
A Decomposition-based Architecture for Distributed Virtual Network Embedding

Flavio Esposito Ibrahim Matta
fesposito@exegy.com matta@cs.bu.edu

Exegy Inc. Computer Science Department
St. Louis, MO Boston University, MA

Abstract— Network protocols have historically been devel-
oped on an ad-hoc basis, and cloud computing is no exception.
A fundamental management protocol, not yet standardized, that
cloud providers need to run to support wide-area virtual net-
work services is the virtual network (VN) embedding protocol.

In this paper, we use decomposition theory to provide a
unifying architecture for the VN embedding problem. We show
how our architecture subsumes existing solutions, and how
it can be used by cloud providers to design a distributed
VN embedding protocol that adapts to different scenarios, by
merely instantiating different decomposition policies. We ana-
lyze key representative tradeoffs via simulation, and with our
VN embedding testbed that uses a Linux system architecture
to reserve virtual node and link capacities. In contrast with
existing VN embedding solutions, we found that partitioning a
VN request not only increases the signaling overhead, but may
decrease cloud providers’ revenue.

I. INTRODUCTION

The cloud computing market is rapidly becoming domi-
nated by a small set of public infrastructure providers, that
profit from concurrently running multiple customized (virtual
network) services on their shared or leased infrastructure.
One of the fundamental management protocols, not yet stan-
dardized, that cloud providers need to run to support virtual
network services is the virtual network (VN) embedding
protocol 1. Running such protocol requires solving the NP-
hard problem of matching constrained virtual networks on
the physical network (overlay) of the infrastructure provider.
The virtual network embedding problem consists of three
interacting mechanisms: (i) resource discovery, where the
space of the available potentially hosting physical (or over-
lay) resources is sampled or exhaustively searched; (ii) vir-
tual network mapping, where a subset of available physical
resources is chosen as a candidate to potentially host the
requested virtual network, and (iii) allocation, where each
virtual node is bound to a physical node, and each virtual
link to at least one loop-free physical path.

Distributed embedding solutions are useful to single cloud
providers to enable virtual network services that span a
wide geographical area (see e.g. the GENI testbed [1]), but
many envision also a “cloud marketplace” where vendors
of software, hardware, and services collectively participate
in operating open-cloud solutions [4]. Distributed solutions
that allow service and infrastructure providers to collectively

Flavio Esposito’s work was done while at Boston University.
1We call service providers the players that do not own the infrastructure

but provide a (cloud-based) service. Infrastructure providers own instead the
physical network resources. A cloud provider can be a lessor or a lessee
of the network infrastructure, and can act as both service and infrastructure
provider.

embed a VN already exist [14], [20], [7]. For example, some
solutions focus on the desirable property of letting infrastruc-
ture providers use their own (embedding) policies [7], while
others rely on truthfulness of virtual resource auctions [20].
Although they have systematic logic behind their design,
such distributed solutions are restricted to a subset of the
three virtual network embedding tasks, they have perfor-
mance (e.g. convergence speed or resource utilization) tightly
determined by the chosen heuristic, and they are limited
to a single distribution model — the type and amount of
information propagated to embed a VN. This is because their
heuristic design is tailored to specific provider goals, e.g.,
minimize the virtual node or path migrations, or maximize
the number of VNs to be hosted. Moreover, such heuristics
are also tailored to specific allocation models e.g., best
effort or dictated by a Service Level Agreement (SLA). In
summary, a VN embedding solution valid for all providers’
goals, that tackles all possible Service Level Objectives
(SLOs) — the technical requirements within an SLA —
probably cannot exist. Instead of designing new protocols in
response to new sets of provider’s goals, services, or SLAs,
the VN embedding problem may be holistically analyzed
and systematically solved as a distributed solution to some
global optimization, in the form of a general network utility
maximization problem. To this aim, in this paper we present
the following contributions:
Architecture and decompositions. We analyze the design
challenges in embedding a VN (Section II), and we use
decomposition theory [5] to construct an analytic foundation
for the tradeoff analysis of distributed embedding solutions.
Our architecture can be used to subsume existing solutions,
and to design novel VN embedding protocols by selecting
the appropriate variables to fix, when using a primal decom-
position, and the appropriate constraints to relax, when using
a dual decomposition. For example, primal decompositions
can be used to model different VN partitioning policies, 2 and
dual decomposition techniques to relax different constraints
isolating the three VN embedding mechanisms into differ-
ent architectural blocks (Section IV). Fixing the decision
variables associated with the virtual links is equivalent to
optimize the embedding of virtual nodes first, and the virtual
link embedding later as in [19]. As another example, by
optimizing the embedding of a given VN partition first, e.g.,
the partition with the highest virtual node and link capacities,

