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Abstract 
The aim of this paper is to look at the deficiencies of the current Internet architecture, consider a deeper 
understanding on why the current architecture is failing to provide solutions and contrast the traditional beliefs 
on networking with new ones, coming from a network architecture based on the fundamentals. First, we briefly 
introduce the early history of packet-switched networking to provide the reader with background for the 
discussion that follows. We highlight the main issues that the current Internet faces and expose the architectural 
decisions that lead to these problems. Next, we present RINA (Recursive InterNetwork Architecture), a network 
architecture based on fundamentals among which is that networking is interprocess communication and only 
IPC. We show the fundamental principles from which RINA is derived, the core elements of the architecture and 
give a simple example of communication. The adoption of RINA as the architecture for the future networks 
would enable enhanced security, inherent support for quality of service, mobility, multi-homing, offer new 
market opportunities and decrease the complexity of the current technology by an order of magnitude.   
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1. Introduction 
Although the ARPANET created the foundation upon which today’s Internet is built, many of the Internet’s 
problems today have their roots in the ARPANET’s limited design. ARPANET’s goal was to develop the first 



  

 

GUIDELINES 
–FORMATTING INSTRUCTIONS FOR FINAL PAPERS FOR PUBLICATIONS 

GUIDELINES 
Page 2/12 
6 October 2010 

distributed packet-switching network technology. As with any first effort not all problems could be tackled, nor 
was it expected that to get all of them right and some shortcuts would be necessary, the primary focus was to get 
as much right as possible with something that worked.  And it worked incredibly well!  But it did not take long 
for problems to reveal themselves. Despite this, the architecture of the TCP/IP protocol suite adopted the same 
principles. Today’s Internet faces well-known problems, which prove that the Internet suffers from its 
inheritance. In this paper we first explore the origins of the current Internet architecture by briefly examining the 
history of packet-switching networks. Then, we review the shortcomings and the problems we are currently 
facing. We argue that the inability to provide answers to these challenges derives from architectural decisions in 
the primary design of the Internet that follow the structure to our days. Next, we present RINA (Recursive 
InterNetwork Architecture), an architecture based on the fundamentals. We introduce the principles behind 
RINA, review RINA’s response to the hot networking issues and highlight the advantages that make it a strong 
candidate architecture for the future Internet. 
 
 
2. Origins 
The story is well-known: In 1969 the first computer was connected to the ARPANET’s IMP (Interface Message 
Processor) at the University of California at Los Angeles (UCLA) and on October 29th sent the first packets on 
the ARPANET to Stanford Research Institute, putting in operation the world’s first packet-switched network. In 
the ARPANET the hosts were connected to the network through IMPs, the first generation of today’s routers. 
The IMPs provided a reliable packet delivery service to the hosts attached to the network. A host’s address was 
the number of the IMP it was connected to, concatenated with the IMP port number that attached the host to the 
network [8]. The software residing in the hosts was the NCP (Network Control Program), which was the first 
host-to-host communications protocol. NCP provided a standard method to establish reliable, flow-controlled, bi-
directional communication links among applications running in different hosts. The applications supported were 
three, Telnet, FTP and RJE. 
 
In 1972 the French research network, CYCLADES, the world’s first datagram network [9, 10], was created 
under the direction of Louis Pouzin. CYCLADES was built in IRIA (Institut de Recherche d' lnformatique et 
d'Automatique), today’s INRIA. The purpose of the CYCLADES project was to create a testbed for further 
experimentation on packet switching and routing. The CYCLADES network embodied for the first time concepts 
such as best effort service with unreliable out of order delivery service and end-to-end error recovery in the 
hosts. In addition, there was clear splitting of the transport and network functions, internetwork communication, 
hierarchical addressing, and the use of a dynamic sliding window mechanism. It also included early 
conceptualization of layers, ideas for a congestion control scheme and architectural support for multi-homing and 
mobility. In the meantime, as ARPANET expanded, it became clear that NCP would be incapable of keeping up 
with the growth of the network. In 1974, a new, more robust suite of communications protocols was proposed 
and experimentation began throughout the ARPANET, based upon the Transmission Control Protocol (TCP) for 
end-to-end network communication. In 1978 a new design split responsibilities between a pair of protocols; the 
new Internet Protocol (IP) for routing packets and device-to-device communication and TCP for reliable, end-to-
end host communication. On January 1, 1983, the switch to TCP was mandated with NCP being turned off. The 
Internet’s first and last flag day. The core idea behind TCP/IP was to develop a protocol that allowed the 
interconnection of several packet switched networks of different technologies. The design of the network 
included the recognition that it should provide only the functions of efficiently transmitting and routing traffic 
between end nodes and that all other intelligence should be located at the edge of the network, in the host nodes. 
Although undoubtedly CYCLADES was an innovative and groundbreaking project, it was forced to shut down. 
A virtual circuit service is more directly marketable, not requiring substantial modifications to customers' host 
computers. For this reason, the French PTTs decided to promote Reseau a Commutation par Paquets (RCP), an 
experimental packet switched network based on virtual circuit connection [17, 18]. 
 
