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There are different ways of combining notions of probability with a formal logic – any formal logic:
Not only any of the classical formal logics, such as propositional logic (PL) and first-order logic (FOL),
but also any of the formal logics invented by computer scientists for their own needs and applications,
such as LTL, CTL, other temporal and modal logics, versions of Hoare Logic, and many others.

An overview can be found on the Web (click here and here or see [5]) and the references therein. This
handout illustrates some of the issues in relation to the simplest possible logic, standard propositional
logic (PL), and again in relation to standard first-order logic (FOL). I assume prior knowledge of the
basics of PL and FOL, for which there are many good references (e.g., Chapters 1 and 2 in [12] or
Chapters 1 and 2 in [7]). In other handouts I discuss issues related to the introduction of probability
notions into logics specifically tailored to applications of computer science.

Our goal in this handout is to add probability notions to pre-existing, non-probabilistic formal logics,
while preserving their technical apparatus as much as possible. Thus, probability is introduced by
adding probability distributions on the domains to which these logics are applied (‘variable x is assigned
value a from the domain of interest with some probability p ∈ [0,1]’). Our goal is not to invent formal
logics for reasoning about probabilities; in those latter logics, all formulas are either true or false
(which is a subject of much interest in its own right and for other purposes in computer science).
In our discussion to follow, formulas have probabilistic truth values, i.e., true with some probability
p ∈ [0,1] and false with probability (1 − p).
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1 Probability + Propositional Logic

Throughout, let BVar be a countable, finite or infinite, set of Boolean variables (or atoms), and
let L (PL) be the language of standard PL, i.e., all the well-formed formulas (WFF’s) of standard
propositional logic over the variables in BVar.

A truth-value assignment σ is a map from BVar to B ≜ {true,false}, σ ∶ BVar → B. If σ satisfies the
wff ϕ ∈ L (PL), we write σ ⊧ ϕ. If σ ⊧ ϕ for every truth-value assignment σ, we write ⊧ ϕ.

A probability function for L (PL) is a function Pr ∶ L (PL) → R satisfying the following conditions:

Non-negativity:
Pr(ϕ) ⩾ 0 for every ϕ ∈ L (PL).

Tautologies:
If ⊧ ϕ, then Pr(ϕ) = 1.

Finite additivity:
If ⊧ ¬(ϕ ∧ ψ), i.e., there is no truth-value assignment σ such that both ⊧ ϕ and ⊧ ψ,
then Pr(ϕ ∨ ψ) = Pr(ϕ) +Pr(ψ).

Informally, Pr(ϕ) represents the probability that the wff ϕ evaluates to true when we choose Pr as
the probability function for L (PL).

In general, there are infinitely many probability functions for L (PL). Let probabilistic propositional

logic (here abbreviated pPL) be standard PL augmented with probability functions for L (PL).

Before proceeding further, for those who have not had a course on probability theory, we clarify two
related concepts that appear repeatedly in the sequel: random variable and probability distribution.

Terminology 1. A random variable is a function that assigns numerical values to the outcomes of a
statistical experiment; e.g., the number of heads obtained by flipping a coin three times. That is, a
random variable is a function from the set of possible outcomes of a statistical experiment to the set
of real numbers; e.g., in the experiment of flipping the coin three times, the random variable maps
each outcome to a value in the set {0,1,2,3}.

A probability distribution is a function that maps each value in the range of a random variable to a
probability; e.g., the possible outcomes of flipping a coin three times are eight:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT (H = heads, T = tails),

and if the coin is fair, then each outcome occurs with probability 1/8. The corresponding probability
distribution maps every value in {0,1,2,3} to a probability in [0,1]; here, it carries out the following
mappings {0↦ 1/8, 1↦ 3/8, 2↦ 3/8, 3↦ 1/8}. ◻

We state several basic facts of pPL without their proofs, or leave the proofs as exercises.

Proposition 2. Let Pr be a probability function for L (PL). We then have:

1. Pr is a probability distribution, i.e., Pr(ϕ) ∈ [0,1] for every ϕ ∈ L (PL).

2. For all wff’s ϕ,ψ ∈ L (PL), if ⊧ (ϕ↔ ψ), i.e., ϕ and ψ are equivalent, then Pr(ϕ) = Pr(ψ).

Let S be the set of all truth-value assignments. A probability distribution over S is a function
θ ∶ S → [0,1] which – often, not always1 – satisfies the discrete additivity condition: ∑σ∈S θ(σ) = 1.

1 We have to be careful here. We can always make this additivity condition, ∑σ∈S θ(σ) = 1, to hold if S is a finite
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Proposition 3. Assume for simplicity that BVar is finite and let Pr be a probability function for
L (PL). Then Pr uniquely induces a probability distribution θ on the set S of truth-value assignments.

Exercise 4. Prove Proposition 3.