2The VN partitioning problem (or VN graph splitting) is the (NP-
hard [13]) problem of splitting a VN into multiple connected subsets of
virtual nodes and links.

and then the next partition, our architecture subsume the
heuristic used in [14]. Finally, solving the VN embedding by
applying primal and later dual decomposition is equivalent
to the approach used in [10]: a distributed VN embedding
protocol first partitions the VN, and then the prices on
virtual resources are exchanged among physical nodes so
that congested physical nodes pay a higher price to host a
virtual node of the partition.
Comparing different embedding policies. Using simula-
tions and a Linux-based VN embedding testbed [9], we
evaluate few key design tradeoffs for a set of representative
policy instantiations of our architecture. Tradeoffs include
message passing overhead against convergence speed of the
iterative methods used to solve the VN embedding problem
(modeled in Section II), and different VN partitioning poli-
cies (Section IV). Each infrastructure provider process of our
testbed includes the modules of a prototype implementation
of each of the three VN embedding mechanisms. Each
emulated virtual node is a user-level process that has its own
virtual Ethernet interface(s), created and installed with ip
link add/set, and it is attached to an Open vSwitch [16]
running in kernel mode to switch packets across virtual
interfaces (Section V).

II. MODEL AND DESIGN CHALLENGES

In this section we describe the VN embedding problem
as a general network utility maximization problem. Previous
models have used optimization theory to capture different
objectives and constraints of the VN embedding problem
(see e.g. [6], [13]). Our model captures all three mechanisms
of the VN embedding problem: resource discovery, virtual
network mapping, and allocation. We begin the section
defining such mechanisms and describing some of the chal-
lenges associated with designing a distributed VN embedding
solution.

Resource discovery is the process of monitoring the state
of the substrate (physical or overlay) resources using sensors
and other measurement processes. The monitored states in-
clude processor loads, memory usage, network performance
data, etc. The major challenge in designing a resource dis-
covery system is presented by the different VN’s arrival rates
and durations that the cloud provider might need to support:
the lifetime of a VN can range from a few seconds (in the
case of cluster-on-demand services) to several months (in the
case of a VN hosting a GENI [1] experiment looking for new
adopters to opt-in). In wide-area testbed applications, VNs
are provided in a best-effort manner, and the inter-arrival
time between VN requests and the lifetime of a VN are
typically much longer than the embedding time, so designers
may assume complete knowledge of the network state, and
ignore the overhead of resource discovery and the VN em-
bedding time. On the other hand, in applications with higher
churns, e.g., cluster-on-demand such as financial modeling,
anomaly analysis, or heavy image processing, where Service
Level Agreements (SLAs) require short response time, it is
desirable to reduce the VN embedding time, and employ
limited resource discovery to reduce overhead.

Virtual network mapping is the step that matches VN
requests with the available resources, and selects some subset
of the resources that can potentially host the virtual network.
Due to the combination of node and link constraints, this is
the most complex of the virtual network embedding tasks.
In fact the problem is NP-hard [8]. These constraints include
intra-node constraints (e.g., desired physical location, proces-
sor speed, storage capacity, type of network connectivity), as
well as inter-node constraints (e.g., VN topology).

Designing a VN mapping algorithm is also challenging.
Within a small enterprise physical network for example,
embedding virtual nodes and virtual links separately may be
preferable to adapt to the physical network load with minimal
virtual machine or path migrations [19]. If the goal is instead
to increase physical network utilization, virtual network
mapping solutions that simultaneously embed virtual nodes
and links may be preferable [6], [15]. The heuristic used
to partition the VN, that is the input of the VN mapping
algorithm, changes the space of solutions, the embedding
time, or both [9].