The TCP/IP protocol suite came later to satisfy the growing needs of a developing network. It adopted some 
ideas found in ARPANET and CYCLADES but also inherited some design principles that proved to be 
problematic with time. The inability to provide answers to major problems today stems from these principles. 
 
 
3. Problems looking for an answer 
The main issues of todayʼs Internet are the inability to provide security, multi-homing, and Quality of Service, 
the address space exhaustion, the complexity in providing mobility, the increasing size of the router tables and 
the poor utilization of available resources. 
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Network security is one of the most active research areas today and a great deal of research effort and investment 
has gone into improving the security of the Internet, however being only partially successful. The list of threats is 
long; DoS attacks, unwanted information (spamming), trojans, viruses, impersonation, frauds, port-scanning, 
phishing and other malicious behaviours exist, while new vulnerabilities are discovered every day, despite of the 
numerous security mechanisms developed.  It is generally accepted that the “bad guys” have the upper hand in 
the cyber-security arms race. 
 
An increasing number of nodes in the network need to be multi-homed, i.e., to be connected with more than one 
connection to the network at the same time. With the strong dependence on the Internet by even modest sized 
businesses, the turn to multi-homing in order to increase the reliability level of their businesses by avoiding the 
single point of failure network connectivity is reasonable. There are also cases in which multi-homing serves as a 
load-balancing solution, balancing the traffic across the multiple connections. Whatever the approach, multi-
homing is one of the desired characteristics of the network that the current architecture provides with added 
complexity. The need of today’s business and commercial make this requirement more critical. However, multi-
homing had been a requirement from the first days of the ARPANET. 
 
Modern applications such as real-time streaming multimedia, Voice over IP, safety-critical applications and 
others have unique requirements and restrictions in parameters like bandwidth, delay, loss, jitter and error 
probability. The existence of mechanisms to support QoS and provide service guarantees in today's network 
becomes vital. Shifting from a small research network to a business tool, the current architecture does not 
provide mechanisms to support QoS in a large scale but only in small, dedicated networks, since there is no 
inherent mechanism in the architecture that can be used to deliver service under specific guarantees throughout.  
 
The IANA Central IPv4 Registry was exhausted in January 2011 [11]. That was the first milestone of the IPv4 
address pool depletion. Now the regional registries will start to run out and sometime later in 2011, according to 
the estimates by the end of the summer, there will be no more IPv4 public addresses to allocate. IPv6, by 
changing the address length from 32-bits to 128-bits, is bringing the solution to the inevitable depletion of the 
pool of unallocated IPv4 addresses. However, for most of us the migration process to IPv6 has not even started, 
as there is no adequate support to make the transition. Another issue is that no one is willing to pay the IPv6 
upgrade cost. 
 
The proliferation of mobile phones, laptops and other mobile devices undoubtedly makes mobility one of the 
most important requirements of the future Internet. Mobility can be seen as a dynamic version of multi-homing 
with expected failures, which means that any architecture that is able to provide multi-homing, will be also able 
to provide mobility without the need of any extra protocols. Currently mobility of applications is supported for 
specific hand-off scenarios (e.g. the mobile node connects to a new access point (AP) that is under the same 
domain as the old AP), while in most of the cases it is not possible to provide seamless mobility; low 
performance, long delay and frequent disconnections result in degradation of the service perceived by the user. 
IP comes with Mobile IP protocol that achieves mobility with some extra cost and overhead. 
 
