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ABSTRACT

The Internet consists of thousands of autonomous systems (ASes). Each AS represents an Inter-

net Service Provider or the network of a large organization,that is managed independently. The

Border Gateway Protocol is the policy routing protocol of choice for connecting these ASes, while

allowing them to set their routing policies independently.Routing policies (or path preferences)

determine how a path to a particular destination is chosen out of a candidate set of paths. This

flexibility in configuring routing policies comes at the costof stability, where ASes may have con-

flicting policies causing them to continually advertise newrouting updates for extended periods of

time.

We introduce a theoretical framework for policy routing dynamics (i.e., how path changes

propagate in the network) that is based on the specifics of routing update mechanisms. Unlike ex-

isting models, our Dynamic Policy Routing (DPR) model introduces several structures that capture

how path changes propagate in any network under dynamic topology and path preference changes.

We demonstrate the utility of DPR by applying it to three problems: minimizing routing dynamics,

detecting policy conflicts, and deriving properties of safe(i.e.,convergent) routing dynamics.

For minimizing routing dynamics we formulate the Routing Dynamics Minimization Problem

(RDMP) which solves a graph optimization problem. RDMP aimsto minimize the longest possible

sequence of routing update messages in a dynamic network by changing the path preferences of

nodes. We show that solving RDMP in general is NP-Hard and under restrictions can be solved in

v



polynomial time.

For detecting policy conflicts we prove that the root cause ofany cycle of routing update

messages can be precisely inferred as either transient or potentially persistent due to the existence

of a policy conflict. We then develop SAFETYPULSE, a token-based distributed algorithm, to

detect policy conflicts in a dynamic network.

For deriving properties of safe routing dynamics we establish three properties that provide

insight into which ASes can directly induce route changes inone another, and how cycles of

routing updates can be manifested in the network. We then develop INTERFERENCEBEAT, a

token-based distributed algorithm, to check adherence to these properties.
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Chapter 1

Introduction

The Internet consists of thousands of autonomous systems (ASes). Each AS represents an Internet

Service Provider or the network of a large organization, that is managed independently. Today, the

Border Gateway Protocol (BGP) is the routing protocol of choice for connecting these ASes while

allowing them to set their routing policies independently.Routing policies determine how a path

to a particular destination is chosen out of a candidate set of paths.

This flexibility in configuring routing policies comes at thecost of stability. BGP is known

to suffer from slow convergence time, where ASes continually advertise new routing updates for

extended periods of time before reaching a stable path assignment. Experimental measurements

show that interdomain routers may take tens of minutes to reach a consistent view of the network

after a fault [Labovitz et al., 2001].

Route flapping, the process of adopting and discarding paths, can be highly disruptive given

the associated communication and processing overheads. Route flaps can be transient (i.e., short-

term) due to temporary changes in topology or path preferences. Route flaps can also be persistent

due to conflicting routing policies across ASes (i.e., policies that cannot be satisfied simultane-

ously [Varadhan et al., 1996]). Unnecessarily switching between routes reduces QoS predictabil-

ity, increases delay variability, causes service disruption, as well as increases packet loss [Labovitz

et al., 2000]. In addition, one can imagine that continuallyswitching between routes would make

managing the network in terms of capacity planning / dimensioning, and traffic engineering much

harder as the paths used and their associated traffic loads become less predictable [Quoitin et al.,

2005, Uhlig and Bonaventure, 2004, Feamster and Rexford, 2007]. In general, network operators

strive for a stable policy configuration (i.e.,a set of path preferences) where the routing dynamics

are bounded and converge quickly. By routing dynamics we mean how path changes are propa-

1
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gated across nodes in the network.

The difficulty in managing the disruptive properties associated with BGP due to the autonomy

in setting routing policies has led to a plethora of researchrelated to understanding its convergence

properties and steady-state behavior. In particular, Griffin et al. introduced the Stable Paths Prob-

lem (SPP), a formalism to reason about the steady-state behavior of BGP [Griffin et al., 2002].

SPP has become the standard for modeling BGP and the basis formany novel extensions over the

years. SPP considers the stable assignment of paths, where every AS is assigned its most preferred

path out of its available choices. The authors showed that the existence of a dispute wheel or policy

conflict (i.e., a cyclic dependency in path preferences that could lead to paths being adopted and

discarded indefinitely) is a necessary condition for divergence (i.e., the lack of a stable assignment

of paths). Gaoet al., on the other hand, showed that restricting the path preferences of ASes to

be consistent with their commercial / economic relationships is sufficient for guaranteeing conver-

gence [Gao and Rexford, 2001]. We refer to these restrictions from hereon as the Gao-Rexford

(economic) guidelines.

1.1 Motivation

SPP is seminal work which introduces modern policy routing theory and represents a unifying

framework for understanding steady-state analysis. To study routing dynamics (i.e., how path

changes propagate across nodes in the network), current routing models aim to capture asyn-

chronicity and the timing of BGP updates, which make the models cumbersome.

This thesis takes a different approach. We show that important properties about routing dynam-

ics can be derived using a simple theoretical framework thatextends SPP. The routing dynamics in

our proposed model are actually synchronous with discrete time. We show that properties derived

using our synchronous routing model can be applied to asynchronous routing dynamics. This al-

lows us to prove interesting results regarding the dynamicsof policy routing using a simple model.

Our model also captures dynamic topology and path preference changes. Our contributions are

outlined in more detail in the following section.

Our model starts by considering the specifics of how routing happens in the Internet today.
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During the course of routing, a router has periodic windows in which it receives routing update

messages from its neighbors. From these updates, the routercan optionally choose to change its

current path (i.e.,perform an action) or maintain its current path. We use the notion of causation,

where every action by a node is caused by one specific neighbor. Thus the routing dynamics can

be seen as a collection of causation chains, where each node’s action is caused by the previous

node on the chain. We select a natural definition of causationin which causation chains are started

only by root causes (i.e., link availability changes or policy changes). We find that the notion of

causation is sufficient to derive interesting properties ofrouting dynamics as a whole.

1.2 Thesis Contributions

We introduce DPR which constitutes several novel structures such as causation chains, causa-

tion fences, and policy digraphs that model different aspects of routing dynamics (i.e., how path

changes propagate across nodes in the network) and provide insight into how these dynamics

manifest in the network. We demonstrate the utility of DPR byapplying it to three problems:

minimizing routing dynamics, detecting policy conflicts, and deriving properties of safe routing

dynamics.

In terms of minimizing routing dynamics we make the following contributions:

• We introduce policy digraphs, a time-invariant structure which captures how routing update

messages can propagate in the network. We utilize policy digraphs to formalize the Routing

Dynamics Minimization Problem (RDMP). RDMP solves a graph optimization problem that

aims to minimize the longest possible sequence of routing update messages in a dynamic

network. This is done by changing the path preferences of nodes.

• We show that finding a policy configuration (i.e.,a set of path preferences) which minimizes

the length (i.e., the size of the longest walk with possibly repeated nodes) ofthe policy

digraph is NP-Hard.

• We show that under certain restrictions, such as having nodes abide by the Gao-Rexford
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guidelines that guarantee safety (i.e., convergence), finding a policy configuration which

minimizes the length of the policy digraph can be solved in polynomial time.

In terms of policy conflict detection we make the following contributions:

• We introduce causation fences, a time-invariant structurewhich under certain conditions

represents a dispute wheel. We utilize causation fences to prove that the root cause of any

cycle of routing update messages can be inferred as either a transient route flap or a policy

conflict. More specifically, we prove that any cycle of route updates where a node ends up

with a more preferred path must be due to a policy conflict.

• We develop SAFETYPULSE, a token-based distributed algorithm, which leverages ourtheo-

retical result for detecting policy conflicts in any dynamicnetwork. SAFETYPULSE has sev-

eral characteristics, namely, it is computationally efficient, provably correct, and backwards

compatible. SAFETYPULSE diagnoses and monitors the health of the network by detecting

policy conflicts that could potentially lead to unbounded routing dynamics in realtime.

In terms of deriving properties of safe routing dynamics we make the following contributions:

• We introduce causation chains, a time-varying structure that captures how the action of one

node on the chain causes its successor to take an action. We utilize causation chains to estab-

lish three properties of safe routing dynamics. By “safe” wemean routing instances where

all the nodes abide by the Gao-Rexford guidelines that guarantee safety. Here, by safety

we mean the convergence of the policy routing protocol (e.g.,BGP) to a stable assignment

of paths across all nodes (i.e., when no more path changes are propagated in the network).

The non-interference property provides insight into whichASes can directly induce route

changes in one another. The single cycle property and the multi-tiered cycle property both

provide insight into how cycles of routing updates can manifest in the network. These prop-

erties hold irrespective of changes in the underlying topology or changes in path preferences.

• We develop INTERFERENCEBEAT, a token-based distributed algorithm, to check adherence

to these properties. To enhance INTERFERENCEBEAT we model four common policy vio-
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lations of the Gao-Rexford guidelines and characterize theresulting dynamics. INTERFER-

ENCEBEAT diagnoses and monitors the health of the network by detecting invalid routing

dynamics (i.e.,causation chains that do not adhere to the derived properties) in realtime.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides an overview of the related work in the area.

Chapter 3 outlines our models for policy routing dynamics. In particular, the Dynamic Policy

Routing (DPR) model and the economic DPR model. Chapter 4 formalizes the Routing Dynam-

ics Minimization Problem (RDMP) and shows the complexity classes for various variants of the

problem. Chapter 5 solves the conflict detection problem andprovides pseudocode for SAFE-

TYPULSE. Chapter 6 derives properties of safe routing dynamics and provides pseudocode for

INTERFERENCEBEAT. This chapter also models four common policy violations andcharacterizes

the resulting dynamics. Finally, the thesis concludes in chapter 7 and Appendix A addresses the

synchronicity of DPR.



Chapter 2

Related Work

There has been some seminal work in terms of understanding the behavior of BGP, in particular its

steady-state behavior and convergence properties. As mentioned earlier, Griffinet al. introduced

the Stable Paths Problem (SPP) and showed that the existenceof a dispute wheel (i.e., a cyclic

dependency in path preferences) is a necessary condition for divergence (i.e., the lack of a stable

assignment of paths). Feamsteret al. showed that the lack of a dispute ring (i.e., a dispute wheel

where nodes have path preferences of a special form) under filtering (i.e.,preferentially advertising

routes) is a necessary condition for convergence [Feamsteret al., 2005]. Cittadiniet al. also

provided necessary and sufficient conditions for safety under filtering [Cittadini et al., 2009]. Their

result is based on the presence of a dispute reel (i.e., a special case of the dispute wheel and a

generalization of the dispute ring). Samiet al. showed that having a unique stable assignment is a

necessary condition for convergence [Sami et al., 2009].

There have been attempts to provide routing models which areguaranteed to have a solution in

that the model will somehow incorporate the endless oscillations of the disputing nodes. One such

approach is the Fractional Stability Model (FSM), where each node chooses a “mixed strategy”

such that there is a probability associated with selecting each path presented by a neighboring

node [Haxell and Wilfong, 2008]. Since all non-cooperativegames have a Nash equilibrium,

instances of the FSM are guaranteed to have a solution. Sink equilibriums represent another model

which has been applied to routing [Fabrikant and Papadimitriou, 2008]. This approach models

dynamics as a graph where every state of the system is a node inthe graph and state transitions are

edges.

Wanget al. developed a BGP routing model to understand transient routing failures [Wang

et al., 2009]. The model consists of routers acting asynchronously through the use of an activation

6
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sequence. Under the assumption that all nodes abide by the Gao-Rexford guidelines [Gao and

Rexford, 2001], they derived sufficient conditions for transient route failure and upper bounds

on the duration of transient route failures. Bounds on BGP’sconvergence time, under different

restricted link failure models, have also been studied (e.g.,[Wang et al., 2005,Obradovic, 2002,Pei

et al., 2006]).

There are research efforts that utilize other fields, such asgame theory, to understand and model

policy routing. Since each router can be represented as an ordered list of path preferences, routing

is compatible with mechanism design [Feigenbaum et al., 2006b]. Using this framework, each

node can be given a payment as an incentive to truthfully reveal its policy preferences. A globally

optimal set of path assignments can then be determined from these preference revelations. This

method can be further optimized with distributed algorithmic mechanism design [Feigenbaum and

Shenker, 2002], where the routers jointly determine the payment methods without requiring a cen-

tralized coordinator [Feigenbaum et al., 2006a]. One problem with this approach, however, is that

although routers typically rank path preferences using a numeric function, the values associated

with each path are arbitrary. For example, if a router assigns two paths numeric values,1000 and

50, respectively, it cannot be interpreted that the first path is valued20 times more than the second

path. However, it is shown that if no disputes exist in the routing policies (i.e., there are no dispute

wheels), then the routers are incentive compatible in that they are motivated to act truthfully with

respect to their path preferences [Levin et al., 2008].

In contrast to existing BGP models, our Dynamic Policy Routing (DPR) model extends SPP

with discrete synchronous time to capture the propagation of path changes across nodes. DPR does

not utilize other fields, does not attempt to model the asynchronicity in BGP, and is not restricted

to static topologies or static path preferences. DPR produces results that are invariant to dynamic

topology (i.e.,multiple changes in link availability) and path preference(i.e.,policy configuration)

changes.

Gaoet al. showed that restricting the path preferences of ASes to be consistent with their com-

mercial / economic relationships (e.g.,prefer customer paths over provider paths) is sufficient for

guaranteeing convergence [Gao and Rexford, 2001]. Other solutions constrain the policy freedom
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of ASes to a generalized form of shortest path routing, thus guaranteeing convergence (e.g.,[Ee

et al., 2007,Griffin and Sobrinho, 2005,Gao and Rexford, 2001]). In general, conditions that guar-

antee convergence by limiting the freedom of AS administrators in choosing their routing policies

are heavy-handed as they require every node to comply. They also do not provide any guarantees

under partial adherence.

The properties of safe routing dynamics we derive in Chapter6 consider a notion of safety

that is based on the Gao-Rexford guidelines in [Gao and Rexford, 2001]. These guidelines are

modelled by our Economic DPR model in Chapter 3.4.

Many distributed algorithms were developed to mitigate theeffects of harmful policy interac-

tions. This is done by passing diagnostic information alongside routing update messages (e.g.,a

cost metric [Cobb and Musunuri, 2004], a precedence metric [Ee et al., 2007], path-histories [Grif-

fin and Wilfong, 2000], as well as event-related tokens [Yilmaz and Matta, 2007,Ahronovitz et al.,

2006]). Many of these solutions, however, are either ad hoc or cumbersome. For example, count-

ing [Cobb and Musunuri, 2004] and other token-based [Yilmazand Matta, 2007] approaches are

heuristics and their correctness cannot be guaranteed. Thetheoretical history-based protocol, Safe

Path Vector Protocol (SPVP) introduced in [Griffin and Wilfong, 2000], on the other hand, incurs

a large message exchange overhead, requires more time (i.e., more messages) to detect a policy

conflict, and does not provide an explicit condition for detecting the occurrence of a transient route

flap.

SAFETYPULSE, our token-based distributed algorithm, leverages our novel theoretical results

in Chapter 5 to detecting policy conflict. In particular, we identify the root cause of a causation

cycle as either a transient route flap or a policy conflict, an inference that SPVP is unable to make.