Allocation involves assigning (binding) one set of all
physical (or overlay) resources among all those that match
the VN query, to the VN. If the resource allocation step fails,
the matching step should be reinvoked. The allocation step
can be a single shot process, or it can be repeated periodically
to either assign or reassign different VN partitions, acquiring
additional resources on a partial VN that has already been
embedded (allocated).

The design challenges of the VN embedding are both
architectural, i.e., who should make the binding decisions,
and algorithmic, i.e., how should the binding occur. A
centralized third party provider can be in charge of or-
chestrating the binding process collecting information by
(a subset of) multiple infrastructure providers [13], [21],
[7], [19], or the decision can be fully distributed [10],
[14], [20], using a broker [11], an auction mechanism [20],
First Come First Serve [2], or maximizing some notion
of utility, of a single service provider [19] or of a set of
infrastructure providers [10]. In summary, the design space of
a VN embedding solution is large and unexplored, and many
interesting solutions and tradeoff decisions are involved in
this critical cloud resource allocation problem.

The design challenges are exacerbated by the interaction
among the three mechanisms (phases). The VN embedding
problem is in fact a closed feedback system, where the
three tasks are solved repeatedly; the solution at any given
iteration affects the space of feasible solutions in the next
iteration: the resource discoverer(s) return(s) a subset of the
available resources to VN mapper(s). Subsequently, a list
of candidate mappings are passed to the allocator(s), that
decide(s) which physical (or overlay) resources are going
to be assigned to each VN. After a successful binding, the
allocator processes communicate with the resource discovery
processes, so that future discovery operations are aware of
the unavailable resources.
Modeling Virtual Network Embedding. We model the
VN embedding problem with a network utility maximization

problem. In particular, we assume that Pareto optimality is
sought among physical nodes, possibly belonging to differ-
ent infrastructure or cloud providers. We maximize

∑
i Ui,

where Ui is a general utility function, measured on each
hosting node i. Such function could depend on one, or all
the VN embedding phases. In our model we assume that
a VN request j contains γj virtual nodes, and ψj virtual
links; hence, in order to embed j, the discovery system
needs to find at least γj hosting nodes (constraint 1a) and
ψj virtual links (constraint 1b) to give at least one candidate
to the VN mapper(s). We model the result of the discovery
mechanism with nPij and pkj , equal to one if the hosting node
i, and physical loop-free path k, respectively, were available,
and zero otherwise. An element is available if a discovery
operation is able to find it, given a set of protocol parameters,
e.g., find all loop-free paths within a given deadline, or
find as many available physical nodes as possible within a
given number of hops. Similarly, we model the VN mapping
mechanism with other two binary variables, nVij and lkj ,
equal to one if a virtual instance of physical node i and
physical loop-free path k, respectively, are assigned to the
VN request j, and zero otherwise. Constraints (1a) and (1b)
refer to the discovery, constraints (1c) and (1d) refer to
the VN mapping, while (1g) and (1h) are the standard set
packing problem constraints, and refer to the allocation, given
a physical node capacity Cni , and the capacity of each loop-
free physical path Clk. The VN embedding can be hence
modeled as follows:

maximize

Np∑
i=1

Ui(n
P
ij , pkj , n

V
ij , lkj , yj)

subject to
∑
i∈N

nPij ≥ γj ∀j (1a)∑
k∈P pkj ≥ ψj ∀j (1b)∑
i∈N

nVij = γj ∀j (1c)∑
k∈P

lkj = ψj ∀j (1d)

nVij ≤ nPij ∀i ∀j (1e)
lkj ≤ pkj ∀k ∀j (1f)∑
j∈J

nVijyj ≤ Cni ∀i (1g)∑
j∈J

lkjyj ≤ Clk ∀k (1h)

yj ≤ nVij ∀i ∀j (1i)
yj ≤ lkj ∀k ∀j (1j)

yj , n
P
ij , pkj , n

V
ij , lkj ,∈ {0, 1} ∀ i, j, k (1k)

Constraints (1e− 1f) and (1i− 1j) are called complicating
constraints, as they complicate the problem binding the three
mechanisms together; without those constraints, each of the
VN embedding mechanism could be solved separately from
the others, e.g., by a different architecture component.