While Classless InterDomain Routing (CIDR) arrested router table growth for awhile, increased demand for 
multi-homing is driving combinatory or exponential growth currently.  Because the memory needed for the 
tables is not on the Moore’s Law curve, this has become a crisis.  At present, no scalable solutions have been 
found in the current architecture. By increasing the IP address to 128 bits, the new generation Internet protocol, 
IPv6 solves the apparent address space exhaustion problem. However, IPv6 poses a serious requirement to the 
router’s control planes: an IPv6 prefix consumes four times more memory in a router than an IPv4 prefix and 
requires more computing power for convergence of routes. This fact, compounded with the multi-homing issue 
and the advent of the Internet of Things billions of sensors, smart-meters and devices directly connected to the 
Internet may lead to routers not being able to converge on the calculations of the BGP routing tables, causing 
routing instabilities and ultimately an Internet far less reliable than today. 
 
Another problem is that there are cases in which the current technology is failing to take advantage in the best 
way possible of the available resources. An example is the behaviour of the congestion control mechanisms in 
TCP over heterogeneous networks. Wireless links exhibit characteristics much more different from the wired 
ones; in wireless channels high error and loss rates are the norm. TCP interprets the losses that happen due to the 
nature of the transmission medium as losses coming from congestion in the network. As a result, the congestion 
control mechanisms are triggered, forcing a reduction in the TCP window and degradation in performance.  
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4. Architectural choices that lead to problems 
It is our belief that the difficulty to find solutions for the afore-mentioned problems stems from specific 
architectural principles that the Internet carries from the 1970’s. These are: 
 
Incomplete naming schema The current Internet architecture does not provide separate names for the basic 
entities in the architecture: nodes, points of attachment to the network (PoAs) and applications. The only names 
provided are PoA names (IP addresses). Although commonly referred to as “host addresses” are in fact interface 
addresses. This defect originates in the ARPANET’s design where host addresses were named after the IMP port 
number (interface). The result is that the network has no means to understand that two or more IP addresses of a 
multi-homed node belong to the same node, making multi-homing hard to realize. The same choice, naming the 
interface and not the node, forces the Internet to perform routing on the interface level contributes to much 
bigger routing tables than necessary. While the problem became apparent very soon, in 1972, when Tinker Air 
Force Base in Oklahoma joined the Net and wanted two connections for reliability, it was never changed. 
Mobility, which can be seen as dynamic multi-homing, is the next feature that suffers from having an incomplete 
naming schema. Numerous other problems arise as well when more sophisticated distributed applications are 
attempted beyond the trivial client-server schemes.  It should be noted that every other network architecture 
(XNS, CYCLADES, DECNET, OSI, etc) developed in the 1970s and 80s avoided this problem. 
 
In 1982, Jerry Saltzer in his work “On the Naming and Binding of Network Destinations” [7] documented what 
XNS and CYCLADES were doing, noting the entities and the relationships that make a complete naming and 
addressing schema in networks. According to Saltzer there are four elements that need to be identified: 
applications, nodes, points of attachment to the network (PoAs) and paths. A service can run to one or more 
nodes and should be able to move from one node to another without losing its identity in the network, as in 
Operating Systems where file names should not change if stored on a different disk. However, Saltzer failed to 
notice that because nodes can have more than one path to the same next hop routing has to be on the node to 
prevent a combinatorial explosion. XNS and CYCLADES did not make this error because they simply routed on 
the address in the layer doing the relaying. As illustrated in Figure 1, a directory maps an application name to a 
node address, routes are sequences of nodes addresses and paths result from mapping the node addresses to PoAs 
of nearest neighbours. In this way, routing is a two-step process: First, we have to calculate the route, which is a 
sequence of node addresses and then, for each hop choose the appropriate PoA to select the specific path to be 
traversed. Although, clearly CYCLADES and XNS had complete naming and addressing schema, the TCP/IP 
protocol suite followed the ARPANET approach, causing many of the problems of today’s Internet. An analogy 
would be to an operating system with only physical addresses and applications named by macros for jump points 
in low memory addresses. 
 

 
Figure 1 Saltzer’s point of view for a complete naming and addressing schema. 