SAFETYPULSE has several characteristics, namely, it is computationally efficient (a constant factor

reduction in message size and number of messages when compared to SPVP), provably correct,

and backwards compatible.

There are numerous offline methods for addressing policy conflicts [Govindan et al., 1999]

and analyzing static policy configurations [Feamster and Balakrishnan, 2004]. Other methods

focus on identifying the root causes of instability [Feldmann et al., 2004]. In general, these offline
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methods have not been successful in practice as network administrators are reluctant to disclose

their routing policies or configurations to any central repository for further analysis.



Chapter 3

Modeling Policy Routing Dynamics

In this chapter we outline our models for policy routing dynamics. Our Dynamic Policy Routing

(DPR) model extends the static formalism of the Stable PathsProblem (SPP) [Griffin et al., 2002]

with discrete synchronous time. DPR captures the propagation of path changes in any network

irrespective of its time-varying topology or time-varyingpath preferences. Our economic DPR

model, on the other hand, captures the economic constraintsthat are typical of commercial rela-

tionships (or agreements) between ASes in the Internet [Gaoand Rexford, 2001]. We refer to these

constraints, which have been shown to make BGP free from policy conflicts, as the Gao-Rexford

guidelines.

3.1 Stable Paths Problem

3.1.1 Overview

We start with a sample SPP instance that can be seen in Figure 3·1 (Left) where the destination

is node0. Each node has a path preference list consisting of two pathswhere the most preferred

path is the topmost path. For example, node1 prefers path〈1430〉 over the direct path〈10〉. This

SPP instance is calledBAD GADGET [Griffin and Wilfong, 2000] and is known to have at least

one dispute wheel as shown in Figure 3·1 (Right). BAD GADGET also has no stable assignment as

any initial path assignment leads to paths being adopted anddiscarded indefinitely. We useBAD

GADGET as a running example throughout this thesis.

3.1.2 Basic Notation

Definition 1 (Network). In SPP, the routing network is represented by a graph:G = (V,E) where

each AS is represented by a nodev ∈ V . If two nodesu andv are connected then(u, v) ∈ E.

10
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Figure 3·1: SPP instanceBAD GADGET (Left) and its dispute wheel (Right). A
dispute wheel consists of pivot nodes. Two types of paths arerepresented in a
dispute wheel, namely, rim paths labelledRi and spoke paths labelledQi. Rim
paths connect pivot nodes while spoke paths connect each pivot node to the des-
tination. Each pivot nodei has the property that it prefers its rim and neighbor’s
spoke path,RiQi−1, over its direct spoke path,Qi.

Definition 2 (Paths). Paths inG are represented by sequences of the form:

P = 〈u0 u1 . . . un d〉

whered is a distinguished destination node. The empty path is represented by:〈〉. The concate-

nation of a pathP with nodeu is represented by:〈u P 〉. The set of paths originating from a

particular nodeu can be denoted asP.

Definition 3 (Next-Hop Neighbor). At nodeu0, the next-hop ofP = 〈u0 u1 . . . un d〉 is denoted

by:

u1 = NextHop(P )

Definition 4 (Path Preferences). Each node wishes to obtain a path tod. Each nodeu has a set

preference over the paths, represented by≻u. This preference forms a total order overP ∪ 〈〉. For

ease of notation, we represent the combined path preferences of all nodes with the partial order≻.

If a pathP is forbidden then〈〉 ≻ P . All paths with repeating nodes are forbidden.

Definition 5 (SPP Instance). An instance of SPP is comprised of the network and the path prefer-

ences of each of its nodes:(G,≻).

Definition 6 (Stable Path Assignment). In policy routing each nodeu broadcasts to its neighbors

its current pathP to the destination noded. Each node chooses its most preferred path over the set

provided by its neighbors. The goal of SPP is to find a stable assignment, which is a directed tree,

confluent atd. Each nodeu in this stable assignment is satisfied if the path fromu to d is preferred
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over paths through its neighboring nodes. If each node is satisfied, then the tree is stable (i.e.,will

not change).

We represent a path assignment with the functionπ that maps each node to a particular path.

The paths available to a particular nodeu can be represented as:

Choices(u) = {〈u π(v)〉|(u, v) ∈ E}

A node’s best path is the most preferred path among the paths available to it:

Best(u) = max
≻

Choices(u)

A path assignmentπ is stable if each node is assigned its most preferred path outof its choices:

Stable(π)⇔ Best(u) = π(u) for all u ∈ V

Griffin et al. showed in [Griffin et al., 2002] that it is NP-Complete to determine whether a

stable assignment exists.

Definition 7 (Dispute Wheel). Griffin et al. introduceddispute wheelsin [Griffin et al., 2002],

whose existence is a necessary condition for an SPP instanceto not have a stable assignment. A

dispute wheel, as shown in Figure 3·2, represents a cyclical set of path preferences.

A dispute wheelW is defined byW = (N ,R,Q), where:

• N is the set ofn unique pivot nodes such thatN = {un−1, . . . , u0}.

• R is the set of rim paths, where eachRi ∈ R is a path fromui to ui−1 (with subscripts

modulon).

• Q is the set of spoke paths, where eachQi ∈ Q is a path fromui to d.

• Each nodeui prefers a path through its rim and neighbor’s spoke path overits own spoke

path:

RiQi−1 ≻ Qi

3.2 Dynamic Policy Routing Model with Static Path Preferences

3.2.1 Overview

In this section we outline the DPR model, our theoretical framework for modeling policy routing

dynamics, with static path preferences that will be used in chapter 4 and chapter 5.
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Figure 3·2: Dispute wheel.

We introduce the basic notation underlying the DPR model anddefine several novel structures

such as causation chains, causation fences, and policy digraphs that model different aspects of

routing dynamics (i.e., how path changes propagate across nodes in the network) and provide

insight into how these dynamics manifest in the network. We focus here on presenting the main

intuition behind the model and the structures developed.

Consider the sample SPP instance,BAD GADGET, shown in Figure 3·1. In the course of

routing, nodes adopt and discard paths as they attempt to reach a stable path assignment. The

adopted and discarded paths are the paths that the node switches to and from, respectively. A

stable path assignment exists when no node is able to switch to a more preferred path and no more

path changes are propagated in the network.

While SPP is concerned with the stable assignment of paths, DPR is concerned with the propa-

gation of path changes in the network. The central notions inDPR are that ofactionandcausation.

An action, Action(u, t), corresponds to a possible routing decision made by nodeu at timet upon

the reception of a routing update message. Three possible actions include a StepUp (adopting a

more preferred path via a different next-hop neighbor) or StepDown (adopting a less preferred path

via a different next-hop neighbor) or StepSame (adopting a new path via the same next-hop neigh-

bor). A causing node, Cause(u, t), corresponds to the node sending the routing update message

to nodeu at timet that triggered the action. More specifically, if nodeu performs a StepUp, the
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Figure 3·3: Sample actions and causation forBAD GADGET.

causing node is the next-hop neighbor that provided nodeu with the more preferred path. On the

other hand, if nodeu performs a StepDown / StepSame, the causing node is the next-hop neighbor

that removed nodeu’s current path. DPR models these two events to construct a causation chain

over time,〈y1 y2 . . . yk〉, where each nodeyi causes its successor along the chain to take an action.

Figure 3·3 outlines a few sample cases of action and causation forBAD GADGET. At time

t = 1, node3 performs a StepDown action as it is forced to discard path〈320〉 and adopt path

〈30〉. This is due to node2 adopting path〈210〉 at time t = 0. Such sequences of action and

causation represent a causation chain. A sample causation chain is 〈2 3 4 1〉 while a sample

causation cycle, where a node is triggered twice to update its path, is〈2 3 4 1 2〉.

It is important to note that each causation chain starts at a root cause that can be either a change
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in a link’s availability or a change in a node’s path preferences. A causation chain terminates, on

the other hand, when a node does not take an action (i.e., is not affected by this round of route

updates and hence maintains its current path). A causation chain represents a single sequence of

nodes that induce path changes in one another. A network would typically observe many causation

chains as a result of a single root cause. In other words, the individual chains branch out in such

a way that their aggregation across space and time would forma complex graph (or forest) that

simultaneously represents many sequences of route updatespropagating in the network. In this

thesis whenever we talk about a causation chain we are referring to only one such sequence of

route updates propagating in the network.

Another set of possible actions include RankInc (adopting amore preferred path) or RankDec

(adopting a less preferred path) or RankSame (staying with the current path) without any restric-

tions on the next-hop neighbor used. Depending on the application, a different set of possible

actions may be more appropriate. For chapters 4 and 5, the actions StepUp, StepDown, and Step-

Same are used to construct the causations chains, since we care about how the adopted / discarded

paths depend on the nodes along the chain. Also, we only consider static path preferences as

outlined in Section 3.2. For chapter 6, on the other hand, theactions RankInc, RankDec, and

RankSame are used since we only care about the relative ranking of the current path and the new

(or next) path. Also, we consider time-varying path preferences as outlined in Section 3.3.

Using DPR we introduce a time-invariant structure we call a causation fence, which under

certain conditions represents a dispute wheel (or policy conflict). The exact manner in which a

causation fence manifests, in terms of what we call adoptingand discarding subchains, forBAD

GADGET is outlined in Figure 3·4.

These adopting and discarding subchains allow us to construct a causation fence which distills

the core elements (i.e., path changes) in a causation chain. In particular, a causation fence only

concerns itself with the head and tail nodes of the adopting /discarding subchains as shown in

Figure 3·5. The causation fence can be seen as an open-ended dispute wheel where each pivot

node also prefers its rim and neighbor’s spoke path over its own spoke path. For example, pivot

node3 prefers its rim and neighbor’s spoke path〈320〉 over its own spoke path〈30〉. The condition
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under which a causation fence does indeed represent a dispute wheel allows us to infer the root

cause of a causation cycle.
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Figure 3·5: Causation fence ofBAD GADGET.

Using DPR we introduce another time-invariant structure wecall a policy digraph which cap-

tures how routing update messages can propagate in the network. Figure 3·6 outlines the policy

digraph ofBAD GADGET. Each node inBAD GADGET is represented by a “ladder”. Each step

in the ladder denotes a path from the corresponding node’s path preference list. The node’s most

preferred path is at the top of the ladder. Two steps (i.e.,paths) in different ladders are connected

by a directed edge if the source path is a subpath of the targetpath. We refer to such edges as “sub-

path” edges. A valid “walk” can start from any step on any ladder and can go down the ladders

and across the subpath edges connecting different ladders.Consider the following sample walk:

〈20〉〈320〉〈30〉〈430〉〈1430〉〈10〉〈210〉〈20〉

Walks in this structure capture the routing dynamics ofBAD GADGET. By routing dynamics we

mean how path changes could potentially propagate in the network or more specifically how paths

could potentially be adopted and discarded. For example, ifpath〈20〉 is adopted after link(2, 0)
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becomes available, then path〈320〉 will also be adopted since it is node3’s most preferred path.

Such dependencies are captured by the subpath edges. Walking down the ladder captures the effect

of adopting or discarding a less preferred path due to a change in the availability of a path higher

up the ladder. For example, if path〈210〉 gets adopted, moving from path〈210〉 to path〈20〉 in the

policy digraph captures the effect of node2 adopting path〈210〉 and discarding path〈20〉. This

results in path〈320〉 getting discarded by node3 since path〈20〉 is no longer available.

430

410
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30

210

20

1430

10

1

4 2

3

Figure 3·6: Policy digraph ofBAD GADGET.

The policy digraph provides insight into the routing dynamics. A path (or walk) in the policy

digraph captures how far routing update messages can potentially propagate. In other words, the

longer the paths, the longer it could take for the transient dynamics to die out following a topology

change (e.g.,a link failure). We prove that any valid sequence of route updates is a path in the

policy digraph. On the other hand, a policy conflict (or dispute wheel) is a cycle in the policy

digraph where a path is repeated.We prove that a dispute wheel is represented as a cycle in the

policy digraph.Policy digraphs will be used in the formulation of RDMP in chapter 4.2.

It is important to note that our policy digraphs are easier toconstruct and visualize when com-

pared to dispute digraphs [Griffin and Wilfong, 2000]. In particular, the conditions for constructing

a dispute arc require the relative rankings of paths across nodes to be compared—something that

is not required for constructing our policy digraph. Policydigraphs are simpler since they are con-

cerned with capturing the propagation of path changes across nodes in the network. In particular,



18

they are concerned with capturing how paths are adopted and discarded. Dispute digraphs, on the

other hand, are concerned with how policy conflicts can manifest and hence consider the relative

rankings of paths across nodes which makes the structure more complicated.

3.2.2 Basic Notation

DPR extends SPP’s notation as follows.

Definition 8 (Time). Time is represented by a non-negative, discrete indext such that:t ∈ [0,∞).

Definition 9 (Network). The network is represented by a graphG = (V,E):

• Each vertexu ∈ V represents an AS.

• Each edge inE is time dependent:(u, v)t ∈ E if u is connected tov at timet. Conversely,

a lack of connectivity betweenu andv at timet (i.e., link failure) is represented by(u, v)t /∈

E.

There exists a distinguished destination node, represented asroot, whereroot ∈ V . In other words,

DPR considers a single destination prefix.

Definition 10 (Paths). Paths are sequences of nodes of the form:〈u1 u2 . . . uk〉 where the

destination noderoot is uk. The empty path is denoted by〈〉. A concatenation of a nodeu with a

pathQ is represented as:P = 〈u Q〉. A path originating fromu is represented byP u. The set of

paths originating fromu is represented byPu.

Definition 11 (Path Preferences). Each nodeu has a unique preference over paths originating at

u. This ranking is represented by the� operator. Ifu prefersP u overQu then: P u � Qu. If u

prefersP u overQu then:P u � Qu. Strict preference is defined by:

P u ≻ Qu iff P u � Qu andQu 6� P u

For each nodeu ∈ V , � is a total order overPu ∪ 〈〉. Thus each nodeu has an ordered

preference over all its paths toroot. If two paths start with different nodes, then they have no

preference relation. Forbidden pathsP are those ranked below the empty path for all times:〈〉 ≻

P . All paths with repeating nodes are forbidden.

Definition 12 (DPR Instance). A Dynamic Policy Routing (DPR) instance consists of a graph and

a path preferenceD = (�, G).
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Definition 13 (Best Paths). At each time indext, every nodeu has a path toroot, represented by

P u = π(u, t). The available path choices of a node, via all possible neighborsv, are represented

by Choices(u, t) where:

Choices(u, t) = 〈〉 ∪ {〈u π(v, t)〉 : (u, v)t ∈ E}

The Best(u, t) notation represents the current best path foru:

Best(u, t) = max
�

Choices(u, t)

The paths assigned to nodes at each timet is their best path of the previous round. For all nodes

u ∈ V :

• π(u, 0) = 〈〉

• π(u, t) = Best(u, t− 1)

The path used by nodeu at timet, π(u, t), was its best path at timet− 1, Best(u, t− 1). This best

path was determined using the ranking�.

Definition 14 (Next-Hop Neighbor). Theρ notation is used to represent the next-hop neighbor of

a current path:

ρ(u, t) = NextHop(π(u, t))

Definition 15 (Realized Paths). A pathP u is realizediff there exists a timet such thatπ(u, t) =

P u.

Proposition 1 (Forbidden Paths). Forbidden paths are never realized.

Proof. Assume not. Then there exists a forbidden pathP u, a nodeu, and a timet such that

π(u, t) = P u. However〈〉 ≻ P u soP u 6= Best(u, t− 1) which is a contradiction.