Hint : Start with the simple case when BVar = {x1}, then BVar = {x1, x2}, and then generalize to an
arbitrary finite BVar. ◻

The two next exercises show the converse of Proposition 3: How to lift a probability distribution θ on
S to a probability function for L (PL).

Exercise 5. Let BVar = {x, y, z} and consider all wff’s of L (PL) written over {x, y, z}. Since S is
the set of all functions σ ∶ BVar → B and B is a two-element set, there is a total of 8 truth-value
assignments in S. For every v ∈ X, a probability distribution θv assigns a value p ∈ [0,1] to the event
⟨v ↦ true⟩ and probability (1 − p) to the event ⟨v ↦ false⟩:2

θv⟨v ↦ true⟩ = p and θv⟨v ↦ false⟩ = (1 − p).
This induces a probability distribution θ over S defined by:

θ⟨x↦ b1, y ↦ b2, z ↦ b3⟩ = θx⟨x↦ b1⟩ ⋅ θy⟨y ↦ b2⟩ ⋅ θz⟨z ↦ b3⟩
for every σ = ⟨b1, b2, b3⟩ where, for convenience, we write ⟨b1, b2, b3⟩ instead of ⟨x ↦ b1, y ↦ b2, z ↦ b3⟩.
For simplicity in this exercise, let p = 1/2 for every v ∈ BVar, so that θ(σ) = (1/2)3 = 1/8 for every
truth-value assignment σ ∈ S.

Your task in this exercise is to show that the probability distribution θ over S induces, or can be lifted
uniquely, to a probability function Pr for L (PL) satisfying the three conditions: non-negativity,
tautologies, and finite additivity.

Hint : Proceed by structual induction on the syntax of wff’s in L (PL). You can limit your answer to
wff’s written in terms of only three logical connectives {¬,∧,∨} over the variables {x, y, z}. ◻
Exercise 6. This continues Exercise 5, now with different probability distributions on the variables
in BVar = {x, y, z}, namely:

θx⟨x↦ true⟩ = 1/2 and θx⟨x↦ false⟩ = 1/2,
θy⟨y ↦ true⟩ = 1/3 and θy⟨y ↦ false⟩ = 2/3,
θz⟨z ↦ true⟩ = 1/4 and θz⟨z ↦ false⟩ = 3/4.

space, which is the case when BVar is finite. But this additivity condition may or may not hold if S is an infinite space,
which is the case when BVar is infinite. In all cases when this additivity condition holds, whether S is finite or infinite,
we say that θ is a discrete probability distribution.

When S is an infinite space and θ cannot satisfy the additivity condition above, we need to deal with θ as a continuous
(not discrete) distribution (and consider an additivity condition of a different kind). As a continuous distribution over
an infinite S, we cannot express θ in tabular form. Instead, if we want to describe θ graphically, we use an equation, the
so-called probability density function satisfying two conditions: (1) θ(σ) ⩾ 0 for every σ ∈ S, and (2) the total area under
the curve of the function θ is equal to one. We can take (2) as replacing the additivity condition of a discrete distribution
(though a different additivity condition still holds for the continuous case, see discussion after Example 13 on page 8).

I try to keep to a minimum concepts of probability theory that are required for reading this handout. For those who
already know basic concepts of probability and may be puzzled by my skirting many of them, I purposely avoid any
mention of conditional probabilities, probability-mass functions (associated with discrete random variables), and other
notions, and try to minimize mention of probability-density functions (associated with continuous random variables) and
other notions, hopefully making this handout accessible to those with little knowledge of probability theory. If you want
to study this background on your own, there are many good references, for example [3, 4, 6], among several others.

2I am abusing the notation a little, but the intention should be clear. The event here corresponds to assigning a
truth value to the variable v by flipping a coin: It returns true with probability p and false with probability (1− p). If
p = 1/2, the coin is fair.
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Repeat Exercise 5 with these probabilities. ◻

Exercise 7. Let {x, y} be propositional variables, and Pr ∶ L (PL) → R an arbitrary probability

function for L (PL). Show that:

Pr(y) = Pr(x ∨ y) +Pr(x→ y) − 1

Hint 1 : Try Exercises 5 and 6 before you try this exercise.

Hint 2 : Start with the probability function Pr ∶ L (PL) → R induced by the following probability
distributions on the variables {x, y}:

θx⟨x↦ true⟩ = θy⟨y ↦ true⟩ = 1/2

and consider the truth-table for (x ∨ y) and (x → y). Generalize to the case when θx⟨x ↦ true⟩ = p
and θy⟨y ↦ true⟩ = q for arbitrary p, q ∈ [0,1]. ◻

Exercise 8. This continues Exercise 7. Let BVar = {x1, x2, x3, . . .}, a countably infinite set of variables.
Let Pr ∶ L (PL) → R be the probability function for L (PL) induced by the following probability
distributions on the variables in BVar:

θn⟨xn ↦ true⟩ = 1/(1 + n) and θn⟨xn ↦ false⟩ = n/(1 + n),

for every n = 1,2,3, . . .. There are two parts in this exercise, both relative to the specific probability
function Pr which is induced by the probability distributions { θn ∣n ⩾ 1} defined above:

1. Show, for all i, j ∈ {1,2,3, . . .}:

Pr(xj) = Pr(xi ∨ xj) +Pr(xi → xj) − 1

2. For every n ⩾ 1, define the wff ϕn ≜ ⋁1⩽i⩽n(xi ∧ xi+1). Determine the probability Pr(ϕn) as a
function of n.

Hint : Try Exercises 7 before you try this exercise. ◻

In standard PL, if Γ is a set of wff’s in L (PL), a judgment of the form Γ ⊢ ϕ is read as ‘ϕ is
formally derivable or deducible from Γ’, which means that the wff ϕ can be formally derived or
deduced from finitely many wff’s in Γ as premises. This deduction is carried out using formal proof
rules; the approach used in Chapter 1 of the book [12] is called Natural Deduction, but there are
several alternative approaches for carrying out formal proofs of PL.

By soundness and completeness, Γ ⊢ ϕ holds iff Γ ⊧ ϕ holds, a basic fact shown in Section 1.4
of [12]. The assertion ‘Γ ⊧ ϕ’ is read as ‘Γ semantically entails ϕ’, which means that every truth-
value assignment that makes all the wff’s in Γ true will make ϕ true. The left-to-right implication is
soundness of standard PL (‘what is formally deducible is true’), and the right-to-left implication is its
completeness (‘what is true is formally deducible’).

When we pass from PL to pPL, we need to adapt the notion of formal deduction ‘⊢’ and the notion
of semantic entailment ‘⊧’. There is more than one way of doing this. The simplest way of adapting
‘⊧’, which we now denote ‘⊧p’, is defined by:

We write Γ⊧pϕ, and say Γ probabilistically (semantically) entails ϕ,
iff for every probability function Pr ∶ L (PL) → R, if Pr(ψ) = 1 for all ψ ∈ Γ, then Pr(ϕ) = 1.
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From this definition of ‘⊧p’ the following proposition is a straightforward consequence.

Proposition 9. For any set Γ of wff’s and any wff ϕ in L (PL), we have Γ⊧ϕ iff Γ⊧pϕ.

Corollary 10. The formal semantics of pPL defined by ‘⊧p’ are sound and complete relative to the
formal proof rules of standard PL, i.e., for any set Γ of wff’s and any wff ϕ in L (PL), it holds that:

Γ⊧pϕ iff Γ⊢ϕ.

By the preceding corollary, there is no need to modify or extend the proof rules of standard PL in the
presence of probability functions for L (PL), provided we use the notion of probabilistic satisfaction
represented by ‘⊧p’.

However, this notion ‘⊧p’ is unduly restrictive in many application areas; it requires that all the
premises in Γ to have probability = 1 in order to conclude that ϕ has probability = 1. Here is an
example of a meaningful but less restrictive notion of probabilistic semantic entailment: If all the
premises in Γ have probability ⩾ 1/2 then the conclusion ϕ has probability ⩾ 1/2. Further discussion
along these lines is found elsewhere (here for example).

We mention one way of defining a less restrictive notion of probabilistic semantic entailment, denoted
‘⊧a’ (subscript ‘a’ is for ‘Adams’), which is sound and complete relative to the formal proof rules of
standard PL:

We write Γ⊧aϕ, and say Γ probabilistically (semantically) entails ϕ in the sense of Adams,
iff for every ε > 0 there is a δ > 0 such that for every probability function Pr for L (PL),
it holds that Pr(ψ) > 1 − δ for every ψ ∈ Γ implies Pr(ϕ) > 1 − ε.

We have the following pleasant result.

Proposition 11. The formal semantics of pPL defined by ‘⊧a’ are sound and complete relative to the
formal proof rules of standard PL, i.e., for any set Γ of wff’s and any wff ϕ in L (PL), it holds that:

Γ⊧aϕ iff Γ⊢ϕ.

Hence, for the probabilistic semantic entailment defined by ‘⊧a’, the proof rules of standard PL suffice
and we do not need to introduce new ones.

For a proof of Proposition 11, consult Section 2.2 in the entry ‘Logic and Probability’ in the Stanford
Encyclopedia of Philosophy and the references to Adams therein (click here).

