently, using an
action-based view of fairness.

Definition 19 (Fairness: Unconditional, Strong, Weak). Let TS , (S,Act ,→, I,AP , L) be a transition
system without terminal states, so that all the executions of TS are infinite. Let A ⊆ Act , a subset of
actions, and consider an infinite execution ρ of TS:

ρ , s0
α0−−−→ s1

α1−−−→ s2
α2−−−→ s3

α3−−−→ · · ·

We say:

1. ρ is unconditionally A-fair iff
∞
∃ j. (αj ∈ A) ,

2. ρ is strongly A-fair iff

∞
∃ j.

({
α ∈ A

∣∣∣ there is s′ ∈ S such that sj
α−→ s′

}
6= ∅

)
implies

∞
∃ j. (αj ∈ A) ,

3. ρ is weakly A-fair iff

∞
∀ j.

({
α ∈ A

∣∣∣ there is s′ ∈ S such that sj
α−→ s′

}
6= ∅

)
implies

∞
∃ j. (αj ∈ A) .

The symbols “
∞
∃” and “

∞
∀” here are not formal symbols, i.e., not part of a formal (mathematically de-

fined) logic with quantifiers (e.g., first-order logic). They are shorthands for phrases in plain English:5

• “
∞
∃” stands for ‘there are infinitely many ’.

Hence, “
∞
∃ j.(· · ·)” should be read as “there are infinitely many j such that (· · ·)”.

5If you are familiar with the duality between “∃” and “∀” in first-order logic (i.e., “¬∃¬” is equivalent to “∀” and

“¬∀¬” is equivalent to “∃”), the same duality holds between “
∞
∃” and “

∞
∀” (i.e., “¬

∞
∃¬” is equivalent to “

∞
∀” and “¬

∞
∀¬”

is equivalent to “
∞
∃”). This requires a little proof, which is simple enough by using the duality between “∨” and “∧”.

11

• “
∞
∀” stands for ‘for almost all ’ or ‘for all except for finitely many ’.

Hence, “
∞
∀ j.(· · ·)” should be read as “for almost all j it holds that (· · ·)”. �

Does the preceding definition settles the issue of satisfying fairness? Not quite. Different levels of
fairness are enforced by a spectrum of constraints. From [PMC, page 131]:

An important question now is: given a verification problem, which fairness notion to use?
Unfortunately, there is no clear answer to this question. Different forms of fairness do exist
– the above is just a small, though important, fragment of all possible fairness notions – and
there is no single favorite notion. For verification purposes, fairness constraints are crucial,
though. Recall that the purpose of fairness constraints is to rule out certain “unreasonable”
computations. If the fairness constraint is too strong, relevant computations may not be
considered. In case a property is satisfied (for a transition system), it might well be the
case that some reasonable computation that is not considered (as it is ruled out by the
fairness constraint) refutes this property. On the other hand, if the fairness constraint
is too weak, we may fail to prove a certain property as some unreasonable computations
(that are not ruled out) refute it.

Nonetheless, as a general rule, we have the following relationship, from [PMC, page 132]:

unconditional A-fairness implies strong A-fairness and
strong A-fairness implies weak A-fairness,
where the reverse implications do not hold in general.

On a first reading of this handout, you should skip the rest of this section, and also the corresponding
parts in [PMC, pages 133-141].

Sometimes it is necessary to impose different restrictions on different, possibly disjoint, sets of actions
in order to achieve the desired fairness. Towards this end, [PMC] introduces the notion of a fairness
assumption which involves different notions of fairness with respect to several sets of actions – in the
definition to follow [PMC, Definition 3.46, page 133], I limit the notion to three subsets of actions. It
should be read in conjunction with Definition 19.

Definition 20 (Fairness Assumption). A fairness assumption over Act is a triple F of subsets of Act ,
i.e., F , (Aucond, Astrong, Aweak) where Aucond, Astrong, Aweak ⊆ Act . We say an infinite execution ρ is
F-fair iff:

• ρ is unconditionally Aucond-fair, and

• ρ is strongly Astrong-fair, and

• ρ is weakly Aweak-fair.

If the triple F is clear from the context, we say “ρ is fair” instead of “ρ is F-fair”.6 �

Our discussion of fairness so far has been exclusively relative to executions (Definition 2). In the book
[PMC, top of page 134], it is explained how to lift the definition of fairness to paths (Definition 3) and
traces (Definition 4).

6 Our definition here is somewhat less general than in [PMC, Definition 3.46, page 133]. In the latter, F is given as a
triple of sets of subsets, i.e., F = (Fucond,Fstrong,Fweak) where Fucond,Fstrong,Fweak ⊆ 2Act . Then ρ is said to be F-fair
iff ρ is unconditionally/strongly/weakly A-fair for every A in Fucond/Fstrong/Fweak, respectively. For the examples and
exercises we assign, our simpler definition will suffice.

12

The lifting of fairness to traces is relevant for what it means that a LP property is ‘fairly satisfied’,
because the satisfaction of LP properties is relative to traces (Definition 9). The next definition is
taken from [PMC, Definition 3.48, page 135], somewhat simplified, where we use:

FairTracesF (TS) , {σ ∈ Traces(TS) | σ is F-fair }

To understand what FairTracesF (TS) means, you may wish to review Definition 4 and the text fol-
lowing it, down to Remark 5 and including footnote 1.

Definition 21 (Fair Satisfaction for LT Properties). Let TS , (S,Act ,→, I,AP , L) be a transition
system, F be a fair assumption over Act , and P be a LT property over AP . We say TS fairly
satisfies P , in symbols TS |=F P , iff FairTracesF (TS) ⊆ P . �

There is more material in [PMC, Section 3.5.3, pages 139-141] in relation to the connections between
fairness and safety, in particular [PMC, Definition 3.54, page 139] and [PMC, Theorem 3.55, page
140], which you can skip on a first reading.

13

	Transition Systems
	Linear-Time Properties
	Regular Safety Properties and -Regular Properties
	Fairness Properties