Proposition 2 (Path Deconstruction). If ρ(u0, t) = u1 thenπ(u0, t) = 〈u0 π(u1, t− 1)〉

Proof. By the definition ofπ, π(u0, t) = Best(u0, t− 1) soπ(u0, t) ∈ Choices(u0, t− 1). So by

the definition of Choices,π(u0, t) = 〈u0 π(u1, t− 1)〉, whereu1 = ρ(u0, t).

Remark 1. While DPR does not explicitly model BGP attributes, such an extension is possible

and would only affect the preferential ranking of paths by nodes. This may lead to a different

assignment of paths by the functionπ.
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# Action(u, t) Cause(u, t) Condition Explanation
1 StepUp v = ρ(u, t + 1) π(u, t) ≺ π(u, t + 1),

ρ(u, t) 6= ρ(u, t + 1)
Nodev was not nodeu’s next hop at timet. How-
ever,v advertised a new path tou at timet, causing
u to choose a more preferred path throughv at time
t + 1.

2 StepDown v = ρ(u, t) π(u, t) ≻ π(u, t + 1),
ρ(u, t) 6= ρ(u, t + 1)

Node v was nodeu’s next hop at timet. How-
ever, nodev changed its path at timet, causingu

to choose a less preferred path at timet + 1.
3 StepSame v = ρ(u, t)

= ρ(u, t + 1)
π(u, t) 6= π(u, t + 1),
ρ(u, t) = ρ(u, t + 1)

Nodev was nodeu’s next hop at timet. Nodev

changed its path at timet, whichu chooses to use at
time t + 1.

Table 3.1: Cases for action and causation.

3.2.3 Causation Chains and Cycles

Actions represent a change in a node’s chosen path between two time steps. A nodeu performs an

action at timet if π(u, t) 6= π(u, t + 1). Every action of a node is caused by a neighboring node.

The cases of action and causation are partitioned by nodeu’s next-hop nodev and the relative

ranking of nodeu’s new and old paths. The functions Action(u, t) and Cause(u, t) are defined in

Table 3.1. Consider the first row where nodeu performs a StepUp action and switches to a new

path through a more preferred next-hop nodev such that:

π(u, t) ≺ π(u, t + 1)

NextHop(u, t) 6= NextHop(u, t + 1)

Definition 16 (Causation Chains). A causation chain is a sequence of nodes where each node

yi−1 causes the action ofyi. It is represented byY = 〈y0 y1 . . . yk〉
t where Cause(yi, t + i) =

yi−1 for all 0 < i ≤ k. Time t is defined with respect toy0, and it takesi time steps to build the

causation chain up to nodeyi.

Definition 17 (Causation Cycles). A causation cycle is a causation chainY = 〈y0 y1 . . . yk〉
t with

a repeated node wherey0 = yk.

Remark 2. In terms of the synchronicity of DPR, we show that this is not adrawback and that

DPR has sufficient expressive power to model asynchronicityin Appendix A.
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3.2.4 Causation Fences

Next we distill the time-invariant properties of causationchains using a structure we call the cau-

sation fence. We first show that causation chains are not random sequences of nodes (and their

associated actions) as one would expect. Instead, the propagation of path changes in the network

can be precisely formalized. More specifically, causation chains can be decomposed into two

alternating types of subchains, namely, adopting and discarding subchains.

A causation subchain consists of consecutive nodes〈yi yi+1 . . . yj〉
t+i whereyi andyj are

the head and tail nodes, respectively. The head node introduces a change into the subchain by

changing its current path. Hence,π(yi, t+ i) 6= π(yi, t+ i+1). The timet is defined with respect

to the first node on the original causation chain and it takesi time steps to reach nodeyi in the

subchain.

In an adopting subchain the head nodeyi makes a new path available that all subsequent nodes

adopt. In Figure 3·7, for example, node1 makes path〈10〉 available that node2 adopts. Node3 in

turn adopts path〈3210〉 when node2 makes path〈210〉 available.
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Subchain

0 1 2 3
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2
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3
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Time DPR

t=0

t=1

t=2

t=3

10 210 3210

Figure 3·7: An example of an adopting subchain. Adopted/discarded paths are
represented by solid/dotted arrows, respectively.

Definition 18 (Adopting Subchain). An adopting subchain ofY is 〈yi yi+1 . . . yj〉
t+i from yi to

yj for i < j where Action(yk) 6= StepDown for alli < k ≤ j. This is irrespective ofyi’s action.

On the other hand, all nodes in a discarding subchain are initially using a path through the head

nodeyi. However,yi discards this path, forcing all subsequent nodes to choose alternate paths.

Definition 19 (Discarding Subchain). A discarding subchain ofY is 〈yi yi+1 . . . yj〉
t+i from yi

to yj for i < j where Action(yk) 6= StepUp for alli < k ≤ j. This is irrespective ofyi’s action.
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Lemma 1 (Chain Decomposition). Every causation chainY = 〈y0 y1 . . . yk〉
t can be decom-

posed into alternating adopting/discarding subchains,Y = Y 0Y 1 . . . Y n, where the tail node of

subchainY i is the head node of subchainY i+1.

Proof. This can be trivially shown with a recursive construction. Starting with a causation chain

Y = 〈y0 y1 . . . yk〉
t, we look at the last nodeyk and add it to the end of a new subchainY ′.

We construct either an adopting or a discarding subchain depending onyk’s action. If the action

of yk is StepUp or StepSame, thenY ′ is an adopting subchain. We continue adding nodesyi to

Y ′ starting fromi = k − 1 until we reach a nodeyj such thatj ≤ i and its action is StepDown.

At this point we start constructing a discarding subchain. We continue recursing until we reachy0

which is added to the current subchainY ′ regardless of its action.

This will serve as the basis for constructing our time-invariant causation fence structure. Fig-

ure 3·8 shows the alternating subchains ofBAD GADGET.

2 3 4 1 2
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Figure 3·8: Alternating subchains ofBAD GADGET. Adopted/discarded paths
are represented by solid/dotted arrows, respectively. Horizontal paths are more
preferred than vertical paths.

The causation fence is a structure that distills the core elements (i.e.,path changes) in a causa-

tion chain. In particular, it only concerns itself with the head and tail nodes of adopting/discarding

subchains. The only paths that the causation fence concernsitself with are the adopted and dis-

carded paths in the subchains.

Definition 20 (Causation Fence). A causation fence is formally defined byF = (N ,R,Q) where:

• N is the set of, not necessarily unique,n pivot nodes such thatN = {u0, . . . , un−1}.

• R is the set of rim paths, where eachRi ∈ R is a path fromui to ui−1.

• Q is the set of spoke paths, where eachQi ∈ Q is a path fromui to destinationd.
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• Each nodeui (except the first and last nodes) prefers a path through its rim and neighbor’s

spoke path over its own spoke path:RiQi−1 ≻ Qi.

The causation fence can be seen as an open-ended dispute wheel. A sample causation fence

is shown in Figure 3·9. The first and last pivot nodes are missing their (potential) rim and (poten-

tial) spoke paths, respectively. The exact manner in which acausation fence manifests (i.e., the

alternating adopting and discarding subchains property),is what will allow us to precisely infer

the root cause of a causation cycle.� � � � � � � �� � � � � � � � ��� � �� � � � �� � � �
Figure 3·9: Causation fence.

Lemma 2 (Chain-Fence Relationship). Every causation chainY = 〈y0 . . . yk〉
t is equal to the

concatenated rim pathsR1 . . . Rn−1 of a causation fenceF = (N ,R,Q).

Proof. Using Lemma 1, we break up the causation chainY into n causation subchains

Y 0, Y 1, . . . Y n−1

where each subchainY r is of the form

Y r = 〈yr
0 . . . yr

s〉
tr

The first nodey0 in causation chainY and the end nodeyr
s of each subchainY r are added as

pivot nodes into the causation fenceF . The rim paths ofF are the paths that connect each pair of

pivot nodes,ui to ui−1. There are two cases to consider. If the pivot nodes are part of an adopting

subchain then the first pivot nodeui−1 is the head of the subchain. Pivot nodeui−1 makes a new

path available that all subsequent nodes along the subchainincluding ui adopt. Thus, during the

course of routing, once an adopting subchain is built, all nodes in the subchain are on the rim path

that is being created. This rim path connectsui to ui−1. A similar argument follows if the pivot

nodes are part of a discarding subchain where all nodes in thesubchain were on the rim path,

connectingui to ui−1, that is being discarded. Note that the causation chain propagates in the

opposite direction of the paths being created.

Figure 3·10 shows the causation fence induced by the causation chain in Figure 3·8.
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Figure 3·10: Causation fence example.

3.2.5 Dispute Wheels

Griffin et al. introduced dispute wheels in [Griffin et al., 2002], where their existence is a necessary

condition for an SPP instance to not have a stable assignment. A dispute wheel, as shown in

Figure 3·11, represents a cyclical set of path preferences.

u1

u2

un-1

d

Q0

Q1

Q2

Qn-1

R0 R1

R2

u0

Figure 3·11: Dispute wheel.

Here we introduceproper dispute wheels where the rim paths form a simple cycle (i.e., no

nodes are repeated other than the starting and ending node) and show that every dispute wheel

mustcontain a proper wheel inside it.

Theorem 1. Every non-proper dispute wheelW = (N ,R,Q) contains within it a proper dispute

wheel.

Proof. AssumeW is not proper, then there exists a non-pivot nodev such thatv ∈ Ri andv ∈ Rj,

wherei < j, as shown in Figure 3·12.

FromW a smaller dispute wheelW ′ = (N ′,R′,Q′) can be constructed. There are two cases

for this construction, depending on the path preferences ofv:
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j j

j
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i i

0

Figure 3·12: Non-proper dispute wheel.P (a, b) is the subpath ofP starting with
a and ending withb. P (a) is the subpath ofP starting witha.

1. Rj(v)Qj−1 ≻ Ri(v)Qi−1. W ′ is defined as:

N ′ = {v, uj−1, . . . , ui}

R′ = {Rj(v), Rj−1, . . . , Ri+1, Ri(ui, v)}

Q′ = {Ri(v)Qi−1, Qj−1, . . . , Qi+1, Qi}

This results in the dispute wheel in Figure 3·13.

v

uj-1ui

d

Qj-1Qi

Ri(ui,v) Rj(v)

ui-1

Qi-1

Ri(v)

Figure 3·13: Smaller dispute wheel case 1.
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2. Rj(v)Qj−1 � Ri(v)Qi−1. W ′ is defined as:

N ′ = {un−1, . . . , uj , v, ui−1, . . . , u0}

R′ = {Rn−1, . . . , Rj(uj, v), Ri(v), Ri−1, . . . , R0}

Q′ = {Qn−1, . . . , Qj , Rj(v)Qj−1, Qi−1, . . . , Q0}

This results in the dispute wheel in Figure 3·14.

v

ui-1uj

d

Qi-1Qj

Rj(uj,v) Ri(v)

uj-1

Qj-1

Rj(v)

Figure 3·14: Smaller dispute wheel case 2.

Thus, every non-proper dispute wheelW contains a smaller dispute wheelW ′. EitherW ′ is

proper or it also contains a smaller dispute wheelW ′′. Since this reasoning can only repeat a finite

number of iterations, every non-proper dispute wheelW contains a proper dispute wheel.

In the next section we prove that every cycle in a policy digraph represents a dispute wheel and

vice versa.

3.2.6 Policy Digraphs

Policy digraphs simultaneously represent several DPR structures. In particular, we prove that

causation chains and dispute wheels are represented as paths and cycles, respectively.

Definition 21 (Policy Digraph). A DPR instance is defined in terms of a time-varying graphG =

(V,E) and a set of path preferences≻. Given a DPR instanceD = (G,≻), the policy digraph is

denoted byO(≻) = (V ′, E′) where each nodeP ∈ V ′ represents a realizable path in≻ and is

referred to as a pnode. Between each pair of pnodesP andQ, there can be one of two edges:
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• Subpath Edge. If Q = 〈u P 〉 for some nodeu in G, thenP has a subpath edge toQ.

• Policy Edge. If P ≻ Q, thenP has a policy edge toQ.

To simplify the representation of a policy digraphO(≻), all pnodes inO(≻) that are paths

originating from a single nodeu ∈ V are represented by a single set of stacked boxes—a stacked

pnode. Each pnode within a stacked pnode has animplicit policy edge to every pnode below it. A

sample policy digraph can be seen in Figure 3·15.

It is important to note that each pnode must have an incoming subpath edge. The policy

digraph in Figure 3·15 includes the destination node for our sample BAD GADGET instance. For

simplicity, we omit the destination node from all our policydigraphs in the rest of this thesis.

430

410

30

320

210

20

10

1430

1

4 2

3

0

0

Figure 3·15: Policy digraph of BAD GADGET including the destination node0.

Theorem 2 (Chains in Policy Digraphs). Every causation chainY = 〈y0 y1 . . . yk〉 of a DPR

instanceD = (G,≻) is a path in its corresponding policy digraphO(≻).

Proof. From Lemma 2, every causation chain is equal to the concatenated rim paths of a causation

fence represented by:F = {N ,Q,R}. Each pivot nodeui prefers a path through its rim and

neighbor’s spoke path over its own spoke path:RiQi−1 ≻ Qi. Thus, causation fenceF is a path

in policy digraphO as shown in Figure 3·16. This in turn implies that every causation chainY is

a path inO.

Theorem 3(Cycles in Policy Digraphs). Every dispute wheelW = {N ,Q,R} of a DPR instance

D = (G,≻) is a cycle in its corresponding policy digraphO(≻). Similarly, every cycle inO(≻)

corresponds to a dispute wheelW .
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Figure 3·16: Causation fences are paths in policy digraphs. The∗ notation im-
plies a series of subpath edges through pnodes.

Proof. This can be seen by drawing the policy and subpath edges for each pnode (i.e., realizable

path) ofW in O, as shown in Figure 3·17. A sample cycle (and hence dispute wheel) could start

and end at pnodeR0Qn−1 as follows:〈R0Qn−1 Q0 R1Q0 Q1 . . . Qn−1 R0Qn−1〉� 	 
 � � 
 	� �
� � �  
 � � �
 � � � � � � � �  
 	
 � �

� � 
 
 �� � �
�

�
�

Figure 3·17: Dispute wheels are cycles in policy digraphs and vice versa.

Remark 3. Policy digraphs essentially complement the SPP framework and represent a novel

structure for understanding and analyzing the dynamics of policy routing.

Definition 22 (Length of Policy Digraph). We define the length of a policy digraph:

Length(O(≻))

to be the number of times subpath edges are traversed in the longest path (or walk) ofO(≻) with

repeating nodes (i.e.,policy edges traversed in the walk are not accounted for in the length). This

represents the longest possible causation chain. IfO(≻) has a cycle, then Length(O(≻)) =∞.
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3.3 Dynamic Policy Routing Model with Time-Varying Path Preferences

3.3.1 Overview

In this section we outline the DPR model with time-varying path preferences that will be used in

chapter 6 to derive the properties of safe (i.e.,convergent) policy routing dynamics.