The existential constraints (1k) could be relaxed in the
interval [0, 1]; in this case, the discovery variables could rep-

resent the fraction of available resources, while the mapping
and allocation variables could model partial assignments; it
is in fact feasible to virtualize a node on multiple servers,
and a link on multiple loop-free physical paths [19].

III. VIRTUAL NETWORK EMBEDDING
DECOMPOSITION ARCHITECTURE

Due to the rich structure of problem (1), many different
decompositions are possible. Each alternative decomposition
leads to a different distributed algorithm, with potentially
different desirable properties. The choice of the adequate
decomposition method and distributed algorithm for a par-
ticular problem depends on the infrastructure providers’
goals, and on the offered service or application. The idea
of decomposing problem (1) is to convert it into equivalent
formulations, where a master problem interacts with a set
of subproblems. Decomposition techniques can be classified
into primal and dual. Primal decompositions are based on
decomposing the original primal problem (1), while dual
decomposition methods are based on decomposing its dual.
In a primal decomposition, the master problem allocates the
existing resources by directly assigning to each subproblem
the amount of resources that it can use. Dual decomposition
methods instead correspond to a resource allocation via
pricing, i.e., the master problem sets the resource price for
all the subproblems, that independently decide if they should
host the virtual resources or not, based on such prices.

Primal decompositions are applicable to problem (1) by an
iterative partitioning of the decision variables into multiple
subsets. Each partition set is optimized separately, while the
remaining variables are fixed. For example, we could first
optimize the set of virtual node variables nVij in a node
embedding phase, fixing the virtual link variables lkj , and
then optimize the virtual links in a path embedding phase,
given the optimal value of the variables nVij , obtained from
the node embedding, as done in [10], [19]. Alternatively, a
distributed VN embedding algorithm could simultaneously
optimize both virtual node and virtual link embedding for
subsequent VN partitions, e.g., sorting first the partitions by
the highest requested virtual node and virtual link capacity, as
in [14]. Primal decompositions can also be applied with re-
spect to the three VN embedding mechanisms. For example,
by fixing the allocation variables, the embedding problem can
be solved by optimizing the discovery and VN mapping first
as in [7], or by optimizing the discovery variables nPij and
pkj first, and then simultaneously the mapping and allocation
variables later as in [17].

Dual decomposition approaches are based on decomposing
the Lagrangian function formed by augmenting the master
problem with the relaxed constraints. Even in this case, it
is possible to obtain different decompositions by relaxing
different sets of constraints, hence obtaining different dis-
tributed VN embedding algorithms. For example, by relaxing
constraints (1i) and (1j), we can model solutions that separate
the VN mapping and allocation phases, such as [11], [3].
Regardless of the number of constraints that are relaxed,
dual decompositions are different than primal in the amount

Master Problem
(Service Provider)

Release next VN Partition

Infrastructure Provider 1
Embedding VN Partition

Infrastructure Provider n Lagrangian
and

Subgradient
Exchange

Possible further
(e.g. Dual)

 Decomposition

(1) Master Policies
(2) Variables to Optimize (6) Optimized

 Variables

Decomposed Subproblem
Infrastructure Provider(s)

Solve Decomposition

(3) Decomposition Policies
(4) Variables to Optimize

(5) Optimized
 Variables

Embedding VN Partition

VN Request

Fig. 1. Decomposition-based virtual network embedding architecture:
different embedding solutions can be modeled via primal and dual decom-
positions. The service provider instantiates a problem formulation according
to its policies (1), and picks an objective function U (2). The infrastructure
provider processes solve the decomposed subproblems, possibly further
decomposing them (3-4). Finally, the optimal embedding variables are
returned to the service provider (5-6), that eventually releases the next VN.

of required parallel computation (all the subproblems could
be solved in parallel), and the amount of message passing
between one phase and the other of the iterative method. The
dual master problem communicates to each subproblem the
shadow prices, i.e., the Lagrangian multipliers, then each of
the subproblems (sequentially or in parallel) is solved, and
the optimal value is returned, together with the subgradients.
It is also possible to devise VN embedding solutions in which
both primal and dual decompositions are used.