 
Table 1 shows the components of the naming and addressing schema that the current Internet architecture has, 
compared to other Internetwork architectures that have existed over the years. As it becomes apparent, all the 
architectures except TCP/IP had already figured out what was the solution to support multi-homing and mobility, 
going back as far as 1973 in the case of CYCLADES. This is evidence that perhaps TCP/IP did not become the 
“de facto” standard for packet networking because it was the best technical solution, but due to other factors [5], 
a choice that causes many of the problems of today’s Internet. 
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 ARPANET TCP/IP CYCLADES XNS DECNET OSI 

Application 
names No No Yes Yes Yes Yes 

Node 
addresses No No Yes Yes Yes Yes 

PoA address Yes 

Yes, twice 
(IP address 
and MAC 
address) 

Yes Yes Yes Yes 

 
Table 1 Different packet network architectures and their naming and addressing schema 

 
Bad choices for names Saltzer [7] underlines the importance of choosing the right properties for the names of 
the elements of a network. Application names should be location-independent, while node names should be 
location-dependent. Location-independent names for applications would allow the applications to move inside 
the network. Location-dependent names for nodes would result in more efficient routing and smaller routing 
tables. Having in mind a network graph, the location-dependent property does not denote geographical proximity 
(spatial distance) but closeness in terms of reachability. Another property is choosing hierarchical names that can 
form a tree structure. The prefix in a name should give a clue where we can find the children names that share 
the same prefix, allowing searching for a name in a more efficient manner. An unforeseen consequence of a 
complete naming and addressing scheme is that there is no need for addresses of global scope, the address space 
exhaustion would not be considered an issue any more. It also becomes clear that a global application name 
space may be useful, but is not required. Choosing carefully the properties of the names for applications, nodes 
and PoAs could solve several problems. 
 
No indirection The current Internet does not have any form of directory that maps application names to nodes. 
DNS (Domain Name System) is the only directory-like service in the current Internet, and it only provides 
synonyms for IP addresses that, as seen before, are just Point of Attachment addresses. As a consequence, the 
most used structure today for naming applications, URIs and URLs (Universal Resource Identifiers and 
Universal Resource Locators), use the IP address (or the domain name, a synonym) and socket port number as 
part of the application name. This way of naming applications defines a static binding between layers: The 
application name tells you that the application is executing on a given interface of a given node, and using a 
given socket to connect to it. The problems that this causes are: 

• Application developers (and application users) have to know where the instances of applications are 
executing. 

• If any of the parameters embedded in the application name changes (IP address of the interface or 
domain name, socket port number), the application name changes, making multi-homing and mobility 
very cumbersome to support. 

 
If the application name space was completely independent of the network addresses and the network provided a 
Directory function, application developers and users could communicate to any instance of an application by just 
knowing its name, not its location. 
 
Security is missing The current Internet lacks a security architecture of any kind.  In particular, there is no 
means to prevent any application (including the network protocol stack) from connecting to any other application 
without permission. A policy associated with this mechanism should determine the authentication algorithm used 
according to the security level required for the specific application. Over the years, several protocols have been 
introduced at various layers of the Internet in order to improve its security, but, as reported in [6], “experience 
has shown that it is difficult to add security to a protocol suite unless it is built into the architecture from the 
beginning”. Although it was clearly an experimental network, the absence of such a mechanism from the 
ARPANET seems strange when you consider that it was originally designed for the Department of Defence of 
US. This defect, along with the exposed addresses that anyone can see and the use of the well-known ports 
impose security risks. 
 
Only best effort Another shortcoming of the current Internet architecture is that there is no built-in mechanism 
that allows the network to provide specific QoS (Quality of Service) levels. No interface for applications to 
request it, despite of the development of several real-time applications that require some minimal level of 
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resources to operate effectively. The current architecture can provide only end-to-end best effort service, as it 
treats all packets the same way, providing a single level of service. The Integrated Services (IntServ) [12] model 
was the first attempt to enhance the Internet with QoS capabilities. The main problem with IntServ was 
scalability. IntServ requires from each router along the path to store the states of each flow (reservation) and 
several concerns about the scalability of the model arose. In practise, IntServ can work on a small scale but not 
for a system with the scale of the Internet. The Differentiated Services model (DiffServ) [13] was another 
proposal, which is based on traffic classification into classes of different QoS requirements. DiffServ provides a 
framework to allow the classification and the differentiated treatment of the traffic. However, how the individual 
routers treat the different types of service is not specified, making the end-to-end behaviour impossible to 
predict.   
 