3.3.2 Basic Notation

Definition 23 (Path Preferences). At each timet, each nodeu has a unique preference over paths

originating atu. This dynamic ranking is represented by the�t operator. Ifu prefersP u overQu

at timet then: P u �t Qu. If u prefersP u overQu for all t then: P u � Qu. Strict preference is

defined by:

P u ≻t Qu iff P u �t Qu andQu 6�t P u

For all timest, for each nodeu ∈ V ,�t is a total order overPu ∪ 〈〉. Thus each nodeu has an

ordered preference over all its paths toroot. If two paths start with different nodes, then they have

no preference relation. Forbidden pathsP are those ranked below the empty path for all times:

〈〉 ≻ P . All paths with repeating nodes are forbidden.

Definition 24 (DPR Instance). A Dynamic Policy Routing (DPR) instance consists of a graph and

a path preferenceD = (�t, G).

Definition 25 (Best Paths). At each time indext, every nodeu has a path toroot, represented by

P u = π(u, t). The available path choices of a node, via all possible neighborsv, are represented

by Choices(u, t) where:

Choices(u, t) = 〈〉 ∪ {〈u π(v, t)〉 : (u, v)t ∈ E}

The Best(u, t) notation represents the current best path foru:

Best(u, t) = max
�t

Choices(u, t)

The paths assigned to nodes at each timet is their best path of the previous round. For all nodes

u ∈ V :

• π(u, 0) = 〈〉

• π(u, t) = Best(u, t− 1)

The path used by nodeu at timet, π(u, t), was its best path at timet− 1, Best(u, t− 1). This best

path was determined using the ranking�t−1.
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# Action(u, t) Cause(u, t) Condition Explanation
1 RankDec v = ρ(u, t) π(u, t) ≻t π(u, t + 1) Nodev was the next hop ofu’s chosen path at timet.

However, nodev changed its path at timet, causing
u to choose a less preferred path at timet + 1.

2 RankInc v = ρ(u, t + 1) π(u, t) ≺t π(u, t + 1) Nodev advertised a new path at timet, causingu

to choose a more preferred path throughv at time
t + 1.

3 RankSame v = empty π(u, t) = π(u, t + 1) v is empty, becauseu’s path did not change between
timest andt + 1.

Table 3.2: Cases for action and causation.

3.3.3 Causation Chains and Cycles

Here we consider slightly different actions when constructing our causation chains and cycles. The

cases for action and causation can be found in Table 3.2 whereonly the relative rankings of the

current and new paths are considered, irrespective of the next-hop neighbor being used. Also, the

path preferences here are time-varying.

A sample causation chain can be seen in Figure 3·18.

Figure 3·18: Causation chainY = 〈y0 y1 y2〉
t. A link failure betweeny0 and

root occurred at timet, causingy0 to have no path to root at timet+1. This causes
y1 to switch to a less preferred path at timet + 2, where Cause(y1, t + 1) = y0

with causation condition 1. This causesy2 to switch to a more preferred path via
y1 at timet + 3, where Cause(y2, t + 2) = y1 with causation condition 2.

Definition 26 (Simple and Non-Simple Causation Cycles). Given a causation chain of the form

〈y0 y1 . . . yk yk+1〉
t, if y0 = yk then a causation cycle〈y0 y1 . . . yk〉

t exists. Ify1 6= yk+1,

then the cycle issimple, otherwise the cycle isnon-simple. The following causation chains contain

simple and non-simple cycles:

Simple: 〈y0 y1 y2 y0 y3〉
t

Non-Simple: 〈y0 y1 y2 y0 y1〉
t

A sample causation cycle is shown in Figure 3·19.
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Figure 3·19: Causation cycleY = 〈y0 y1 y2 y0〉
t. A link failure betweeny0 and

root occurred at timet, causingy0 to have no path to root at timet+1. This causes
y1 to switch to a less preferred path at timet + 2, where Cause(y1, t + 1) = y0

with causation condition 1. This causesy2 to switch to a path throughy1 at time
t + 3, where Cause(y2, t + 2) = y1 with causation condition 2. The cycle is
closed withy0 switching to a path viay2 at timet + 4, where Cause(y0, t + 3) =
y2 with causation condition 2. Note the existence of a separatecausation chain
Y ′ = 〈y0 y2〉

t wheny2 switches to the empty path at timet + 2 with causation
condition 1.

3.4 Economic DPR Model

3.4.1 Overview

In this section we model the economic constraints that are typical of commercial relationships (or

agreements) between ASes in the Internet [Gao and Rexford, 2001]. We refer to routing policy in-

stances that adhere to the Gao-Rexford guidelines assafeand ones that do not adhere aspotentially

unsafe. The Gao-Rexford guidelines we consider are as follows:

1. Every node is customer, peer, or provider to its neighboring nodes. The commercial agree-

ment (i.e., relationship) between any two nodes does not change over time.

2. Each node prefers a path through a customer over a path through a peer / provider and prefers

a path through a peer over a path through a provider.

3. Each node provides transit service only to its customers.This is achieved by configuring

the appropriate import / export policies for paths (i.e., which paths are advertised to which

neighbors and which paths are accepted from which neighbors). The end result of these

import / export policies is that all paths are valley-free. Avalley-free path consists of zero
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or more customer-to-provider links followed by an optionalpeering link followed by zero

or more provider-to-customer links.

4. A node cannot be a provider to itself. There are no customer-provider cycles. Furthermore,

a node cannot be both a (direct or indirect) provider and a (direct or indirect) peer to another

node as shown in Figure 3·20.

z

u peer

peer
provider

provider

Figure 3·20: Strict economic relationships where nodeu cannot be an indirect
provider and an indirect peer to nodez. The crossed edge represents a peering
edge that cannot exist in this configuration as it would make nodeu both an indi-
rect provider and peer to nodez.

The restrictions of the economic model, in particular the types of relationships allowed be-

tween nodes, enable equivalence classes of peers as shown inFigure 3·21.

Figure 3·21: Equivalence classes of peers in economic DPR.
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The economic constraints we consider are a stricter versionof the Gao-Rexford guidelines

which are sufficient to guarantee stability in a static graph. In particular, the Gao-Rexford guide-

lines have no restrictions on the relative ordering of peer and provider paths. Thus, the economic

DPR model is also safe. We utilize economic DPR when considering safe policy routing instances

that are guaranteed to converge. More specifically, we utilize it when we introduce economic

RDMP in Chapter 4 and when we derive properties of safe policyrouting dynamics in chapter 6.

3.4.2 Basic Notation

Definition 27 (Economic Operator). The economic relationship between nodes are described using

the operator�$. This operator is essential for reasoning about the economic relationships between

nodes in both paths and causation chains. Astrict economic relation is defined by:

u ≻$ v iff u �$ v andu �$ v

and an equivalence relation is defined by:

u =$ v iff u �$ v andu �$ v

Economic relationships can be derived from the operator�$:

• If u is a customer ofv thenu ≺$ v.

• If u is a provider tov thenu ≻$ v.

• If u is a peer tov thenu =$ v.

The properties of the economic operator�$ can be modeled usingpre-order conditions [Davey

and Priestley, 2002]:

1. (reflexive)x �$ x

2. (transitive)x �$ y andy �$ z impliesx �$ z

The following transitive relationships hold:

x ≻$ y andy �$ z impliesx ≻$ z

x �$ y andy ≻$ z impliesx ≻$ z
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Definition 28 (Customer, Peer, and Provider Paths). We define paths by the economic relationship

between a path’s starting nodeu and its next-hop. For all pathsP u:

Customer(P u) iff u ≻$ NextHop(P u)

Peer(P u) iff u =$ NextHop(P u)

Provider(P u) iff u ≺$ NextHop(P u)

Definition 29 (Valley). We define a valley to be a sequence of three distinct nodes〈a b c〉 satisfying

the condition:

a �$ b �$ c

The four types of valleys can be seen in Figure 3·22. Every valley-free sequence is a series of

zero or more ascending customer-to-provider relationships, followed by an optional peer relation-

ship, followed by a series of zero or more descending provider-to-customer relationships.

Figure 3·22: Valleys

Definition 30 (Economic DPR Instances). An economic DPR instance(�$,�
t, G) satisfies the

following conditions:

1. All paths which have a valley are forbidden (i.e.,are not realizable).

2. Customer paths are always preferred over peer/provider paths and peer paths are always

preferred over provider paths. Thus given pathsP u
1 andP u

2 :

Customer(P u
1 ) and not Customer(P u

2 ) ⇒ P u
1 ≻ P u

2

Peer(P u
1 ) and Provider(P u

2 ) ⇒ P u
1 ≻ P u

2



Chapter 4

Minimizing Policy Routing Dynamics

4.1 Overview

In this chapter we formulate the Routing Dynamics Minimization Problem (RDMP) and show its

complexity class both in the general case and under certain restrictions. The formal proofs can

also be found in [Mattar et al., a, Mattar et al., 2010a]. We focus first on motivating the problem

and on presenting the main intuition behind our results.

RDMP utilizes policy digraphs, a time-invariant structurewhich captures how routing update

messages can propagate in the network, to solve a graph optimization problem. This optimiza-

tion problem minimizes the longest possible sequence of routing update messages in a dynamic

network by changing the path preferences of nodes. The minimization of the longest possible se-

quence is only one possible optimization goal that represents a simple min-max optimization. The

correspondence between the length of the longest sequence and the occurrence of a dispute wheel

(or policy conflict) is of particular interest to us and partly motivated this choice. If the longest

possible sequence has infinite length, it implies that a dispute wheel (or policy conflict) exists.

Hence, if the optimization produces an RDMP instance whose length is finite, it implies that the

routing instance is safe (i.e., convergent). This allows us to explore the correspondence between

the length of causation chains in an RDMP instance and the safety of the selected path preferences

across nodes.

Consider the policy digraph ofBAD GADGET in Figure 3·6. Consider the hypothetical toy

example where the path preferences of exactlytwonodes inBAD GADGET mustbe swapped. The

resulting possible policy digraphs are outlined in Figure 4·1. The optimal solutionB, where the

length of the longest causation chain (i.e., path) is minimized, is obtained by swapping the path

35
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Figure 4·1: All possible policy digraphs where the path preferences of exactly
two nodes are swapped. The bolded nodes represent the ones that performed a
swap in their path preferences. The dashed arrows representthe subpath edges
that are on the longest walk in the policy digraph. The optimal solution is B
where nodes1 and3 swapped their path preferences and the length of the policy
digraph is2. The lengths ofE andF are infinite since they have cycles.

preferences of nodes1 and3. We show that finding a policy configuration which minimizes the

length (i.e., the size of the longest walk with possibly repeated nodes) ofthe policy digraph is

NP-Hard.

Even though RDMP as described in this thesis requires a centralized solver which cannot be

easily realized in practice, we view RDMP as a complement to SPP. While SPP is concerned with

the stable assignment of paths irrespective of the resulting routing dynamics, RDMP is concerned

with optimizing the routing dynamics (by changing the path preferences) irrespective of the paths

assigned.By routing dynamics we mean the lengths of the causation chains which capture the

propagation of path changes across nodes in the network.If the routing dynamics in RDMP are

optimized in such a way that the length of all causation chains (i.e.,paths) in the policy digraph are

finite, then the policy routing instance is stable and all propagations of path changes are bounded

(i.e., a stable unique path assignment exists as proved in [Griffin et al., 2002]). We envision that

the formulation of RDMP will allow us to explore problems where the dynamics of policy routing
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can be examined. In particular, an immediate extension involves deriving policy guidelines that

limit the control overhead due to the propagation of path changes in the network. Alternatively,

one may develop distributed protocols that exchange diagnostic information to explicitly minimize

(or reduce) the routing dynamics by having nodes dynamically adapt their routing policies. Such

control-plane optimizations to reduce the overhead of routing dynamics (or the propagation of

route updates) could also serve as the basis for performing better traffic engineering. In particular,

the routing policies can be adapted to not only minimize the routing dynamics but may incorporate

other traffic engineering objectives to increase the predictability of traffic loads and aid operators

in capacity planning / dimensioning of their network [Feamster and Rexford, 2007, Quoitin et al.,

2005,Uhlig and Bonaventure, 2004].

We also consider more realistic restrictions on RDMP. In particular, we consider the case

where nodes abide by the Gao-Rexford guidelines that guarantee safety (i.e., convergence).We

show that finding a policy configuration which minimizes the length of the policy digraph when

nodes abide by the Gao-Rexford guidelines can be solved in polynomial time.This result provides

insight into possible approaches for developing distributed protocols to minimize the dynamics of

policy routing in the Internet today. Such solutions, however, are outside the scope of this thesis.

While RDMP, as described here, minimizes the length of the longest path in the policy digraph,

many other optimizations are possible such as the (weighted) average or median path length, the

number of cycles in the graph,etc. Nodes in the policy digraph (representing paths) could also be

labelled with weights to capture many possible metrics suchas traffic load, relative path prefer-

ence, probability of using that path,etc. This thesis focuses on formalizing an unlabelled policy

digraph and on minimizing the length of the longest path (i.e., a standard min-max optimization

problem). Solving particular RDMP instances with other primary objectives (e.g.,traffic engineer-

ing requirements) is outside the scope of this thesis.

The rest of this chapter is organized as follows. Section 4.2formalizes RDMP and proves

it is NP-Hard. Section 4.3 formalizes Economic RDMP (i.e., RDMP instances that abide by the

Gao-Rexford guidelines) and proves that it can be solved in polynomial time.



38

4.2 Routing Dynamics Minimization Problem

In this section we formalize the Routing Dynamics Minimization Problem (RDMP). RDMP is an

optimization problem—its goal is to change the path preferences of a subset of nodes to minimize

the worst case routing dynamics regardless of changes to theunderlying topology (e.g.,link fail-

ures). While SPP is concerned with the stable assignment of paths irrespective of the resulting

routing dynamics, RDMP is concerned with minimizing the routing dynamics (by changing the

path preferences) irrespective of which paths are assigned.

4.2.1 Formal Definition

Let a set of nodes in a network be denoted byV . Let Ω be a set of path preferences for this set

of nodesV . In other words, each≻∈ Ω represents the path preferences across every nodev ∈ V .

Each path preference≻∈ Ω has a corresponding policy digraphO(≻), representing all possible

causation chains over the set of nodesV . The setΩ reflects the degree of flexibility in changing the

nodes’ preferences. An exampleΩ is where only the path preferences of a single nodev ∈ V can

be changed and the path preferences of all other nodes are fixed. RDMP is thus formally defined

by (V,Ω). The goal of RDMP is to find the path preferences≻∗∈ Ω which will minimize the

worst case routing dynamics represented by the policy digraph:

≻∗ = arg min
≻∈Ω

Length(O(≻))

Note that Length(O(≻)) represents the length of the longest path (i.e., causation chain) in

O(≻). Thus RDMP represents a framework to tailor preferences of nodes in a network to minimize

the worst case routing dynamics regardless of underlying time-varying topology.

4.2.2 Sample Instance

RDMP formalizes the example in Figure 4·1 where exactly two nodes must swap their path pref-

erences. In that example,|Ω| = 6 which each≻∈ Ω resulting in a particular policy digraph. The

solution to this problem is configurationB where Length(O(≻∗)) = 2. In generalΩ can be used

to formalize other conditions (or restrictions) on the pathpreferences of nodes. For example,Ω
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can be used to encode popular constraints such as the Gao-Rexford conditions [Gao and Rexford,

2001] where AS path preferences abide by the commercial / economic agreements.

4.2.3 Complexity

Theorem 4. RDMP is NP-Hard.