Exercise 12. Let Γ be an arbitrary set of wff’s and ϕ an arbitrary wff of L (PL). There are two
parts in this exercise:

1. Using the definitions of ‘⊧p’ and ‘⊧a’, show that if Γ⊧pϕ then Γ⊧aϕ.

2. Does the converse (namely, if Γ⊧aϕ then Γ⊧pϕ) hold? Justify your answer.

Hint for part 2 : If your answer is ‘no’, you need to find a counter-example, i.e., a particular Γ and a
particular ϕ such that Γ⊧aϕ but Γ /⊧p ϕ. You can simplify your counter-example further by choosing
Γ to be a single wff. So, find a single wff ψ and a single wff ϕ such that ψ ⊧aϕ but ψ /⊧p ϕ. ◻
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2 Probability + First-Order Logic

Just as it is for PL, there are also different ways of adding notions of probability to FOL. A discussion
of these is found on the Web (here for example). We start with the simplest way of adding probability
to FOL, and then point out some of its limitations. First, a reminder of the syntax of standard FOL:

terms ∶
t ∶∶= c ∣ x ∣ f(t1, . . . , tn) (n ⩾ 1)

formulas ∶
ϕ ∶∶= true ∣ false ∣ t1 ≐ t2 ∣ P (t1, . . . , tn) ∣ (atomic formulas, n ⩾ 0)

¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ⋯ (propositional connectives)

∀x.ϕ ∣ ∃x.ϕ (quantifiers)

where the highlighted part, in the last line, is replaced by:

(Px.ϕ) ⩾ q for some rational q ∈ [0,1],

to obtain our simplest version of pFOL. We call ‘P’ a probability quantifier or a probabilistic quantifier,
and say that the variable x is probabilistically quantified in the wff ((Px.ϕ) ⩾ q). Let L (pFOL) be
the set of all wff’s of pFOL.

Informally now, assuming that variable x occurs free in ϕ, the formula ((Px.ϕ) ⩾ q) should be under-
stood as saying that: the probability of selecting a value for x satisfying ϕ is ⩾ q, or also the subset
of all elements (from the domain of interest) satisfying ϕ when assigned to x is ⩾ q.3 With this
understanding, we introduce two abbreviations:

� ((Px.ϕ) ⩽ q) abbreviates ((Px.¬ϕ) ⩾ 1 − q), and

� ((Px.ϕ) = q) abbreviates ((Px.ϕ) ⩾ q) ∧ ((Px.ϕ) ⩽ q).

With the introduction of formulas of the form ‘((Px.ϕ) ⩾ q)’ we need to adjust the formal semantics
of pFOL, which is now defined relative to a first-order structure (or model) M ≜ (A,=, fM, PM, . . .)
where the domain A is a non-empty set, together with an assignment σ ∶ Var → A and a probability
distribution (discrete, for now) θ ∶ A → [0,1] over A, where Var is the set of variables occurring in
all the wff’s of pFOL. We need the structure M for interpreting function symbols f and predicate
symbols P occurring in wff’s, the assignment σ for interpreting variables occurring free in wff’s, and
the probability distribution θ for interpreting probability quantifiers in wff’s.

I define the triple I (for ‘interpretation’) by I ≜ (M, σ, θ), and write JtKI to denote the interpretation
of the term t relative to I, defined by induction on the syntax of terms:

JcKI ≜ cM

JxKI ≜ σ(x)

Jf(t1, . . . , tnKI ≜ fM(Jt1KI, . . . , JtnKI)
3While the conventions for writing the usual quantifiers ‘∀’ and ‘∃’ are solidly established, different authors have

used different styles for writing probability quantifiers. Where I write ‘((Px.ϕ) ⩾ q)’ others write ‘(Px ⩾ q).ϕ’ (in [13]
for example), or ‘∃⩾q.ϕ’ or ‘(∃⩾q)ϕ’ (in [14]), or ‘wx(ϕ) ⩾ q’ (in [11]) among others. Whenever convenient, I also write
‘(P⩾qx.ϕ)’ instead of ‘((Px.ϕ) ⩾ q)’.
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By induction on the syntax of formulas, we define the notion of satisfaction ‘⊧p’ relative to I:4

I ⊧p true

I /⊧p false

I ⊧p t1 ≐ tn iff Jt1KI = Jt2KI

I ⊧p P (t1, . . . , tn) iff (Jt1KI, . . . , JtnKI) ∈ PM

I ⊧p ¬ϕ iff I /⊧p ϕ

I ⊧p ϕ1 ∧ ϕ2 iff I ⊧p ϕ1 and I ⊧p ϕ2

I ⊧p ⋯ ⋯ (other propositional connectives)

The preceding is straightforward and mimics the way the formal semantics of standard FOL is set up.
Note that the probability distribution θ plays no role up to this point; the interpretation of terms and
satisfaction of wff’s are independent of θ so far.