Perception of layers A layered approach is required to design a network architecture, as it provides the ability to 
hide information when it is not needed and abstract the details. The current Internet architecture uses layers, with 
every layer having the responsibility of a different function. A consequence of this perception of layers is that the 
current architecture lacks a mechanism to provide different configurations over different physical media 
according to the requirements of each application. As we mentioned before, TCP acts on global scope on 
heterogeneous paths and congestion control mechanisms are triggered regardless of the nature of the physical 
media. This example shows the need for further configuration and points to an architecture of layers that perform 
the same functions, but configured differently, over different scopes. Under this new definition of a layer, we 
could manage heterogeneous paths by having a layer to manage a wired network, another layer could manage a 
wireless network, and a layer on top of them managing the end to end inter-network. In addition, the same 
architectural decision of the current Internet resulted in a large number of protocols that provide similar functions 
under different configuration in different layers of the network stack. The result is the so-called layer violations 
inside the “protocol hourglass”.  
 
 
5. RINA 
5.1 Introducing RINA 
Reviewing the deficiencies of the current Internet, it becomes apparent that the inability to provide answers to 
these challenges stems architectural decisions in the primary design of the TCP/IP protocol suite. In the 
following paragraphs, we present RINA (Recursive InterNetwork Architecture), an architecture proposed by 
John Day in his book “Patterns in Network Architecture: A return to fundamentals” [1, 3]. RINA leverages many 
of the lessons learned by previous network architectures such as CYCLADES, and brings them one step further 
by identifying that networking can be seen as a set of recursive layers that provide distributed inter-process 
communication services over different scopes. The resulting architecture is surprisingly simple compared to 
today’s protocol complexity and provides a structure that allows network designers to solve the problems 
identified in the current Internet.  
 
5.2 Main principles 
RINA is based on the view that networking is only inter-process communication (IPC). The core element of the 
architecture is a Distributed IPC Facility (DIF), which is simply used to group cooperating application processes 
into manageable sub-networks, which are configured through policies. Any two application processes in different 
systems are able to communicate using the services provided by a DIF and DIFs of higher levels are able to use 
the services provided by DIFs of lower levels, forming a recursive structure. A DIF can be seen as a layer, but 
not in the same sense as in the TCP/IP architecture. In RINA all layers use the same protocols to perform a 
coordinated set of policy managed mechanisms and achieve the desired IPC service, matching in the best way 
possible the requirements of the user application.   
  
5.3 An example of the RINA architecture 
Figure 2 depicts an example of the RINA architecture with three levels of DIFs. Each layer (illustrated in a 
different pattern in the figure) provides IPC services over a limited scope. The first level of DIFs operates on top 
of the physical media and its policies are optimized to deal with the characteristics of the physical medium. This 
first level of DIFs provides IPC services to the second level of DIFs, the second to the third and so on. In RINA 
only three types of systems exist: hosts, border routers and internal routers. There is no need for the middle boxes 
of today such as firewalls, NATs and others. 
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Figure 2 An example of RINA architecture with 3-levels of DIFs. 

 
5.4 Zooming into an IPC application process 
Each IPC process executes routing, transport, security/authentication and management functions. The 
components of an IPC process responsible for providing these functions can be categorized under three main 
categories, IPC API, IPC Data Transfer and IPC Management. The behaviour of each component of the IPC 
process can be configured via policy. A graphical representation of the components of an IPC application process 
can be seen in Figure 3. 
 

 
Figure 3 Components of an IPC process. 

 
IPC API 
Each IPC application provides an API to the client layer that uses the IPC services provided. The service 
provided by a DIF to the applications above is referred to as a flow. The IPC API provides four operations: 
• allocate - Allocates resources to support a flow between source and destination application processes with a 

certain quality of service. A port-id is returned as a handle for the allocation.  
• send - Sends an amount of data to the destination application process on the specified port. The amount of 

data passed across two layers to be transferred to the destination is referred to as a Service Data Unit (SDU). 
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An SDU may be fragmented or combined with other SDUs. 
• receive - Receives an SDU from the destination application process on the specified port.  
• deallocate - Terminates the flow and frees all the communication resources allocated to it.  
 
IPC Data Transfer 
The IPC Data Transfer consists of the SDU Delimiting task, the Error and Flow Control Protocol (EFCP), the 
relaying and multiplexing tasks and the SDU protection task: 
• SDU Delimiting - Mechanisms used to indicate the beginning and the end of SDUs. Delimiting can be done 

using a special bit pattern to denote the start and the end of the SDU or using a length field in the Protocol 
Control Information (PCI/header) that can be used to calculate the end of the SDU. 