In general, a service provider can instantiate a set of poli-
cies at the master problem, after receiving a VN embedding
request, dictating the order in which the variables need to
be optimized and on which VN partition. The subproblems
resulting from the decomposition can also instantiate other
sets of decomposition policies, to decide which variables
are to be optimized next, in which order, or even further
decomposing the subproblems (Figure 1).

IV. PRIMAL VERSUS DUAL DECOMPOSITIONS

In this section we analyze the tradeoffs between primal
and dual decompositions, for a simple VN embedding sub-
problem. We later use this case study to show the results
of a tradeoff analysis between optimality and speed of
convergence of the iterative method used by a CPLEX solver.
We consider a subproblem of problem (1): the virtual node
embedding problem, where the VN request is split in two
partitions. The problem can be formulated as follows:

max
u,v

cTu+ c̃T v

subject to Au ≤ b (2a)
Ãv ≤ b̃ (2b)

Fu+ F̃ v ≤ h (2c)

where u and v are the sets of decision variables referring to
the first and to the second VN partition, respectively; F and
F̃ are the matrices of capacity values for the virtual nodes
in the two partitions, and h is the vector of all physical

Procedure 1 Distributed Embedding by Primal Decomposition
1: Given zt at iteration t, solve subproblems to obtain

optimal embedding φ and φ̃ for each VN partition, and
dual variables λ?(zt) and λ̃?(zt)

2: Send/Receive φ, φ̃, λ? and λ̃?

3: Master computes subgradient g(zt) = −λ?(zt)+ λ̃?(zt)
4: Master updates resource vector zt+1 = zt − αtg

node capacity limits. The constraints (2a) and (2b) capture
the separable nature of the problem into the two partitions.
Constraint (2c) captures the complicating constraint.

Embedding by Primal Decomposition. By applying primal
decomposition to problem (2), we can separately solve two
subproblems, one for each VN partition, by introducing
an auxiliary variable z, that represents the percentage of
physical and virtual resource allocated to each subproblem.
The original problem (2) is equivalent to the following master
problem:

max
z

φ(z) + φ̃(z) (3)

where:
φ(z) = supu c

Tu (4a)
subject to Au ≤ b (4b)

Fu ≤ z (4c)

and
φ̃(z) = supv c̃

T v (5a)
subject to Ãv ≤ b̃ (5b)

F̃ v ≤ h− z. (5c)

The primal master problem (3) maximizes the sum of the
optimal values of the two subproblems, over the auxiliary
variable z. After z is fixed, the subproblems (4) and (5)
are solved separately, sequentially or in parallel, depending
on the cloud provider’s policy. The master algorithm up-
dates z, and collects the two subgradients, independently
computed by the two subproblems. To find the optimal z,
we use a subgradient method. In particular, to evaluate a
subgradient of φ(z) and φ̃(z), we first find the optimal
dual variables λ? for the first subproblem subject to the
constraint Fu ≤ z. Simultaneously (or sequentially), we find
the optimal dual variables λ̃? for the second subproblem,
subject to the constraint F̃ v ≤ h− z. The subgradient of the
original master problem is therefore g = −λ?(z) + λ̃?(z);
that is, g ∈ ∂(φ(z) + φ̃(z)).3 The primal decomposition
algorithm, combined with the subgradient method for the
master problem is repeated, using a diminishing step size,
until a stopping criteria is reached (Procedure 1). The
optimal Lagrangian multiplier associated with the capacity
of the physical node i, −λ?i , tells us how much worse
the objective of the first subproblem would be, for a small
(marginal) decrease in the capacity of the physical node i.
λ̃?i tells us how much better the objective of the second
subproblem would be, for a small (marginal) increase in the
capacity of physical node i. Therefore, the primal subgradient

3For the proof please refer to §5.6 of [5].