The question is how to interpret the remaining wff’s of the form ((Px.ϕ) ⩾ q). Consider first the case
when θ is a discrete probability distribution over the domain A of the structureM.5 As usual, we lift
θ to a function on subsets of A by defining θ(X) ≜ ∑a∈X θ(a) for any X ⊆ A, and define:6

(�) (M, σ, θ) ⊧p (Px.ϕ) ⩾ q iff θ ({a ∈ A ∣ (M, σ[x↦ a], θ) ⊧p ϕ}) ⩾ q

There is a couple of subtle points in this definition. First, the symbol ‘⩾’ on the left-hand side in (�) is
just a symbol in the syntax of wff’s, whereas the ‘⩾’ on the right-hand side in (�) is the interpretation
of the former, i.e., the standard relation ‘greater than or equal to’ on numbers. We denote by σ[x↦ a]
the usual update of the assignment σ at x, i.e.,

σ[x↦ a](y) ≜
⎧⎪⎪⎨⎪⎪⎩

a if x = y,
σ(y) otherwise.

Hence, the right-hand side of of (�) collects the probabilities of all the elements a ∈ A such that
(M, σ[x↦ a], θ)⊧pϕ and then compares their sum to q. This kind of summation cannot work when θ
is not a discrete probability distribution – unless the collected elements form what is called a measurable
set (more on this after Example 13 below).

As in standard FOL, if ϕ is a closed wff, i.e., every variable in ϕ is bound by a probability quantifier
‘P’, then the assignment σ ∶ Var→ A in the interpretation I = (M, σ, θ) plays no role in the satisfaction
relation I ⊧pϕ. In such a case, we write M, θ⊧pϕ to mean that M, σ, θ⊧pϕ for every σ ∶ Var→ A.

In the same vein, we writeM, σ ⊧pϕ to mean thatM, σ, θ⊧pϕ for every θ ∶ A→ [0,1], andM⊧pϕ to
mean that M, σ, θ⊧pϕ for every σ ∶ Var → A and every θ ∶ A → [0,1]. Finally, we write ⊧pϕ to mean
that M, σ, θ⊧pϕ for every M, for every σ ∶ Var→ A, and for every θ ∶ A→ [0,1].

Before we consider the case when θ is a continuous probability distribution, we give a little example
when θ is necessarily discrete because the domain is finite.

4This ‘⊧p’ is unrelated to the ‘⊧p’ in Section 1.
5See footnote 1 for a brief discussion between discrete distribution and continuous distribution.
6 Note the similarities with the way the formal semantics of ‘∀’ and ‘∃’ are defined in standard FOL. For a first-order

wff ϕ, model M= (A, . . .) with domain A, and assignment σ ∶ Var→ A, we have:

M, σ ⊧ ∀x.ϕ iff {a ∈ A ∣ M, σ[x↦ a]⊧ϕ} = A and M, σ ⊧ ∃x.ϕ iff {a ∈ A ∣ M, σ[x↦ a]⊧ϕ} ≠ ∅.
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Example 13. Suppose the wff’s of L (pFOL) contain two unary predicate symbols, B and W , and

are interpreted in structures of the form M ≜ (A,=,BM,WM) where A is a finite non-empty set.
Because B and W are unary, their interpretations BM and WM inM can be viewed as subsets of A.
Consider the wff ϕ1 defined by:

ϕ1 ≜ ( (Px.B(x) ↔ ¬W (x) ) = 1 )

ϕ1 is a closed wff, so an assignment σ ∶ Var → A plays no role in the satisfaction of ϕ1 in a structure
M≜ (A,=,BM,WM). A moment of thought shows that, for every structure M≜ (A,=,BM,WM):

M⊧pϕ1 iff the domain A can be partitioned into A = BM ∪WM with BM ∩WM = ∅.

We think of ϕ1 as enforcing the requirement that A is a set of black and white marbles, and no marble
can be both black and white. Consider now another wff ϕ2 defined by:

ϕ2 ≜ ( (Px.B(x)) = 1/2 )

Suppose we restrict attention to discrete probability distributions θ ∶ A→ [0,1] that are uniform, i.e.,
if ∣A∣ = n then θ(a) = 1/n for every a ∈ A. In such a case, if M⊧pϕ1 ∧ϕ2, then the domain A must be
a finite collection of an equal number of black marbles and white marbles. ◻

When θ is a continuous probability distribution, we proceed differently and there is more than one
way of doing it. I choose one way here, alternatives are proposed in [2, 8, 9, 10, 11], among others.
The only place where there is a difference is in the semantics of wff’s of the form ((Px.ϕ) ⩾ q), now
defined relative to I ≜ (M, σ, θ) where – parts 1 and 2 below are as before, while part 3 is different
because we use the (standard) definition of a probability distribution in general (whether continuous
or discrete):

1. M≜ (A,=, fM, PM, . . .) is a first-order structure (or model),

2. σ ∶ Var→ A is an assignment of values in A to variables in Var,

3. θ ∶ A → [0,1] is a probability distribution satisfying the following conditions: 7

(a) A ⊆ 2A, i.e., A is a collection of subsets of A, with ∅ ∈ A and A ∈ A ,

(b) A is closed under countable unions, countable intersections, and complementation.