• Error and Flow Control Protocol (EFCP) - A data transfer protocol based on Delta-t [14]. EFCP is split 
into two independent protocol machines (DTP and DTCP), loosely coupled through a state vector. The Data 
Transfer Protocol (DTP) machine implements the mechanisms that are tightly coupled to the transported 
SDU, such as fragmentation, reassembly, sequencing, concatenation and separation. The Data Transfer 
Control Protocol (DTCP) machine implements the mechanisms that are loosely coupled to the transported 
SDU, such as transmission control, retransmission control and flow control. The string of octets exchanged 
between two protocol machines is referred to as Protocol Data Unit (PDU). PDUs comprise of two parts, 
Protocol Control Information (PCI) and user data. PCI is the part understood by the DIF, while the user data 
is incomprehensible to the DIF and is passed to its user. 

• Relaying Task - The role of this task is to forward the PDUs passing through this IPC process to the 
destination Protocol Machine (PM) by checking the destination address in the PCI. 

• Multiplexing Task - Mapping of the flows of PMs belonging to a higher layer onto flows of PMs belonging 
to a lower layer. 

• SDU Protection - Mechanisms to protect the SDU from byte errors and to provide confidentiality and 
integrity. Mechanisms such as Data Corruption Protection, checksums, hop count, Time To Live and 
encryption are included. 

 
IPC Management 
The IPC Management consists of the Flow Allocator component, authentication mechanisms, the Common 
Distributed Application Protocol (CDAP), the Resource Allocation, the Resource Information Base (RIB) and 
the RIB Daemon: 
• Flow Allocator - A component responsible for responding to allocate/deallocate requests and for managing 

each new flow that passes through this IPC process. 
• Authentication - Security related functions such as authentication, access control and protection against 

tampering and eavesdropping by the lower layers. 
• Common Distributed Application Protocol - The application protocol, similar to an assembly language 

used to build all the distributed applications. CDAP is a descendant of common management information 
protocol (CMIP) [19, 20] and allows performing operations on objects such as read, write, create, delete, 
start and stop. 

• Resource Allocator - A component that manages resource allocation and monitors the resources in the DIF 
by sharing information with other IPC processes and observing the performance of supporting DIFs. 
Routing and other layer management functions that feed into the Resource Allocator are included. 

• Resource Information Base - A database that stores all the information available to the IPC process 
represented as objects, such as mappings of addresses, resource allocation information, connectivity 
information, security credentials and others. 

• RIB Daemon - A generalisation of event management and routing update. The RIB Daemon is responsible 
for responding to requests for information from other members of the DIF, notify them periodically or upon 
certain events on the current value of specific information, as well as reply to external requests for 
information. In addition, RIB Daemon ensures that the other management tasks have the information they 
require. 

 
5.5 An example of communication 
In this section, a simple example of inter-process communication between two application processes in different 
systems is shown. Figure 4 depicts the scenario of two application processes in different systems (system 1 and 
system 2) connected through an intermediate node. We denote S the source application process residing in 
system 1 and D the destination application process residing in system 2. A1, A2, A3, B1, B2, C1, C2 are the IPC 
application processes that form the DIFs A, B and C, illustrated with a dotted line.  
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Figure 4 IPC between two application processes in different systems. 

 
The steps that take place to achieve communication between the application processes S and D are the following: 
• DIF A maps the source and the destination application processes names S and D to the IPC processes A1 

and A3 respectively. 
• Application process S using the IPC API does an allocate request to the underlying DIF A specifying the 

destination application process name D and the desired QoS parameters for the communication. 
• The Flow Allocator in IPC application process A1 receives the request and validates it. If the request is well 

formed and the IPC process has enough resources to honour the request then it is accepted. The Flow 
Allocator in A1 creates the EFCP instances (DTP and if required DTCP) for the data transfer. 

• Then, the Flow Allocator at A1 searches the local directory for the requested application process D, finds an 
entry that maps D to IPC process A3 and then sends a request to create a flow to A3. The request for the 
creation of the flow is a CDAP protocol exchange.  

•  The Flow Allocator at A3 receives the request to create flow and delivers the allocate request to the 
destination application process, D. 

• Application process D submits an allocate response to the Flow Allocator in A3. The response depends on 
whether application S has the rights to access application D. 

• The Flow Allocator in A3 creates the EFCP instances for data transfer (DTP and if required DTCP) and 
sends a response (CDAP) to the request for creating a flow it received to A1. 

• If the response is positive, the two applications, S and D, can use the IPC API calls send and receive to send 
and receive data (SDUs) to/from each other. 