Procedure 2 Distributed Embedding by Dual Decomposition
1: Given λt at iteration t, solve the subproblems to obtain

the optimal values u? and v? for each VN partition
2: Send/Receive optimal node embedding u? and v?

3: Master computes the subgradient g = Fu? + F̃ v? − h
4: Master updates the prices λt+1 = (λt − αtg)+

g(z) = −λ(z) + λ̃(z) tells us how much better the total
objective would be if we transfer some physical capacity of
physical node i from one subsystem to the other. At each step
of the subgradient method, more capacity of each physical
node is allocated to the subproblem with the larger Lagrange
multiplier. This is done with an update of the auxiliary
variable z. The resource update zt+1 = zt − αtg can be
interpreted as shifts of some of the capacity to the subsystem
that can better use it for the global utility maximization.

Embedding by Dual Decomposition. An alternative method
to solve problem (2) is to use dual decomposition, relaxing
the coupling capacity constraint (2c). From problem (2) we
form the partial Lagrangian function:

L(u, v, λ) = cTu+ c̃T v + λT (Fu+ F̃ v − h) (6a)

Hence, the dual function is:
q(λ) = inf

u,v
{L(u, v, λ)|Au ≤ b, Ãv ≤ b̃} (7a)

= −λTh+ inf
Au≤b

(FTλ+ c)Tu+ inf
Ãv≤b̃

(F̃Tλ+ c̃)T v,

and the dual problem is:
max
λ

q(λ) (8a)

subject to λ ≥ 0,

We solve problem (8) using the projected subgradient
method [5]. To find a subgradient of q at λ, we let u? and
v? be the optimal solutions of the subproblems:

u? = max
u

(FTλ+ c)Tu (9a)

subject to Au ≤ b (9b)

and
v? = max

v
(F̃Tλ+ c̃)T v (10a)

subject to Ãv ≤ b̃ (10b)

respectively. Then, the infrastructure provider processes in
charge of solving the subproblems send their optimal values
to the master problem, so that the subgradient of the dual
function can be computed as:

g = Fu? + F̃ v? − h. (11)

The subgradient method is run until a termination condition
is satisfied (Procedure 2); the operator (·)+ denotes the non-
negative part of a vector, i.e., the projection onto the non-
negative orthant.

At each step, the master problem sets the prices for the
virtual nodes to embed. The subgradient g in this case repre-
sents the margin of the original shared coupling constraint.
If the subgradient associated with the capacity of physical

node i is positive (gi > 0), then it is possible for the two
subsystems to use more physical capacity of the physical
node i. The master algorithm adjusts the price vector so that
the price of each overused physical node is increased, and
the price of each underutilized physical node is decreased,
but never negative.

V. EMBEDDING POLICIES EVALUATION

Using both simulations and our downloadable Linux-based
embedding testbed, detailed in Chapter 6 of [9], we evaluate
few representative decomposition policies of our architecture.
Simulation results. Our simulations use a CPLEX solver to
analyze the tradeoff between optimality and the speed of
convergence of the primal and dual decompositions solved
by the iterative methods described in Procedures 1 and 2.
We embed a typical VN request of 50 virtual nodes onto
a physical network overlay of 10 physical (hosting) nodes.
These values are picked as average of an 8-year dataset of
real VN embedding requests to the Emulab VN testbed [18].
The dataset is described in Chapter 4 of [9]. Since we
can always embed a VN leaving no residual capacity on
the hosting nodes, the Slater condition [5] is satisfied for
Problems (3) and (8). This means that there is no duality gap,
but it is not desirable to wait for the optimal node embedding
when the improvements relative to the previous iterations are
small. Hence, using a diminishing step size rule α = 0.5/t,
where t is the iteration step, we stopped our simulations after
t = 100 (Figures 2a and b). We note that the solutions found
using a dual decomposition policy reduces faster its duality
gap, at the expense of a longer convergence time.
Prototype evaluation. We also study the impact of the VN
partitioning policy in a primal decomposition, using our
VN embedding testbed. Our system is a host running an
Ubuntu distribution of Linux (v.12.04). A physical network
overlay is emulated via TCP connections on the host loop-
back interface. Each emulated virtual node is a user-level
process that has its own virtual Ethernet interface(s), created
and installed with ip link add/set, and attached to
an Open vSwitch [16] running in kernel mode to switch
packets across virtual interfaces. A virtual link is a virtual
Ethernet (or veth) pair, that acts like a wire connecting
two virtual interfaces, or virtual switch ports. Packets sent
through one interface are delivered to the other, and each
interface appears as a fully functional Ethernet port to all
system and application software. The data rate of each virtual
link is enforced by Linux Traffic Control (tc), which has a
number of packet schedulers to shape traffic to a configured
rate. During our experiments, the Ubuntu image was hosted
on a VirtualBox instance within a 2.5 GHz Intel Core i5
processor, with 4GB of DDR3 memory. We use the Google
Protocol Buffer [12] as a specification language to define
constrained VN requests. We analyze the impact that a
partitioning policy has on both the allocation ratio, i.e., the
ratio between VN allocated on the physical network and
requested, and the overhead, i.e. the signaling required to
run a distributed VN embedding algorithm using a primal
decomposition.