Proof. The RDMP problem is given by a set of nodes in a networkV and an allowable set of path

preferencesΩ across all the nodesv ∈ V : (V,Ω).

Overview of reduction fromMAX SAT:

To prove that RDMP is NP-Hard, a reduction from MAX SAT is required. The MAX SAT

problem consists of a set of variablesX = {x1, x2, . . . , xn} and a collection of clausesC =

{C1, C2, . . . , Cm}, consisting of disjunctions of three literals (a literalX is a variablex or its

negationx). The goal of MAX SAT is to determine a truth assignment inX which maximizes the

number of satisfied clauses. The MAX SAT problem is known to be NP-Hard. Without loss in gen-

erality we assume that each clauseC consists of literals corresponding to exactly three variables.

An example of the MAX SAT problem with three clauses and three literals is as follows:

C1 = X1 ∪X2 ∪X3

C2 = X̄1 ∪X2 ∪X3

C3 = X1 ∪X2 ∪X3

An assignmentX = {x1, x2, x3} = {1, 0, 0} results in all three clauses being satisfied.

Given an algorithmA which solves the RDMP problem, there is a polynomial time algorithm

B which usesA to solveMAX SAT. This reduction implies that RDMP is NP-Hard.

We can assume that algorithmA receives as input a set of nodesV and a set of path preferences

Ω. Algorithm A then returns path preferences≻∗∈ Ω whose corresponding policy digraph has a

minimal length. AlgorithmB takes as input an instanceI of MAX SAT and constructs a set of

nodesV and a set of path preferencesΩ. Algorithm B then utilizesA to return the optimal path

preferences≻∗∈ Ω which can then be converted to a solution to the instanceI of MAX SAT.

Algorithm B will construct a series of “structures” dependent on the input I. Each structure

represents one or more nodes in the setV that will be sent to algorithmA. Each structure also rep-

resents the path preferences for those particular nodes. Thus for each nodev ∈ V represented by a

structure, a set of path preferencesΩv is defined. AlgorithmB constructs multiple interconnected

structures to create a final “gadget”. This gadget is converted into a resultant set of path prefer-

encesΩ which represents the permutation of all possible path preferencesΩv across the nodes in

V . Finally, algorithmA is used to solve the RDMP problem on the input tuple(V,Ω). This output
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from algorithmA is used to obtain a solution to the instanceI of MAX SAT. First we must define

the set of required structures. Instead of describing the preferencesΩv directly, we describe the

resultant set of policy digraphs.

Continuation structure:

The continuation structure shown in Figure 4·2 has 2 input links and 2 output links where any

input link can be connected to any output link. In other words, input link e1 can be connected to

output linkse3 or e4. While the example shows two input links and two output links, in general

the continuation structure can havem input links andk output links.

The continuation structure maps to a single policy digraph.In particular it represents a single

network noden that has fixed path preferences where|Ωn| = 1. The policy digraph is a single

stacked pnoden. For example the connectione1 to e3 in the continuation structure is mapped to

a causation chain from subpath edgee1 to subpath edgee3. This is possible because the policy

digraph has implicit policy edges from each pnode to the one below it within a stacked pnode. In

general there are causation chains from subpath edgese1 or e2 to subpath edgese3 or e4. The

continuation structure will be used in the construction of the overall gadget to obtain a solution to

the instanceI of MAX SAT as we will see.

e1
e2

e3

e4

e1

e2

e3

e4

Continuation Structure
Resulting Set of 

Policy Digraphs

n

Figure 4·2: Continuation structure and its resulting policy digraph.

Switch structure:

The switch structure is outlined in Figure 4·3. This structure maps to a single network node

n. Noden has four available paths and two available path preferences, with |Ωn| = 2. For the

first path preference≻1∈ Ωn, there is a path from subpath edgee1 to subpath edgee3 in its policy

digraph. Similarly, for the second path preference≻2∈ Ωn, there is a path from subpath edgee2

to subpath edgee4. If algorithm A returns a solution containing policy preference≻1, then we

sayA chooses to connect structure linkse1 to e3 of the switch. Similarly for the choice of≻2 it

represents a connection betweene2 ande4.

Variable structure:
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Switch Structure

Resulting Set of 

Policy Digraphs

e2

e4

e1

e3

n

e1

e3

n

e2

e4

e1

e2

e3

e4

Figure 4·3: Switch structure and its resulting policy digraph for each≻∈ Ω.

For each variableX ∈ X of the MAX SAT instanceI, algorithmB creates a variable structure,

shown in Figure 4·4. This structure is composed of three continuation structures and a switch. If

A connects linke1 to link T we say thatA sets the variableX to TRUE. Otherwise ifA connects

link e1 to link F̄ we say thatA sets the variableX to FALSE. If the input instanceI of MAX SAT

hask variables, then exactlyk variable structures will be created.

T

Fe1

Figure 4·4: Variable structure.

Literal structure:

Each clauseC consists of literals corresponding to three variables. ForexampleC = X ∪ Y ∪ Z

contains three literals: one positive,X, and two negative,Y andZ. For each literalX or X in

a clause,B constructs a literal structure consisting of a single switch for the literalX that is

connected to the corresponding variable structurex as shown in Figure 4·5 for a positive literal.

We say positive literal structures are satisfied ifA assigns the variable structure to beTRUE.

We say negative literal structures are satisfied ifA assigns the variable structure to beFALSE. If

a literal structure is satisfied, then we can safely assumeA will choose not to connecte1 to e2.

This is because in the construction of our overall gadget later on we will ensure that the causation

chain leading up toe1 will be large enough to discourageA from making such a choice. If a literal

structure is not satisfied, we can assumeA will connect e1 to e2 to avoid creating a cycle. For
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T

XF
x

e1

e2

Figure 4·5: Literal structure for a positive literal. The variable structurex is on
the left while the switch structureX is on the right. A negative literal structure
would connect to theT link of the variable structure.

example if the literal structure in Figure 4·5 is not satisfied then the variablex will be assigned

FALSE. If e1 is not connected toe2 there would be a cycle (i.e., a path of infinite length). Hence,

A will avoid the cycle (in an attempt to minimize the length of the policy digraph) by connecting

e1 to e2.

Clause structure:

For each clauseC ∈ C algorithm B constructs a clause structure consisting of three literal

structures as shown in Figure 4·6. We sayA satisfies a clause structure if and only if it satisfies

at least one literal structure. It follows that if a clause issatisfied there is no connection between

e1 ande2. If a clause is not satisfied then there is a connection between e1 ande2. This follows

directly from the definition of a literal structure. If the input instanceI of MAX SAT hasm clauses,

then exactlym clause structures will be created.

x

T

F

y

T

F

z

T

F

X

y

Z

Y

e1

e2

Figure 4·6: Clause structure corresponding to the clauseC = X ∪ Y ∪ Z.
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Overall gadget to solveMAX SAT:

All the links between the clause structures are connected together as shown in Figure 4·7. The

boxes represent a path of pnodes of some lengthL . The lengthL is large enough to force the longest

possible path (i.e., causation chain) to contain such a box. Each clause structure that is satisfied

implies there is no connection betweene1 ande2 (as shown in Figure 4·6). Thus the longest path

will not traverse the box and the clause structure associated with it. Instead the longest path will

will traverse the continuation structures at the top. For every clause structure that is not satisfied,

the length of the longest path will increase byL as it includes the box. The size of the longest

possible path is equal tosL + ǫ, wheres is the number of unsatisfied clause structures andǫ is a

term not dependent onL. Thus for large enoughL, ǫ can be made irrelevant toA’s solution. Since

algorithmA chooses path preferences that minimize the length of the longest possible path in the

policy digraph, (sL+ǫ), this is equivalent toA satisfying the largest number of clause structures in

the gadget. Hence algorithmB can use algorithmA to maximize the number of satisfied clauses.

This implies that RDMP is NP-Hard.

L L L

C1 C2 C3 Cm

L L

Figure 4·7: Gadget to solve MAX SAT.

4.3 Classes of RDMP

We have defined the overall space of RDMP instances and have shown the complexity of RDMP

to be NP-Hard. One may, however, put more realistic restrictions to focus on particular RDMP

instances that may provide insight into the structure of policy routing dynamics in the Internet

today. In particular, a visual representation of a few sample classes of RDMP instances are outlined

in Figure 4·8.

One may consider RDMP instances that are cycle-free. By cycle-free we mean RDMP in-

stances defined byΩ where every possible policy digraph,O(≻), for every≻∈ Ω has finite length.
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All RDMP 
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Cycle-free RDMP 

instances

RDMP instances that 

follow the Gao-Rexford 

guidelines

Figure 4·8: The space of RDMP instances.

This essentially implies thatO(≻) for any random≻∈ Ω contains no cycles between pnodes. An

example of a finite length policy digraph is shown in Figure 4·9 (Left) and an example of an infinite

length policy digraph is shown in Figure 4·9 (Right).

p1

p2

n1

p3

p4

n2

(a)

p2

p1

n1

p3

p4

n2

(b)

Figure 4·9: A policy digraph consisting of two stacked pnodes with a finite length
of 2 (Left) and a policy digraph consisting of two stacked pnodes with infinite
length (Right).

One may also consider instances where the restrictions on allowable path preferences abide

by the Gao-Rexford guidelines [Gao and Rexford, 2001]. The Gao-Rexford guidelines consider

the commercial / economic relationships between ASes to restrict the path preferences of nodes

in such a way as to guarantee safety. One particular guideline, for example, is that ASes must
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prefer customer paths over peer / provider paths. RDMP instances that follow the Gao-Rexford

guidelines must also be cycle-free. Otherwise there existsa path preference≻∈ Ω that follows the

Gao-Rexford guidelines but still contains a dispute wheel which would contradict the safety of the

guidelines as proved in [Gao and Rexford, 2001].

4.3.1 Simple RDMP

RDMP instances without cycles guarantee routing safety forany solution. We are interested in

further classifying RDMP instances by the level of constraints on the nodes. For example, the

RDMP instance in Figure 4·1 describes a constraint where exactly two nodes in the network must

swap their preferences. We defineFlexible RDMP instances to have no constraints, where each

node can freely choose to swap its non-forbidden paths independently.

Definition 31 (Flexible RDMP). An RDMP instance(V,Ω) is flexible if there is a set of allowable

pathsP andΩ represents every possible ordering ofP. This implies that all non-forbidden paths

within every stacked pnode are interchangeable.

Definition 32 (Simple RDMP). An RDMP instance(V,Ω) is simple if it is flexible and cycle-free.

Thus, the policy digraphs,O(≻), of every preference≻∈ Ω have finite length.

If an RDMP instance issimple, every node is flexible to change its policies and no cycles exist.

Thus all simple RDMP instance represent safe policy routingdynamics (i.e., instances that do not

contain cycles or dispute wheels). Instances that are dispute wheel free represent easy instances of

the Stable Path Problem, in that there is a single unique stable path assignment. Such instances are

interesting as they represent the type of dynamics that we strive for: safe dynamics that converge.

All simple RDMP instances are flexible, implying that there are no inter and intra node constraints

to hinder the minimization of the routing dynamics.

The complexity of this class of problems are of particular interest as they constitute the simplest

class of routing dynamics against which comparisons can be made. We show that minimizing the

dynamics of simple RDMP instances can be done in polynomial time.

Theorem 5. Let≻∗ be a solution to a simple RDMP instance(V,Ω). Then there exists a longest

causation chain of the policy graphO(≻∗) that consists only of subpath edges.
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Proof. Assume not. LetY be the set of longest causation chains ofO(≻∗). Based on the assump-

tion, every causation chainY ∈ Y must have at least one policy edge. We chooseY ∈ Y such

that the number of subpath edges before its first policy edge is maximized overY. Let n represent

the stacked pnode through which the first policy edge ofY traverses, as shown in Figure 4·10.

Causation chainY traverses stacked pnoden from subpath edgea to subpath edged via one (or

more) policy edges.

a

b

c

d

n

Longest Causation Chain Y

Length(Y) = La + Ld

La

Lb

Lc

Ld

p1

p2

Figure 4·10: The stacked pnoden through which the longest causation chainY
traverses. Linksa andb are incoming subpath edges, while linksc andd are out-
going subpath edges. Causation chainY traverses stacked pnoden from subpath
edgea to subpath edged.

Let La and Lb represent the lengths of the longest incoming causation chains via subpath

edgesa andb, respectively. Similarly, letLc andLd represent the lengths of the longest outgoing

causation chains via subpath edgesc andd, respectively. For causation chainY to be the longest

causation chain traversing stacked pnoden, the following inequalities must hold:

La + Lc ≤ La + Ld

Lb + Ld ≤ La + Ld

ThereforeLc ≤ Ld andLb ≤ La. Furthermore it must be thatLc < Ld. Otherwise ifLc = Ld,

then there is a maximum causation chainY ′ ∈ Y that uses subpath edgesa andc such that its first

policy edge occurs at a later stacked pnode. This contradicts the assumption thatY contains the

maximum number of subpath edges before the first policy edge is traversed.

SinceΩ is simple, there exists another preference≻′∈ Ω identical toY but with the paths of

the stacked pnoden swapped as shown in Figure 4·11. This creates a maximum causation chain

of lengthLb + Lc < La + Ld. Thus≻∗ is not optimal as the length of the longest causation chain

was reduced. This causes a contradiction and completes the proof.

Theorem 6. Simple RDMP instances can be solved in polynomial time.

Proof. Let Ω be a simple RDMP instance for nodesV of a network. We describe a polynomial

time algorithm to find a preference≻∗∈ Ω whose resulting policy digraphO(≻∗) has minimized

length.
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b

a

d

c

n

Causation Chain Y of Length

Length (La + Ld) no longer exists

Lb

La

Ld

Lc

p2

p1

Figure 4·11: The stacked pnoden after pnodesp1 andp2 are flipped. Linksa and
b are incoming subpath edges, while linksc andd are outgoing subpath edges.
The longest causation chainY of length(La + Ld) no longer exists.

We start with a random preference≻∈ Ω and compute its corresponding policy digraphO(≻),

as well as its longest causation chainY ∗. This can be done in polynomial time sinceO(≻) has no

cycles. IfY ∗ consists solely of subpath edges then the algorithm stops and outputs≻. This is an

optimal solution based on the result of Theorem 5.

Otherwise we select a stacked pnoden ∈ O(≻) at which a policy edge ofY is traversed. This

policy edge is from pnodep1 to policy edgep2. We perform a preference swap of pnodesp1 and

p2 in n which Y ∗ traverses. This new policy graph has a corresponding preference≻′∈ Ω since

the RDMP instance is simple. An example is shown in Figure 4·11 where pnodesp1 andp2 are

swapped. The longest causation chainY ∗ of lengthLa + Ld no longer exists since the swapping

operation removes the policy edge between subpath edgea and subpath edged. While it does

create a new causation chain of lengthLb + Lc, we know thatLb + Lc < La + Ld. Furthermore

this swapping operation does not create any new causation chains of lengthLa + Ld.

This operation will occur onlyO(m3) times, wherem is the number of nodes inV . This is

because after the swap occurs, nodesp1 andp2 will not be swapped again for a causation chain of

lengthLa + Ld. Thus nodesp1 andp2 will be swapped once for every maximal causation chain

lengthLa + Ld. Sop1 andp2 will be swapped at mostm times, sinceLa + Ld ≤ m. There are

O(m2) pairs of pnodes, hence the swapping operation will occur only O(m3) times. Thus there is

a polynomial time algorithm which always returns an optimalsolution to a simple RDMP instance.