• When the communication is over, both of them can invoke the de-allocate call to release the allocated 
resources. 

 
5.6 Features and implications of the RINA architecture 
A structure that is based on the fundamentals yields an architecture that has the following features: 
A clean recursive architecture - Each layer is a distributed application, composed of a set of collaborating 
application processes that provide IPC services to the layer above. Therefore, each layer has the same functions; 
it just operates in (and configured for) a different scope.   
 
A complete naming and addressing schema - RINA provides names for all the entities in the network that need 
to be named: Applications, nodes and points of attachment to the network. Applications request flows to other 
applications without having to know where the requested application is. Addresses are internal to a DIF and are 
never seen by the application. Because addresses are just synonyms of the names of the application processes 
that comprise the DIF, and structured to facilitate routing, changing an address without affecting current flows is 
an inherent property of the structure.   
 
A single error and flow control protocol - By separating mechanism from policy, all the current data transfer 
protocols can be provided through proper configuration (management of policies) [15]. Therefore, only one 
transport protocol is required, decreasing the complexity of the network by orders of magnitude.    
 
A single application protocol - A result of the model is that there is a single application protocol, CDAP 
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(Common Distributed Application Protocol), which can be used to develop all the distributed applications. It is 
not a requirement to use it as any application protocol can be transported by RINA, but using it simplifies the 
development of distributed applications.  The importance of this is that it signals a shift from an IPC view in the 
DIF to a programming view in the applications. 
 
Multi-homing, mobility and multicast - They are supported inherently without the need for any special 
protocols [2].  
 
A more secure network - The structure naturally forms a securable container and indicates where security 
functions belong. Applications need to authenticate with one another before being able to exchange information. 
Applications are not allowed to communicate with the elements inside a DIF unless they are members of that 
DIF, which requires authentication [16].   
 
Quality of Service - Each DIF can support a set of QoS cubes (QoS classes with different restrictions on several 
QoS parameters such as bandwidth, delay, loss rate, ordered or not ordered delivery, jitter) and provide service 
guarantees to its clients. Mechanisms like error control, flow control, forward error correction, ensure the 
delivered service.   
 
Scalability - Given its repeating nature, where each DIF has its own private internal addresses, and with the 
existence of policies that constrain the membership size of each DIF, RINA is expected to achieve much better 
address scalability compared to that of the current Internet. In addition, RINA embodies a complete naming and 
addressing schema. The narrower scope of topology changes and late binding from node name (address) to PoA 
address (interface) make RINA architecture much more scalable in terms of routing overhead. The choice to use 
hierarchical names/addresses contributes to the scalability.   
 
A competitive marketplace - RINA creates the robust feedback needed for a healthy marketplace [21]. Each 
DIF can be configured to not only provide the traditional services of lower networking layers but also 
application-support (transport) services. This removes the barrier created by the Transport Layer in the current 
Internet, opening potential new markets for ISPs to provide IPC services directly to their customers, leveraging 
their expertise in resource management of lower layers and creating new competition with “host” providers. 
 
 
6. Conclusions, on-going and future work 
Having reviewed the shortcomings of the current Internet and exposed the fundamental causes of the problems, 
we can conclude that the current architecture, based on the TCP/IP protocol suite, is far from being perfect. It can 
be seen as an unfinished demo that has been living on band-aids and Moore’s Law for almost thirty years. 
Several indications are showing that this approach is reaching its limits. Amongst them are the routing table 
scalability, the address space exhaustion, the security risks and the inability to support mobility, multi-homing 
and quality of service under a scalable solution. A brief review of the historical background of the Internet shows 
that other network architectures, designed and implemented in the 70’s and 80’s, managed to provide solutions to 
problems such as mobility and multi-homing that seem to have been forgotten. Under this understanding, we 
introduced RINA, a newly proposed network architecture. RINA utilizes the knowledge acquired through the 
past efforts on packet-switched networking such us CYCLADES, XNS and OSI and goes one step further by 
realizing that networking is distributed inter-process communication. It provides a simple, powerful framework 
for building the networks of the future and for evolving packet switched networks to a mature state. 
 
Our current work involves the development of a prototype that implements the RINA architecture [22, 23, 24]. 
Future work includes experimentation with the developed prototype over networks of different physical media 
and further research, measurements and performance comparisons of RINA versus the current Internet 
architecture.  
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