(c) 0 ⩽ θ(X) ⩽ 1 for every X ∈ A , with θ(∅) = 0 and θ(A) = 1,

(d) if {X1,X2,X3, . . .} ⊆ A is a countable set of sets in A that are pairwise disjoint, then:

θ(⋃
i⩾1
Xi) = ∑

i⩾1
θ(Xi).

7 If {X1,X2,X3, . . .} ⊆ A is a countable collection, finite or infinite, of sets in A , their countable union is (⋃i⩾1Xi) ∈ A ,
countable intersection is (⋂i⩾1Xi) ∈ A , and complements are (A −Xi) ∈ A for every i ⩾ 1. Technically, conditions (3.a)
and (3.b) define what is called a σ-algebra or a σ-field. (Warning: The ‘σ’ in ‘σ-algebra’ has nothing to do with our
σ ∶ Var → A.) So, A is called a σ-algebra in A, the pair (A,A ) is called a measurable space, and the members of A are
called measurable sets. If we add the probability distribution θ, the resulting triple (A,A , θ) is called a probability space.
(Our notation is somewhat different from the traditional one in probability theory, e.g., click here: A probability space
is often written as (Ω,F ,P) where Ω is called the sample space, the σ-algebra F ⊆ 2Ω is known as the event space, which
is the set of all possible events E ∈ F that one can measure, and the measure P(E) is the probability of that event.)

Note that discrete distributions can be made to satisfy the same four conditions {(3.a),(3.b),(3.c),(3.d)}, which therefore
cannot be used to distinguish discrete from continuous. Indeed, discrete distributions as defined in this handout can be
viewed as a special case of distributions satisfying those conditions. Specifically, if θ ∶ A→ [0,1] is a discrete distribution
on A, we can take the measurable sets to be A = 2A, which is a special case of A ⊆ 2A, and then extend θ to a probability
measure θ′ ∶ 2A → [0,1] satisfying the conditions {(3.a),(3.b),(3.c),(3.d)}, with θ′(B) ≜ ∑b∈B θ(b) for every B ∈ 2A.
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The difference now is the result of replacing a discrete distribution θ, which we can take in the form
θ ∶ A → [0,1], by a continuous distribution θ, which we must take in the form θ ∶ A → [0,1]. For the
semantics of ((Px.ϕ) ⩾ q), we repeat the earlier definition (�), but now identified differently with ‘(�)’
because of the added proviso:

(�) (M, σ, θ) ⊧p (Px.ϕ) ⩾ q iff θ ({a ∈ A ∣ (M, σ[x↦ a], θ) ⊧p ϕ}) ⩾ q,

provided the set {a ∈ A ∣ (M, σ[x↦ a], θ) ⊧p ϕ} is in A .

The proviso guarantees that θ is defined on its argument, because θ is only defined on sets in A .8

Example 14. As in Example 13, we consider wff’s of L (pFOL) containing the unary predicate

symbols, B and W , and interpreted in structures of the form M ≜ (A,=,BM,WM). The domain A
is finite or infinite. We define infinitely many wff’s ψk, one for every k ⩾ 1:

ψk ≜ P⩾pk xk. B(xk) ∧

(P⩾pk−1 xk−1. B(xk−1) ∧

(P⩾pk−2 xk−2. B(xk−2) ∧

( ⋯

(P⩾p2 x2. B(x2) ∧

(P⩾p1 x1. B(x1) ∧ ⋀
1⩽i<j⩽k

¬(xi ≐ xj) ) ) ⋯ ) ) )

where we write, for succintness, (P⩾q x.ϕ) instead ((Px.ϕ)⩾ q), and (⋀1⩽i<j⩽k ¬(xi ≐ xj)) is the
conjunction of all wff’s ¬(xi ≐ xj) such that 1 ⩽ i < j ⩽ k. Another collection of infinitely many wff’s
is {ψ′k}k⩾1 where every ψ′k is obtained from ψk by replacing every occurrence of ‘B’ by ‘W ’ and every
occurrence of ‘pi’ by ‘qi’. In particular, the wff’s ψ1, ψ

′
1, ψ2 and ψ′2 are:

ψ1 ≜ P⩾p1 x1. B(x1)

ψ′1 ≜ P⩾ q1 x1. W (x1)

ψ2 ≜ P⩾p2 x2. B(x2) ∧ (P⩾p1 x1. B(x1) ∧ ¬(x1 ≐ x2))

ψ′2 ≜ P⩾ q2 x2. W (x2) ∧ (P⩾ q1 x1. W (x1) ∧ ¬(x1 ≐ x2))

In addition to {ψk}k⩾1 and {ψ′k}k⩾1, we consider two other wff’s, ϕ and ϕ′:

ϕ ≜ P⩾1 x. (B(x) ∨ W (x)) and ϕ′ ≜ P⩾1 x.¬(B(x) ∧ W (x))