4.3.2 Economic RDMP

Next we consider RDMP instances that abide by the Gao-Rexford guidelines that guarantee safety [Gao

and Rexford, 2001].

Definition 33 (Economic RDMP). An RDMP instance(V,Ω,�$) is economic if there is a set of

allowable valley-free pathsP andΩ represents every possible ordering ofP consistent with the

Gao Rexford guidelines and the economic relationships of�$.

Theorem 7. Let≻∗ be a solution to an Economic RDMP instance(V,Ω,�$). Then there exists
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a longest causation chain of the policy digraphO(≻∗) that consists only of subpath edges and

policy edges between pnodes representing paths of different types based on�$.

Proof. This proof proceeds in a similar fashion to the proof in Theorem 5.

Assume not. LetY be the set of longest causation chains ofO(≻∗). Based on the assumption,

every causation chainY ∈ Y now has at least one policy edge between pnodes representingpaths

of the same type based on�$. We again chooseY ∈ Y such that the number of subpath edges

before this first policy edge is maximized overY. Causation chainY must have a policy edge

traversing at least one stacked pnoden as shown in Figure 4·12. The pnodes within the stacked

pnoden represent paths of three distinct types: customer, provider and peer paths. In general there

are two types of policy edges: policy edges between pnodes representing paths of the same type

and policy edges between pnodes representing paths of different types. The policy edges we are

considering here must be between pnodes representing pathsof the same type. In Figure 4·12 the

longest causation chainY traverses stacked pnoden from subpath edgea to subpath edged via a

policy edge between two pnodes representing customer paths. Note that this is the first occurrence

of this type of policy edge inY .

p2

p1

Provider paths

a

b

c

d

n

Longest Causation 

Chain Y

Length(Y) = La + Ld

Customer paths

Peer paths
e

La

Lb
Ld

Lc

Figure 4·12: The stacked pnodev through which the longest causation chainY
traverses. Linksa and b are incoming subpath edges, while linksc and d are
outgoing subpath edges. Causation chainY traverses pnodev from subpath edge
a to subpath edged.

Using an argument similar to the one in Theorem 5, the same inequalities hold and there exists

another preference≻′∈ Ω that is identical toY but with the paths of the stacked pnodev swapped

as shown in Figure 4·13. This creates a causation chain of lengthLb + Lc < Ld + La. Thus

≻∗ is not optimal, causing a contradiction. Note that the swapped pnodes represent paths of the

same type and hence can be swapped. Thus, all causation chains containing policy edges between

pnodes representing paths of the same type can be eliminated. This only leaves causation chains

consisting of subpath edges and policy edges between pnodesrepresenting paths of different types.
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Note that pnodes representing paths of different types cannot be swapped as such a swap would

violate the Gao-Rexford guidelines since all customer paths must be preferred over peer paths and

all peer paths must be preferred over provider paths.

Provider paths

b

a

d

c

n

Causation Chain Y 

of Length (La + Ld) 

no longer exists

p2

p1
Customer paths

Peer paths
e

Lb

La Lc

Ld

Figure 4·13: The stacked pnodev where two pnodes representing customer paths
are swapped thus eliminating the longest causation chainY . Links a andb are
incoming subpath edges, while linksc andd are outgoing subpath edges.

Theorem 8. Economic RDMP instances can be solved in polynomial time.

Proof. The proof is identical to the one presented for Theorem 6. Theonly difference is that path

preference swaps can only occur between pnodes that represent paths of the same type in order

to abide by the Gao-Rexford guidelines. Hence the only difference is with a node’s flexibility in

setting its routing policies.



Chapter 5

Detecting Policy Conflicts

5.1 Overview

In this chapter we derive all the required theoretical results to develop our detector for policy

conflicts. We also provide pseudocode for SAFETYPULSE—our token-based distributed algorithm

for detecting policy conflicts in any dynamic network. SAFETYPULSE diagnoses and monitors the

health of the network by detecting policy conflicts that could potentially lead to unbounded routing

dynamics (i.e.,protocol divergence) in realtime. The formal proofs and algorithm specification can

be found in [Mattar et al., b, Mattar et al., 2010b]. We focus here on motivating the problem and

on presenting the main intuition behind our results.

Detecting policy conflicts has been a long-standing problemin policy routing [Varadhan et al.,

1996]. Policy conflicts induce unhealthy (and unnecessary)routing dynamics that should (and

could) be avoided or eliminated. The existence of policy conflicts indicates that routers may not

be able to agree on any stable path assignment and BGP could potentially be divergent (i.e.,could

lead to potentially unbounded routing dynamics). Such routing oscillations are hard to diagnose

in realtime as path changes do occur in the network and it is often hard to classify a route flap as

a result of transient routing dynamics or a persistent policy conflict. This is especially true if the

conflict is among many nodes in the network that are distributed geographically and are managed

by many independent entities. This reduces QoS predictability, increases delay variability, causes

service disruption, and increases packet loss [Labovitz etal., 2000].

We utilize causation fences, a time-invariant structure which under certain conditions repre-

sents a dispute wheel, to prove thatany cycle of route updates where a node ends up with a more

preferred path must be due to a policy conflict. Otherwise, we prove that the cycle must be due to

50



51

a transient route flap.

Our theoretical results are outlined in Figure 5·1. We utilize these theoretical results to de-

velop SAFETYPULSE—our token-based distributed algorithm that is both provably correct (as

SPVP [Griffin and Wilfong, 2000]) and computationally efficient (as some of the light-weight

heuristic approaches [Yilmaz and Matta, 2007, Cobb and Musunuri, 2004]). In particular, we

identify the root cause of a causation cycle as either a transient route flap or a policy conflict.

SAFETYPULSE has several characteristics, namely, it is computationally efficient (a constant fac-

tor reduction in message size and number of messages when compared to SPVP), provably correct,

and backwards compatible. More specifically in terms of efficiency, SAFETYPULSE requires each

node to append only2 bits alongside each message update. Thus, for ann-node causation chain,

an overhead of2n bits is incurred, compared toxn bits in SPVP wherex >> 2 represents the

number of bits required to encode the history information that needs to be appended by each node.

Also, SAFETYPULSE reduces the number of messages required to detect a policy conflict by at

least a factor of2 as we will see.

Time-Varying 

Structures

alternating subchains

Time-Invariant 

Structures

Causation 

Chains

Causation 

Cycles

Dispute 

Wheel

Causation 

Fence

Transient 

Route

Flap?

no

yes

loop loop

Figure 5·1: Overview of the theoretical results underlying our conflictdetection
algorithm.

One could also visualize our conflict detection algorithm using policy digraphs. Consider the

following sample walk in the policy digraph ofBAD GADGET in Figure 3·6:

〈20〉〈320〉〈30〉〈430〉〈1430〉〈10〉〈210〉〈20〉
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It is easy to see that if a node is involved in a cycle of route updates such that it ends up with

a more preferred path, then a policy conflict exists. In the sample walk above, node2 initially had

path〈20〉 but ended up with path〈210〉. Clearly the cycle can repeat indefinitely as the walk can

go down the ladder at node2 and follow the same sequence of nodes again.

Our policy digraphs also provide intuition into the operation of existing solutions that pass

diagnostic information alongside route updates. In particular, they provide insight into how the

diagnostic information should beencoded. For example, SPVP [Griffin and Wilfong, 2000] ex-

changes extended path histories to detect policy conflicts.The existence of a policy conflict is

inferred when a node adopts and discards the same path in a cycle of routing update messages. To

detect the cycle from our sample walk, SPVP encodes the exchanged path histories as:

〈+20〉〈+320〉〈−430〉〈−1430〉〈+210〉〈−320〉

〈+430〉〈+1430〉〈−210〉

In SPVP, any node that switches between two paths always appends the more preferred path. When

a switch to a more preferred path is made, a+ is appended. Conversely, when a switch to a less

preferred path is made, a− is appended. To detect a policy conflict, SPVP needs one cycleof

updates to adopt path〈210〉 and another cycle to discard it as we can see from our sample walk.

SAFETYPULSE, our token-based distributed algorithm, leverages our theoretical results to con-

struct the most generalized detector for policy conflicts. It is the most generalized detector because

a node does not need to flap on thesame pathtwo (or more) times for a conflict to be detected

as in SPVP [Griffin and Wilfong, 2000]. Instead, if anodeis triggered twice by a cycle of route

updates, checking if the node ended up with a more preferred path is sufficient. This is irrespective

of how the underlying topology changes over time. To comparethe rankings of the paths involved

in the cycle, SAFETYPULSE requires each node to know which one of its paths is part of (oris

involved in) the cycle of route updates propagating in the network. Such is the type of information

that must be encoded in SAFETYPULSE’s token.

One could also use policy digraphs to synthetically construct policy routing instances with

more complex routing dynamics. Consider a walk in Figure 5·2 that starts when patha1 is adopted.
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The adoption of patha1 triggers a cycle of updates that makes patha2 available and in turn causes

it to get adopted. Since nodesA, B and C are involved in a policy conflict, patha2 will get

withdrawn after another cycle of updates between nodesA, B andC. The more preferred path

a3, however, may be adopted via another cycle of updates through nodesA, D andE. In this

case if the network stabilizes, no policy conflict will be detected if the detection criteria is a single

path being adopted and discarded. This highlights that it could potentially take a long time for a

node to adopt and discard a path. It is also important to note that any changes in the underlying

topology could stop the propagation of path changes (since some paths may not be available to

continue inducing path changes across nodes) making policyconflicts harder to detect. That is

precisely why the condition used by SAFETYPULSE to detect a policy conflict reduces the number

of messages required by at least a factor of2 when compared to SPVP.

b2

b1

a2

a1

A

B

a3

e1

E

c2

c1

C

d2

d1

D

Figure 5·2: Sample policy digraph.

The rest of this chapter is organized as follows: Section 5.2utilizes DPR to derive all our

theoretical results that will serve as the foundation for our SAFETYPULSE algorithm in Section 5.3.

5.2 Detecting Dispute Wheels

Once a causation cycleY = 〈y0 y1 . . . yk〉
t wherey0 = yk is realized, it implies that the change

instigated byy0 caused a series of actions to propagate alongY until yk (i.e.,y0) receives another

route update. Given any causation cycleY , we answer the following questions:

• Could the cause that inducedY be inferred?

• Couldy0 perform that inferencelocally and independently?
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To infer the exact cause that inducedY , we show that ifyk has a more preferred path at the end

of the causation cycle, at timet + k, than the path it had at timet, then a dispute wheelmustexist.

Otherwise a transient route flap occurred at timet (i.e.,a path was withdrawn or made available).

We also show thaty0 can indeed perform that inference locally, butnot independently. This has

implications on how policy conflicts can be detected in practice.

We know that any causation cycleY , of a DPR instanceD = (G,≻), induces a causation

fenceF = {N ,R,Q} where the first and last pivot nodes are the same,u0 = un−1, as shown in

Figure 5·3. UsingF , we show the necessary condition forF to be a dispute wheel in Lemma 3.

That condition is based on the relative ranking of pathsQ0 andRn−1Qn−2, irrespective of whether

these paths were adopted or discarded. In Lemma 4 and Lemma 5 we show how these paths can

be determined. This allows us to infer either the existence of a dispute wheel in Theorem 9, or the

occurrence of a transient route flap in Theorem 10. Finally, we outline howy0 could theoretically

infer the existence (or lack thereof) of dispute wheels.

u0 = un-1

Q0
R1 Rn-1

u1
un-2

Q1 Qn-2

u0

Q0

R1
u1 un-2

Qn-2

un-1Rn-1

Q1

d

Figure 5·3: If u0 = un−1 and Q0 ≺ Rn−1Qn−2 then a causation fence is a
dispute wheel.

Lemma 3 (Fence-Wheel Relationship). A causation fenceF = {N ,R,Q} of a DPR instance

D = (G,≻), induced by a causation cycle of sizek, where the first and last pivot nodes are the

same,u0 = un−1, is a dispute wheel ifQ0 ≺ Rn−1Qn−2.

Proof. A sample causation fence is outlined in Figure 5·3. Pivot nodeu0 has a spoke pathQ0 but

not a rim path while pivot nodeun−1 has a rim pathRn−1 but not a spoke path. A dispute wheel

W can be constructed fromF as shown by removing pivot nodeu0 and settingQn−1 = Q0.

Lemma 4. Given a causation fenceF = (N ,R,Q) of a DPR instanceD = (G,≻), induced by

a causation cycle of sizek, where the first pivot node inF is u0, Q0 = π(u0, t + a) for some time

offseta ∈ {0, 1}. If u0 is part of an adopting subchain thena = 1. Otherwise,a = 0.
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Proof. The offseta simply determines whether the pathQ0 of nodeu0 is the current pathπ(u0, t)

or the new pathπ(u0, t + 1). As shown in Figure 5·3, nodeu0 only has a spoke pathQ0. If u0

is part of an adopting subchain then subsequent nodes along the subchain are adopting a new path

via u0. This implies thatQ0 must have become available and henceQ0 = π(u0, t + 1) where

a = 1. If, on the other hand,u0 is part of a discarding subchain then subsequent nodes alongthe

subchain are discarding the path they were initially using via u0. This implies thatQ0 must have

been discarded and henceQ0 = π(u0, t) wherea = 0.

Lemma 5. Given a causation fenceF = (N ,R,Q) of a DPR instanceD = (G,≻), induced by a

causation cycle of sizek, where the last pivot node inF is un−1, Rn−1Qn−2 = π(un−1, t+k+ b)

for some time offsetb ∈ {0, 1}. If un−1 performed a StepDown thenb = 0. Otherwise,b = 1.

Proof. The offsetb simply determines whether the pathRn−1Qn−2 of nodeun−1 is the current

pathπ(un−1, t + k) or the new pathπ(un−1, t + k + 1). The offsetb simply determines whether

un−1 should consider the current pathπ(un−1, t + k) or the new pathπ(un−1, t + k + 1). As

shown in Figure 5·3, pivot nodeun−1 only has pathRn−1Qn−2. If pivot nodeun−1 performed

a StepDown then it is part of a discarding subchain where it discards pathRn−1Qn−2. Hence,

Rn−1Qn−2 = π(un−1, t + k) whereb = 0. Conversely, ifun−1 performed a StepUp or StepSame

then it is part of an adopting subchain where it adopts pathRn−1Qn−2. Hence,Rn−1Qn−2 =

π(un−1, t + k + 1) whereb = 1.

Theorem 9(Dispute Wheel Inference). Given a causation cycleY , such thatY = 〈y0 y1 . . . yk〉
t

wherey0 = yk, there exists time offsetsa ∈ {0, 1} and b ∈ {0, 1} such that ifπ(y0, t + a) ≺

π(yk, t + k + b) then a dispute wheel exists aroundY .

Proof. Let F be the causation fence induced byY . Using Lemma 4 we can determine time offset

a and hence pathQ0. Similarly, using lemma 5 we can determine time offsetb and hence path

Rn−1Qn−2. From Lemma 3 we know that if the conditionQ0 ≺ Rn−1Qn−2 is satisfied then the

causation fenceF is a dispute wheel. Hence, the existence (or lack thereof) ofa dispute wheel can

be inferred.