0 20 40 60 80 100

10
−4

10
−2

10
0

Iteration t

O
p
ti

m
al

it
y
 G

ap

Primal

Dual

(a)

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

Iteration t

C
o
n
v
er

g
en

ce
 T

im
e

[s
]

Dual

Primal

(b)

0 5 10 15

0.2

0.4

0.6

0.8

1

Virtual Network Size [# of Virtual Nodes]

V
N

 A
llo

ca
tio

n
R

at
io

Single Partition
Nv/2 Partitions

(c)

2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

SAD
MAD

Virtual Network size [# vnodes]

O
ve

rh
ea

d
[K

B
]

Nv/2 Partitions
MSingle Partition

(d)
Fig. 2. (a-b) Simulations. Using a diminishing step size rule αt = 0.5/t to complete the first 100 iterations, a node embedding solved by dual
decomposition leads to a smaller duality gap (a), at the expense of a longer convergence time. (c-d) Prototype evaluation. In a primal decomposition,
partitioning a VN resulted in a lower VN request allocation ratio, leading to lower cloud revenue (c), and to higher signaling overhead (d).

We attempt to embed 100 VNs, with a random topology
(virtual link exists with probability p = 0.5), on a fully
connected physical network of 5 physical nodes. We run the
emulation without partitioning the VN, and with a partition-
ing policy of Nv/2, where Nv is the number of requested
virtual nodes. In contrast with recent VN embedding solu-
tions [13], that propose VN partitioning as a necessary step
for provisioning a VN, we found that, under the described
settings, partitioning a VN not only increases the signaling
overhead (Figure 2d), but decreases the VN allocation ratio,
and therefore the provider revenue (Figure 2c). Intuitively,
this is because connecting embedded partitions unbalance
the physical network load, reducing the space of feasible
solutions for future VN requests. By exploring the parameter
space, we also found that partitioning may lead to higher
VN allocation ratios if the physical network is linear (results
not shown). Note that even when a VN is not partitioned,
the distributed iterative method used for either primal or
dual decompositions implies a message passing between the
master and the dual subproblems. Partitioning a VN means
running such iterative method multiple (Nv/2) times, but on
problems with smaller input size.

VI. CONCLUSIONS

The virtual network (VN) embedding protocol is one of the
crucial, yet not standardized protocols that cloud providers
need to run in support of wide-area virtualization-based
services. In this paper, we proposed an architecture that
leverages decomposition theory to provide insights into a
systematic design of distributed VN embedding solutions.
We model the three interacting mechanisms of the virtual
network embedding problem —physical resource discovery,
virtual network mapping, and allocation— with separate
subproblems, interfaced with the optimization variables that
coordinate each subproblem. Using both simulations and our
VN embedding prototype, we showed how our architecture
can be used to analyze key VN embedding protocol design
tradeoffs. Using our CPLEX-based simulator, we found how
some decompositions may lead to quicker reduction of
the optimality gap, at the expense of a slower speed of
the distributed iterative method. Furthermore, we used our
Linux-based VN embedding testbed to assess the impact of
different VN partitioning policies for primal decompositions,
under two performance metrics: the VN allocation ratio, and
the signaling overhead. Our use case study demonstrates how

our architecture can be used to design customized distributed
VN embedding solutions by policy instantiation.