All the wff’s in {ψk}k⩾1 ∪{ψ′k}k⩾1 ∪{ϕ,ϕ′} are closed. Hence, when any of them, say ϕ, is interpreted
relative to I ≜ (M, σ, θ), we can dispense with the assignment σ and write (M, θ)⊧p ϕ instead of
(M, σ, θ)⊧p ϕ. And if we writeM⊧p ϕ, it means (M, θ)⊧p ϕ for every probability distribution θ. We
continue this example in Exercises 15 and 16 below. ◻

8As a follow-up to footnote 7, the proviso in (�) requires that definable sets be measurable in the probability space
(A,A , θ).
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Exercise 15. This is a continuation of Example 14. There are several parts:

1. For every structureM≜ (A,=,BM,WM), show thatM⊧p ϕ∧ϕ′ iff the domain A is partitioned
into two disjoint set by BM and WM, i.e.,

{a ∈ A ∣ BM(a)} ∩ {a ∈ A ∣WM(a)} = ∅ and {a ∈ A ∣ BM(a)} ∪ {a ∈ A ∣WM(a)} = A.

You have to do this part for all cases, whether A is finite or infinite, and whether you consider
discrete or continuous probability distributions.

2. Let M≜ (A,=,BM,WM) be such that M⊧p ϕ ∧ ϕ′ and assume the conclusion of part 1 holds.
Let p1 = q1 = p2 = q2 = 1/2. There are two subparts, (a) and (b) in this part:

(a) M ⊧p ψ1 ∧ ψ′1.
(b) M ⊧p ψ1 ∧ ψ′1 ∧ ψ2 ∧ ψ′2.

For each of the two subparts, (a) and (b), what is the most precise statement you can make
about the cardinality of the domain A? Can it be finite and even? Can it be finite and odd?
Can it be infinite? Justify.

3. Repeat part 2 with its two subparts, now with probabilities: p1 = q1 = 1/2 and p2 = q2 = 1/4.

4. Let M≜ (A,=,BM,WM) be such that M⊧p ϕ ∧ ϕ′ and assume the conclusion of part 1 holds.
Let M⊧p ψk ∧ ψ′k for every k ⩾ 1 and pi = qi = 1/2i for every i ⩾ 1. What is the most precise
statement you can make about the cardinality of the domain A? Can it be finite? Can it be
infinite? Justify.

Hint : The four parts are in increasing difficulty. Do them in sequence. ◻

Exercise 16. This is a continuation of Example 14 and Exercise 15. Define infinitely many wff’s ψ̃k,
one for every k ⩾ 1:

ψ̃k ≜ P⩾pkxk. P⩾pk−1xk−1. ⋯ . P⩾p2x2. P⩾p1x1. B(xk) ∧⋯ ∧B(x1) ∧ ⋀
1⩽i<j⩽k

¬(xi ≐ xj)

In words, ψ̃k is obtained from the earlier ψk by moving probability quantifiers to outermost position
on the left.9 Clearly, ψ̃1 and ψ1 are the same wff, but not ψ̃k and ψk for k ⩾ 2. There are two parts:

1. Prove or disprove that ψ̃2 and ψ2 are equivalent wff of pFOL.

2. Prove or disprove that ψ̃k and ψk are equivalent wff of pFOL, for every k ⩾ 2.

Hint : If you know how to do part 1, part 2 is easy. ◻

It turns out that pFOL as presented so far is unduly restrictive. In particular, it does not allow for
the selection of several objects from the domain in sequence or simultaneously, and independently of
each other, as illustrated by the next example and exercise.

Example 17. This is a continuation of Example 13. Suppose we limit attention to uniform discrete
distributions θ ∶ A → [0,1]. As pointed out earlier, if M is a finite structure such that M⊧pϕ1 ∧ ϕ2,
then the domain A of M is a finite set (or bag) of an equal number, say m ⩾ 1, of black marbles and
white marbles. The size of A is ∣A∣ = 2m.

Suppose we want to write a wff expressing the following action (with eyes closed!):

9 We can also define infinitely many wff’s ψ̃′k, one for every k ⩾ 1, where ψ̃′k is obtained from ψ̃k by replacing every
occurrence of ‘B’ by ‘W ’ and every occurrence of ‘pi’ by ‘qi’, but there is no need for them in this exercise.

10



� pick a black marble, put it back in the bag, and then pick a white marble from the bag.

We say this action succeeds if the first pick is indeed a black marble and the second pick is indeed a
white marble. Hence, the expected probability that the action succeeds is ⩾ (1/2) ⋅ (1/2) = 1/4, but
not more. Is there a wff ψ describing this action that will be satisfied by M, i.e., such that M⊧pψ?
One ‘reasonable’ attempt is to define ψ by:

ψ ≜ (P⩾1/2 y. (ψ1 ∧ ψ2 ) ) where ψ1 ≜ (P⩾1/2 x.B(x) ) and ψ2 ≜ W (y),

where variables x and y correspond to picking a black marble and a white marble, respectively.
Note that, out of the two probabilities occurring in our proposed ψ, the outer one is 1/2, purposely
contradicting our informal expectation that the action will succeed with probability only ⩾ 1/4. So,
should we hope to show that M /⊧p ψ? Unfortunately, our formal apparatus so far confirms just the
opposite, namely, that M⊧pψ does hold, as shown next.