Theorem 10(Route Flap Inference). Given a causation cycleY , such thatY = 〈y0 y1 . . . yk〉
t

wherey0 = yk, if no dispute wheel exists thenyk received a transient route flap during the causa-

tion cycle.

Proof. From Theorem 9 there exists time offsetsa ∈ {0, 1} andb ∈ {0, 1} such that the condition

π(y0, t+a) ≻ π(yk, t+k+ b) holds, otherwise a dispute wheel must exist. Thus pathπ(y0, t+a)

had to be withdrawn byy0’s next-hop neighbor during the causation cycle to forceyk to use the

new, less preferred, pathπ(yk, t+k+b). Otherwiseyk would not have changed its pathπ(y0, t+a).

This would imply thatπ(y0, t + a) = π(yk, t + k + b) which is a contradiction.
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If nodey0 observes causation cycleY , to infer the existence of a dispute wheel, nodey0 must:

• Compute time offseta to determine pathQ0

• Compute time offsetb to determine pathRn−1Qn−2

The computation of offsetb depends only on the action ofyk at timet + k (Lemma 5). The

computation of offseta is dependent on whethery0 is a part of an adopting or a discarding subchain

(Lemma 4). Letyi be the first node inY after y0 whose action is not a StepSame. If the action

of yi is a StepUp theny0 is part of an adopting subchain. Otherwise,y0 is part of a discarding

subchain.

Thus, given the type of subchain thaty0 belongs to, the dispute wheel inference problem can

be solved. The solution is indeed local but cannot be performed independently—it requires the

cooperation of the first node along Y that performed a StepUp or StepDown action.

Remark 4. A causation cycleY is triggered by one and only one event. An event could be a

change in a link’s availability causing a node to adopt or discard a particular path. If multiple events

occur, their effects would be propagated along separate causation chains. If nodey0 observes

causation cycleY it needs to determine pathQ0 that triggered the cycle and pathRn−1Qn−2 that

it had when the cycle was detected. Even if nodey0 performs other actions due to other causation

chains propagating in the network, the relative ranking of pathsQ0 andRn−1Qn−2 is still sufficient

to infer the existence of a dispute wheel.

5.3 SAFETYPULSE

Dispute wheels may result in protocol divergence. The detection of dispute wheels is of practical

value to system administrators. By their fundamental structure, dispute wheels represent cyclic

policy conflicts, which break from the traditional tiered architecture of the Internet [Gao and Rex-

ford, 2001], and could potentially lead to unbounded dynamics. SAFETYPULSE is a distributed

algorithm to detect dispute wheels. Once dispute wheels aredetected, they can be reported to

administrators for further analysis.
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5.3.1 Overview

SAFETYPULSE piggybacksmessagesalongside route updates. One possible implementation of

SAFETYPULSE on BGP would be to use message options. Each node places a child tokenin this

message. As a node receives a route update with this message,it chooses a new path and broad-

casts a new message alongside its own route update. SAFETYPULSE essentially sends messages

between nodes along causation chains.

If a nodey receives a message from a neighbor which hasy’s token, then it can be inferred

that y has been involved in a causation cycle. Assume that nodey sent out a token at timetout

and received the token back at timetin. A dispute wheel can be detected by comparing the relative

ranking ofy’s realized paths around these times. Using Theorem 9 it can be inferred that a dispute

wheel exists if for two given time offsetsa ∈ {0, 1} andb ∈ {0, 1}:

π(y, tout + a) ≺ π(y, tin + b)

Generally speaking, this means that if nodey had a more preferred route around the time when

it received the token (at timetin + b) than around the time when it sent out the token (at time

tout + a), then a dispute wheel exists.

The time offsetsa andb represent whether the paths used are the ones adopted or discarded at

timestout andtin, respectively. Time offseta is determined by the structure of the causation cycle.

According to Lemma 4, it depends on whethery is part of an adopting or a discarding subchain.

As we will see, time offseta can be computed by a third party node on the causation cycle. Time

offsetb, on the other hand, is determined by nodey’s action at timetin. According to Lemma 5, if

y performed a StepDown thenb = 0. Otherwise,b = 1.

The information in the token received by nodey is enough fory to recover pathsπ(y, tout+ a)

andπ(y, tin + b) for the comparison. We describe the SAFETYPULSE algorithm in three sections

as shown in Figure 5·4.

1. Sending out token with ProcessNode()

2. Computing time offset with SetTimeOffset()
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3. Receiving token with DetectDisputeWheel()

θy=(k,a)

θy=(k,_)

node y

node v

2. SetTimeOffset()

1. ProcessNode()

3. DetectDisputeWheel()

Figure 5·4: Overview of SAFETYPULSE algorithm.

5.3.2 Sending the Token

We defineM(y, t) to be the SAFETYPULSE message that nodey sends out alongside its route

update at timet. In general, if nodey changes its assigned path at timet then it has performed an

action, switching from pathπ(y, t) to pathπ(y, t + 1). Every timey performs an action, it stores

the paths associated with its action,π(y, t) andπ(y, t + 1), in a hashtable using a newly generated

keyk. The token to be sent out isθy = (k, ), wherek is the key identifying the action performed

and is an empty slot in which the time offseta will be placed by another node. The new message

M(y, t + 1) to be sent out alongside a route update at timet + 1 following an action performed by

y at timet must contain the following:

• the message received initially from the node that caused theaction

• nodey’s new tokenθy

More formally, if π(y, t) 6= π(y, t + 1) then:

M(y, t + 1)←M(Cause(y, t), t) + θy
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1: function PROCESSNODE(y, t)
2: Best(y, t)← max≻ Choices(y, t)
3: π(y, t + 1)← Best(y, t)
4: θy ← ∅
5: if π(y, t) 6= π(y, t + 1) then
6: k ← new key
7: Store(k, (π(y, t), π(y, t + 1)))
8: θy ← (k, )
9: M(y, t + 1)←M(Cause(y, t), t) + θy

Figure 5·5: SAFETYPULSE token creation and action storage.

Messages are propagated along causation chains where each node along the chain appends its

token to the received message that triggered an action and sends out a new message. The algorithm

for sending the token is outlined in Figure 5·5.

5.3.3 Receiving the Token

When a nodey receives a tokenθy that it has previously created in a routing update message,

it checks to see if a dispute wheel has been created. The contents of the token areθy = (k, a)

wherek represents the key to lookup the action anda represents whether to use the discarded or

the adopted path of the action. Note thata will be created by a third party node as described in

the next section. Here, we assume thata has been set appropriately andπ(y, tout + a) can be

determined.

Next, using Lemma 5 we determine the second time offsetb to find π(y, tin + b). According

to Theorem 9 if:

π(y0, t + a) ≺ π(yk, t + k + b)

then a dispute wheel exists aroundY . Using this information, the dispute wheel detection algo-

rithm can be constructed as shown in Figure 5·6.

5.3.4 Computing Time Offset

The remaining part is to determine time offseta. In Lemma 4, we showed that the value ofa is

dependent on the type of subchain thaty belongs to. This can be determined by the action of the
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1: function DETECTDISPUTEWHEEL(y, t)
2: if θy ∈M(Cause(y, t), t) then
3: θy = (k, a)
4: (P1, P2)← Lookup(k)
5: if a = 0 then
6: Ptest← P1

7: else
8: Ptest← P2

9: if Action(y, t) = StepDownthen
10: b← 0
11: else
12: b← 1

13: if Ptest≺ π(y, t + b) then
14: ReportDisputeWheel(Ptest, π(y, t + b))

Figure 5·6: SAFETYPULSE token receival and dispute wheel detection.

next node,v, along the causation cycle. Ifv performed a StepUp theny is in an adopting subchain.

If v performed a StepDown theny is in a discarding subchain. Ifv performed a StepSame, theny’s

subchain type is decided byv’s next node in the causation chain. Thus a node can fill in the time

offsets of the uncategorized nodes based on the action performed. If a node performs a StepDown

or StepUp action, it can fill the time offsets with0 or 1, respectively. The algorithm in Figure 5·7

shows how third-party nodes can fill in the time offseta.

1: function SETTIMEOFFSET(y, t)
2: for all unclassifiedθv = (k, ) ∈M(y, t + 1) do
3: if Action(y, t) = StepUpthen
4: θv ← (k, 1)
5: else ifAction(y, t) = StepDownthen
6: θv ← (k, 0)

Figure 5·7: SAFETYPULSE time offset computation.

5.3.5 Complete Algorithm

The complete SAFETYPULSE algorithm is outlined in Figure 5·8. Each nodey at timet simply

executes the three algorithms described above.
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1: function SAFETYPULSE(y, t)
2: ProcessNode(y, t)
3: SetTimeOffset(y, t)
4: DetectDisputeWheel(y, t)

Figure 5·8: SAFETYPULSE algorithm.

5.3.6 Space Requirements

The token sent by every nodey has two parts, the keyk and the time offseta. The key needs to

index an action stored locally at nodey. If nodey is expected to switch between2i paths, then the

size ofk only needs to bei. The time offseta can be represented by two bits,b0b1. The first bit

b0 is initially set to 0, indicating thata has not been set. The second bitb1 is set to a random bit.

Once a third party nodev wants to seta, it manipulatesa = b0b1 as follows: setb0 to 1 and flip

b1 if the action ofv is a StepUp. When nodey receivesa = b0b1 it checks ifb0 is set and ifb1 is

flipped (compared to a locally stored version ofa). If so, then nodey knows that it should check

against the adopted path. Otherwise, nodey checks against the discarded path. It is important to

note that the keyk does not need to be appended to the token itself as each node can keep track

of its index in the list of appended tokens. Then when a cycle is detected, the node can index its

token appropriately using the keyk that is stored locally. Thus the overhead added by each node

can be exactly two bits.

5.3.7 Characteristics

SAFETYPULSE has the following characteristics:

• Provably Correct. SAFETYPULSE is based on a theoretical framework of policy routing

dynamics and changes in network topology do not affect the correctness of detecting policy

conflicts.

• Efficient Space. A small token of space complexityO(1) (two bits) is appended to each

routing update message irrespective of how the routing dynamics manifest in the network.

Thus a causation chain consisting ofn nodes incurs a message overhead of2n bits.
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• Policy Freedom. Since SAFETYPULSE is a dynamic detection algorithm, it does not require

any restrictions on routing policies to be imposed.

• Backwards Compatible. SAFETYPULSE requires only a minor extension to BGP and is

therefore backwards compatible. To detect policy conflicts, only the ASes along the causa-

tion chains / cycles to be diagnosed need to adopt the protocol.



Chapter 6

Properties of Safe Routing Dynamics

6.1 Overview

In this chapter we distill three properties of safe routing dynamics (i.e.,dynamics when the policies

of all nodes adhere to the Gao-Rexford guidelines). These properties hold irrespective of changes

to the underlying topology or path preferences and can be used to diagnose the health of the net-

work, in particular its routing dynamics. To this end, we also develop a token-based distributed

algorithm, INTERFERENCEBEAT, to check adherence to these properties. We discuss and model

reasons why ASes violate the Gao-Rexford guidelines which lead to potentially unsafe dynamics

where the properties no longer hold. We show that these dynamics can still be precisely character-

ized and can be used to enhance the diagnostic power of INTERFERENCEBEAT. Our distributed

algorithm, INTERFERENCEBEAT, essentially diagnoses and monitors the health of the network by

detecting invalid routing dynamics (i.e., causation chains that do not adhere to the derived prop-

erties) in realtime. The formal proofs and protocol specification can be found in [Mattar et al.,

c, Epstein et al., 2009]. We focus here on motivating the problem and on presenting the main

intuition behind our results.

6.1.1 What are the properties?

Non-Interference Property: If an ASy is not at a higher tier-level than (provider to) any two of

its neighborsx andz, thenx andz cannot directly induce path changes in each other throughy.

This property holds regardless of changes in the underlyingtopology or path preferences.

The notion of “inducing path changes” is synonymous with a continuous propagation of path

changes across nodes, which we model in DPR as a causation chain. The basic premise of the non-

63
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interference property comes from a theoretical result where we proved that any causation chain

must not contain sequences such as a provider-to-customer-to-provider. The relative tier-level of

ASes can be easily derived from the commercial relationships between ASes. For example, an AS

x that is a provider to ASy is at a higher tier-level.

It is important to note that all the properties we derive, including the non-interference property,

are with respect to a single causation chain propagating in the network. This causation chain is

initiated by one and only one root cause such as a change in a link’s availability or a change in a

node’s path preferences.

Figure 6·1 outlines all the Internet configurations where ASx cannot directly affect ASz

through ASy. More specifically, non-interference holds if:

1. ASy is multi-homed with providers ASx and ASz.

2. ASy is a customer of ASx and a peer of ASz.

3. ASy is a peer of ASx and a customer of ASz.

4. ASy is a peer of both ASx and ASz.

Figure 6·1: All Internet configurations where ASx cannot directly affect ASz.
Horizontal edges represent peering links and diagonal edges represent customer-
to-provider links.

Single Cycle Property: In any cycle of routing update messages between ASes, every ASx affects

its neighbory at most once. This property holds regardless of changes in the underlying topology

or path preferences.



65

The notion of “cycle” is synonymous with a continuous propagation of path changes across

nodes where at least one node is affected twice. We model sucha cycle of path changes in DPR as

acausation cycle. The single cycle property comes from a theoretical result where we proved that

any causation cycle in safe policy routing occurs only once.

Multi-Tiered Cycle Property: Every cycle of routing update messages between ASes must have at

least two ASes in different tier-levels. This property holds regardless of changes in the underlying

topology or path preferences.

The multi-tiered cycle property comes from a theoretical result where we proved that no cau-

sation cycle in safe policy routing can occur exclusively between peering ASes.

6.1.2 Why do the properties not always hold?

Violations of safe policy routing (i.e., the Gao-Rexford guidelines) result in unpredictable, black-

box dynamics that are potentially unsafe. When policy violations occur, the properties no longer

hold. The reasons for such violations are:

1. Intentional: representing legitimate policy configurations for backup links or complex

agreements [Feamster et al., 2004].

2. Unintentional: representing misconfigurations or complex realtime interactions between

routers that do not reflect the intentions of the administrators.

6.1.3 How do we check the properties?

Network administrators can locally check whether they are abiding by the Gao-Rexford guidelines

where the dynamics are guaranteed to conform to the properties derived. This can be done by

inspecting their local preferences and ensuring that all their import / export policies are set cor-

rectly. Local checks are inadequate, however, since not allnodes are necessarily compliant with

the guidelines. Non-compliance by some nodes has global implications on the routing dynamics

that cannot be easily checked locally. This creates the needto check adherence to the properties in

realtime using a distributed algorithm such as INTERFERENCEBEAT.
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Figure 6·2 illustrates “interference” between nodes1 and3. The interference is due to policy

violations by node2 which cannot be locally checked by node3. Instead, node3 will need to

discover the interference by somehow detecting the causation chain propagating through nodes1,

2 and3.

Figure 6·2: Sample dynamics where interference occurs. The list of pathpref-
erences for nodes2 and3 are organized such that the most preferred path is at
the top. Paths not explicitly listed are forbidden. All nodes are trying to reach
destination node0.