REFERENCES

[1] The GENI initiative http://www.geni.net.
[2] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson. Design

and Implementation Trade-offs for Wide-area Resource Discovery.
ACM Transaction Internet Technologies, 8(4):1–44, 2008.

[3] AuYoung, Chun, Snoeren, and Vahdat. Resource Allocation in
Federated Distributed Computing Infrastructures. In Proc. of Workshop
on OS and Arch. Support for the On demand IT Infrastr., October 2004.

[4] B. Azer and K. Orran. Towards an Open Cloud Marketplace: Vision
and First Steps. In IEEE Internet Computing Magazine, Jan 2014.

[5] S. Boyd and L. Vandenberghe. Convex Optimization.
http://www.stanford.edu/people/boyd/cvxbook.html, 2004.

[6] M. Chowdhury, M. R. Rahman, and R. Boutaba. ViNEYard: Virtual
Network Embedding Algorithms with Coordinated Node and Link
Mapping. IEEE/ACM Trans. Netw., 20(1):206–219, Feb. 2012.

[7] M. Chowdhury, F. Samuel, and R. Boutaba. PolyViNE: Policy-Based
Virtual Network Embedding Across Multiple Domains. SIGCOMM
VISA ’10 Workshop, pages 49–56, New York, NY, USA, 2010. ACM.

[8] B. Chun and A. Vahdat. Workload and Failure Characterization on
a Large-scale Federated Testbed. Technical report, IRB-TR-03-040,
Intel Research Berkeley, 2003.

[9] F. Esposito. A Policy-based Architecture for Virtual Network Embed-
ding. PhD thesis, Computer Science Department, Boston University.
Technical Report CS-TR-2013-012, Sept. 2013.

[10] F. Esposito, D. Di Paola, and I. Matta. A General Distributed Approach
to Slice Embedding with Guarantees. In Proc. of the IFIP Networking,
Brooklyn, NY, USA, 2013.

[11] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An
Architecture for Secure Resource Peering. SIGOPS Operating System
Review, 37(5):133–148, 2003.

[12] Google Protocol Buffer. Developer Guide http://code.google.
com/apis/protocolbuffers/, 2010.

[13] I. Houidi, W. Louati, W. Ben Ameur, and D. Zeghlache. Virtual
Network Provisioning across Multiple Substrate Networks. Computer
Networks, 55(4):1011–1023, Mar. 2011.

[14] I. Houidi, W. Louati, and D. Zeghlache. A Distributed Virtual
Network Mapping Algorithm. In IEEE International Conference on
Communications (ICC), pages 5634 –5640, May 2008.

[15] J. Lischka and H. Karl. A Virtual Network Mapping Algorithm
based on Subgraph Isomorphism Detection. VISA, ACM SIGCOMM
Workshop, 17 August 2009.

[16] Open Virtual Switch. http://www.openvswitch.org.
[17] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and

Implementation Tradeoffs for Wide-Area Resource Discovery. HPDC,
High Performance Distributed Computing, 2005.

[18] B. e. a. White. An Integrated Experimental Environment for Dis-
tributed Systems and Networks. SIGOPS Oper. Syst. Rev., 36(SI):255–
270, 2002.

[19] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking Virtual Net-
work Embedding: Substrate Support for Path Splitting and Migration.
SIGCOMM Comput. Commun. Rev., 38(2):17–29, 2008.

[20] F. Zaheer, J. Xiao, and R. Boutaba. Multi-provider Service Negotiation
and Contracting in Network Virtualization. In IEEE Network Oper.
and Management Symposium (NOMS), pages 471 –478, April 2010.

[21] Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford. Cabernet:
Connectivity Architecture for Better Network Services. CoNEXT,
pages 64:1–64:6. ACM, 2008.