Under the assumption that the bag A contains the same number m of black and white marbles, and
that the distribution θ is uniform, it is easy to see that M⊧pψ1. The wff ψ2 ≜ W (y) contains free
variable y; hence, for any assignment σ ∶ Var→ A, the set of elements for which ψ2 is true is such that:

θ ({a ∈ A ∣ (M, σ[y ↦ a], θ) ⊧p W (y) } ) = 1/2

under the assumption that θ is the uniform discrete distribution. Hence, under the same assumption:

θ ({a ∈ A ∣ (M, σ[y ↦ a], θ) ⊧p ψ1 ∧ ψ2 }) = 1/2

so that also (M, σ, θ)⊧pψ or, because is ψ is closed and we limit attention to uniform distributions,
M⊧pψ, which contradicts our informal expectation. Conclusion: Our proposed wff ψ does not
describe, or model, the action correctly; specifically, it does not reflect that the action succeeds with
probability only ⩾ 1/4. ◻

Exercise 18. This is a follow-up to Examples 13 and 17. For a finite structureM≜ (A,=,BM,WM)
such thatM⊧pϕ1∧ϕ2, and for a uniform discrete distribution θ ∶ A→ [0,1], show that in factM⊧pψ′,
where ψ′ is obtained from ψ by replacing the two occurrences of ‘⩽’ by ‘=’. That ψ′ is satisfied in M
is again in contradiction with the expected probability 1/4 for the described action to succeed. ◻

Example 17 and follow-up Exercise 18 are not a proof that there is no wff in L (pFOL) that models
the action described in Example 17 with its expected probability = 1/4.10 Nevertheless, it points
to a limitation of using probability quantifiers that bind a single variable at a time. We remedy
this situation by allowing wff’s of the form ((Px⃗.ϕ) ⩾ q), where x⃗ is a finite non-empty sequence of
variables, x⃗ = x1x2⋯xn with n ⩾ 1. In doing so, we extend the syntax of wff’s; call L (pFOL′) the set
of wff’s so extended.

Example 19. Consider the action described in Example 17 with expected probability = 1/4. We can
now define a wff ψ(q) of L (pFOL′), parametrized with a probability q ∈ [0,1], to model it:

ψ(q) ≜ P⩾ q xy.B(x) ∧ ¬B(y)

IfM≜ (A,=,BM,WM) is a structure satisfying ϕ1∧ϕ2 as in Example 17, and θ is the uniform discrete
probability on the domain A of M, it is easy to check that M, θ⊧p ψ(1/4), while M, θ /⊧p ψ(1/2). ◻

10It is far more difficult to prove that no such wff in L (pFOL) exists.
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Given a structure M with domain A, and a probability distribution θ on A, discrete or continuous,
we need to extend θ to a probability distribution on elements of An (if θ is discrete) or on subsets of
An (if θ is continuous), for every n ⩾ 1.

Exercise 20. There are two parts in relation to the extended probabilistic logic pFOL′:

1. Provide the details of the formal syntax of the wff’s in L (pFOL′).

2. Provide the details of the formal semantics of the wff’s in L (pFOL′).

Hint 1 : Start with part 1, which is very easy.

Hint 2 : For part 2, consider separately the two cases, discrete probability distributions and contin-
uous probability distributions. For each of the two, you will have to take a product of probability
distributions. The counterpart for L (pFOL′) of (�) on page 7 is now:

(�′) (M, σ, θ) ⊧p (Px⃗.ϕ) ⩾ q iff θ′ ({ a⃗ ∈ An ∣ (M, σ[x⃗↦ a⃗], θ′) ⊧p ϕ}) ⩾ q

where n ⩾ 1 is the number of variables in the sequence x⃗ and θ′(a1, . . . , an) ≜ θ(a1) × ⋯ × θ(an),
because for a discrete probability distribution ‘the product of the distributions on the components is
the distribution on the product of the components’. If θ is a continuous probability distribution, what
is the counterpart (�′) for L (pFOL′) of (�) on page 9? ◻

What Next? So far this section has presented only the semantics of pFOL and pFOL′. There are
at least three major topics, all related to an axiomatization of pFOL′, which need still to be discussed
to round up our presentation:

1. Axioms and proof rules for formal derivation of valid wff’s in L (pFOL′).

2. Soundness and completeness of these axioms and proof rules, w.r.t. the semantics in this section.

3. Complexity results (tractable, decidable, undecidable) of validity proofs in pFOL′.

Some coverage of these issues is found in [1, 11, 13] and the references therein.
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