Node3 is abiding by the Gao-Rexford guidelines and initially usesthe customer path〈30〉

which is valley-free. Node2, however, violates the guidelines by preferring a path through its

provider 〈210〉 over a path through its customer〈20〉. At time t, the link connecting node1 to

node0 is lost, causing node1 to have an empty path to node0 at timet + 1. At time t + 2, node

2 switches from path〈210〉 to 〈20〉. This action in turn causes node3 to switch from path〈30〉

to 〈320〉 at timet + 3. Even though node3 abides by the Gao-Rexford guidelines, the forbidden

interference occurs. The causation chain consists of a provider (node1), followed by its customer

(node2), followed by another provider (node3).

If node2 does not violate the guidelines, the dynamics would manifest differently. For exam-

ple, suppose that path〈20〉 is forbidden,forcing node2 to use its provider path〈210〉. The loss

of link connectivity between nodes1 and0 at timet causes node2 to lose connectivity at time

t + 2. Node 3 is unaffected. The causation chain solely consists of a provider (node1) followed

by its customer (node2). Since this chain is valley-free, the dynamics conform to the properties

we derived.
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INTERFERENCEBEAT, our token-based distributed algorithm, checks if the properties hold or

whether policy violations exist. This is accomplished by passing a small token alongside route

updates to detect forbidden causation chains (including cycles) induced by policy violations. Once

a forbidden causation chain is detected, the ASes involved need to collaborate to resolve the po-

tential problem.

6.2 Causation in Economic DPR

This section characterizes causation chains and cycles foreconomic DPR instances. For con-

venience of notation, we drop the time index of certain termswith respect to a given chain

Y = 〈y0 y1 . . . yk〉
t as outline in Table 6.1.

Table 6.1: Notation
π(yi) = π(yi, t + i)
πnext(yi) = π(yi, t + i + 1)
ρ(yi) = ρ(yi, t + i)
ρnext(yi) = ρ(yi, t + i + 1)
RankDec(yi) iff RankDec(yi, t + i)
RankSame(yi) iff RankSame(yi, t + i)
RankInc(yi) iff RankInc(yi, t + i)

Theorem 11. Every causation chain of an economic DPR instance(�$,�
t, G) is valley-free.

Proof. Assume not. Then there exists a causation chainY = 〈y0 y1 . . . yk〉
t and an indexi such

that0 < i < k andyi−1 �$ yi �$ yi+1. Thusyi−1 andyi+1 are peers or providers toyi.

The first part of this proof shows that if this is the case, thenat no time during the causation

chain didyi have a customer path. The second part of this proof shows thatsometime during the

causation chainyi+1 had a path throughyi. Thereforeyi+1 had a realized valley path sinceyi did

not have a customer path andyi is a customer of or peer toyi+1. Since valley-paths are forbidden

(not realizable) in economic DPR instances, this results ina contradiction. Since Cause(yi) =

yi−1, either the first or second condition of causation from Table3.2 holds foryi at timet + i.

Case:yi Causation Condition 1

If the first condition of Table 3.2 holds foryi then:ρ(yi) = yi−1 and RankDec(yi), as shown

in Figure 6·3. Thereforeπ(yi) ≻
t+i πnext(yi). Let v = ρnext(yi). It cannot be thatv ≺$ yi.

Otherwise, sinceπnext(yi) is a customer path andπ(yi) is not a customer path (sinceρ(yi) =
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yi−1 �$ yi), by the conditions of economic DPR instances:π(yi) ≺
t+i πnext(yi), causing a

contradiction as shown in Figure 6·4. Thusv �$ yi andρnext(yi) �$ yi.
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Figure 6·3: Causation condition 1: RankDec(yi)
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Figure 6·4: Contradiction: RankInc(yi)

Case:yi Causation Condition 2

If the second condition of Table 3.2 holds foryi then: ρnext(yi) = yi−1 and RankInc(yi), as

shown in Figure 6·5. Thereforeπ(yi) ≺
t+i πnext(yi). Let v = ρ(yi). It cannot be thatv ≺$ yi.

Otherwise, sinceπ(yi) is a customer path andπnext(yi) is not (sinceρnext(yi) = yi−1 �$ yi), by the

conditions of economic DPR instances:π(yi) ≻
t+i πnext(yi), causing a contradiction, as shown in

Figure 6·6. Thusρnext(yi) �$ yi andv �$ yi. So for both cases, at no time in the causation chain

did yi have a customer path:

ρ(yi) �$ yi andρnext(yi) �$ yi

Case:yi+1 Causation Condition 1

If the first causation condition of Table 3.2 holds foryi+1, thenρ(yi+1) = yi. By Proposition
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Figure 6·5: Causation condition 2: RankInc(yi)
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Figure 6·6: Contradiction: RankDec(yi)

2: π(yi+1) = 〈yi+1 π(yi)〉. π(yi+1) is a valley path sinceyi+1 �$ yi �$ ρ(yi). Since all valley

paths are forbidden (not realizable),π(yi+1) can never be realized, causing a contradiction.

Case:yi+1 Causation Condition 2

Similar arguments can be used if the second causation condition of Table 3.2 holds foryi+1:

ρnext(yi+1) = yi. Thus by Proposition 2:πnext(yi+1) = 〈yi+1 πnext(yi)〉. πnext(yi+1) is a valley

path sinceyi+1 �$ yi �$ ρnext(yi), and can never be realized. Thus in all cases a contradiction

occurs, proving the theorem.

Definition 34 (Horizontal Cycle). A causation cycle is horizontal if all adjacent nodes in the cycle

are peers.

Definition 35 (Vertical Cycle). A causation cycle is vertical if there is at least one customer /

provider relationship between adjacent nodes in the cycle.

Figure 3·19 represents a simple vertical causation cycle, where nodey0 loses a path toroot and

reroutes throughy2.
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Lemma 6. Given a causation cycleY = 〈y0 . . . yk〉
t of an economic DPR instance(�$,�

t, G),

every node inY is a provider to the first nodey0.

Proof. Let yi ∈ Y , where0 < i < k. By Theorem 11,Y is valley-free and eitheryi−1 �$ yi or

yi �$ yi+1. If the first case is true, then by the definition of valley-free pathsyj−1 ≺$ yj for all

0 < j < i, and by the transitive nature of economic relationships,y0 ≺$ yi. If the second case is

true, then by the definition of valley-free pathsyj ≻$ yj+1 for all i < j < k, and by the transitive

nature of economic relationships,yi ≻$ yk. Thus every nodeyi is a provider toy0 = yk.

Theorem 12. Every causation cycleY = 〈y0 . . . yk〉
t of an economic DPR instance is vertical

and simple.

Proof. Lemma 6 directly implies that every causation cycle in economic DPR instances is vertical.

The second part regarding simple causation cycles is provedby contradiction. Assume there exists

a non-simple causation cycleY1 = 〈y0 y1 . . . yk y1〉
t wherey0 = yk. From Lemma 6,y0 ≺$ y1.

However a new causation cycleY2 exists where:Y2 = 〈y1 y2 . . . yk−1 yk y1〉
t+1. Thus by

Lemma 6,y1 ≺$ yk = y0 which is a contradiction.

The theoretical results in this section are the proofs for the three properties of safe policy routing

dynamics introduced in Section 6.1. The non-interference principle comes from Theorem 11,

which states that every causation chain in an economic DPR instance must be valley-free. The

single and multi-tiered cycle properties come from Theorem12, which states that every causation

cycle in an economic DPR instance is vertical and simple.

6.3 InterferenceBeat

In this section, we outline a distributed algorithm, INTERFERENCEBEAT, that checks if the prop-

erties of safe policy routing dynamics are maintained or whether policy violations exist. This is

accomplished by detecting forbidden causation chains (including cycles) induced by policy vio-

lations. Once a forbidden causation chain is detected, the ASes involved need to collaborate to

resolve the potential problem.
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6.3.1 Overview

In INTERFERENCEBEAT, each node appends a small token alongside the route update message.

When a nodey receives a route update from its neighborv at timet, it also receives a tokenθin.

If node y selects a new path then it broadcasts a new tokenθout alongside its own route update

at timet + 1. Tokens are passed along causation chains. In general, a causation chain is started

when a link flaps (i.e., is lost or becomes available) or when a node changes its path preferences.

A token consists of three parts,(i, r, n). The identifier of the causation chain isi. The economic

relationship betweeny and its predecessorv on the causation chain is:

r ∈ {≻$, ≺$, =$, ∅}

For example, ifv is a provider toy, thenr is≻$. The countern keeps track of the number of times

the token was passed along a customer-to-provider or a provider-to-customer link.

The PROCESSfunction outlined in Figure 6·7 performs basic routing tasks and handles the

incoming and outgoing tokens. It is invoked in every nodey at timet after receiving all routing

update messages. In steps 2 and 3, nodey chooses and adopts its best available path. Ify’s

assigned path has changed in step 4 (i.e., an action occurred), then nodey’s causing neighborv

is identified in step 5. The token received from neighborv is recovered in step 6. In step 7, the

CREATETOKEN function is called which returns the contents of the new token to be sent out by

y at timet + 1. The CHECKPROPERTIESfunction is called in step 8. Nodey stores information

about the outgoing token in step 9, which is later used to detect cycles in the CHECKPROPERTIES

function. The outgoing token is then disseminated to ally’s neighbors in step 10.

The CREATETOKEN function is outlined in Figure 6·8. Step 2 retrieves the needed parts from

the incoming token. If the identifieriin is empty in step 3 then a new one is generated in step 4.

Otherwise, in step 6, the outgoing identifieriout is set to the incoming identifieriin. In step 7,rout

is set to the economic relationship betweenv andy. In steps 8 through 11, the outgoing counter

nout is only incremented if nodesy andv arenot peers. The outgoing token is returned in step 12.

The CHECKPROPERTIESfunction is outlined in Figure 6·9. Steps 2 and 3 retrieve the needed
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1: function PROCESS(y, t)
2: Best(y, t)← max�t Choices(y, t)
3: π(y, t + 1)← Best(y, t)
4: if π(y, t + 1) 6= π(y, t) then
5: v = Cause(y, t)
6: θin =GETTOKENFROMNEIGHBOR(y, v, t)
7: θout = CREATETOKEN(y, v, θin)
8: CHECKPROPERTIES(y, v, θin , θout)
9: STORETOKEN(y, v, θout)

10: SENDTOKEN(y, t, θout)

Figure 6·7: PROCESSfunction.

1: function CREATETOKEN(y, v, θin)
2: (iin, , nin) = θin

3: if iin is ∅ then
4: (iout, rout, nout) =(NEWID(), ∅, 0)
5: else
6: iout = iin

7: rout = ECONOMICRELATION(v, y)
8: if rout is equal to=$ then
9: nout = nin

10: else
11: nout = nin + 1

12: return (iout, rout, nout)

Figure 6·8: CREATETOKEN function.

parts from the tokens. Step 4 checks for the existence of a valley causation chain. If one is found,

then interference is reported, where the causing nodev, the chain identifieriin and the relationship

rin are identified. In step 6, nodey determines if it has previously received a token with identifier

iin. If so, then a cycle is detected. Nodey recovers the old information in step 7. If the token was

previously received from the same neighborv then a non-simple cycle is reported in step 9. Step

10 checks if the token previously received contained the same counter value. If so, then the token

was only passed between peers since leaving nodey and a horizontal cycle is reported in step 11.
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1: function CHECKPROPERTIES(y, v, θin , θout)
2: (iin, rin, ) = θin

3: ( , , nout) = θout

4: if (rin is equal to≻$ or =$) and (v �$ y) then
5: REPORTINTERFERENCE(y, v, θin )

6: if HASRECEIVEDTOKEN(y, iin ) then
7: (vold, nold) = GETSTOREDTOKEN(y, iin )
8: if vold is equal tov then
9: REPORTNONSIMPLECYCLE(y, v, θin )

10: if nold is equal tonout then
11: REPORTHORIZONTALCYCLE(y, v, θin )

Figure 6·9: CHECKPROPERTIESfunction.

6.3.2 Sample Operation

Figure 6·10 shows the operation of INTERFERENCEBEAT on the DPR instance described in Figure

3·18, assumingy0, y1 andy2 are all peers. At timet + 1, nodey0 initiates a new causation chain

with identifier ID1 and sends a token toy1. Sincey0 initiated the chain, the count is 0 and the

relationship is∅. Nodey1 takes an action and sends a new token toy2. Sincey1 andy0 are peers,

the relationship is set to=$ and the count is still0 as the token only traversed a peering link.

Finally, sincey2 is a peer to its causing nodey1, interference is detected byy2 upon receiving the

token.

Figure 6·10: Sample operation of INTERFERENCEBEAT.

6.3.3 Characteristics

INTERFERENCEBEAT has the following characteristics:

• Provably Correct. INTERFERENCEBEAT is based on a theoretical framework of policy

routing dynamics and changes in network topology or path preferences do not affect the
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correctness of detecting policy violations.

• Efficient Space. A small token of space complexityO(1) (a few bytes) is appended to each

routing update message irrespective of how the routing dynamics manifest in the network.

• Policy Freedom. Since INTERFERENCEBEAT is a dynamic detection algorithm, it does not

require any restrictions on routing policies to be imposed.

• Backwards Compatible. INTERFERENCEBEAT requires only a minor extension to BGP

and is therefore backwards compatible. To detect policy violations, only the ASes along the

causation chains to be diagnosed need to adopt the protocol.Thus neighboring ASes can

use INTERFERENCEBEAT to detect misconfigurations.

6.3.4 Practical Considerations

INTERFERENCEBEAT could be implemented over BGP where the token is passed in themessage

options. When an AS initiates a new causation chain it must create a new identifier using the

NEWID() function. This can be accomplished by hashing the AS number, router identifier, time

and destination prefix. A fixed number of bits can be allocatedto the identifier, with more bits

reducing the probability of a hash collision.

In INTERFERENCEBEAT, if a cycle or valley is detected by a nodey, only its causing neighbor

nodev can be immediately identified. In order to identify/notify other nodes along the chain, a

back-propagating alert protocol may be used. Each node can leverage its stored tokens to find

its previous causing neighbor. Note that a token only needs to be stored for the duration of the

causation chain, thus the local storage requirements at a node are expected to be minimal.

In Appendix A we show that the synchronicity of DPR is not a hindrance and that it has suffi-

cient expressive power to model asynchronicity. Hence, INTERFERENCEBEAT can be extended to

a realtime setting.
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6.4 Violations of the Economic DPR Model

We formally define four common policy violations, which represent different relaxations to the

strict economic DPR model1. In the next sections we prove the invariant properties of the resultant

causation chains and cycles for each violation. By invariant properties we mean the properties

that hold irrespective of changes in path preferences or changes the underlying topology. The

modelled dynamics induced by each violation can be comparedagainst the dynamics observed by

INTERFERENCEBEAT. If a violation cannot cause the observed behavior, then it can be ruled out.

6.4.1 Overview of Violations and their Induced Dynamics

To describe paths and causation chains in better detail we categorize valleys into four subtypes.

Definition 36 (Valley Types). We extend definition 29 of valleys to four subtypes as shown in

Table 6.2.

Table 6.2: Valley types given sequence〈a b c〉.
Valley Type Condition Illustration

A a ≻$ b ≺$ c

B a ≻$ b =$ c

C a =$ b ≺$ c

D a =$ b =$ c

Table 6.3: Violations of the Economic DPR Model
Violation Valley Types in Causation Chains: Vertical Cycles Horizontal Cycles Potentially

A B C D Unsafe?
0: None simple none no
1: Non-Strict Economics simple none no
2: Transiting simple non-simple, simple yes

3: Peers Preferred simple non-simple, simple yes

4: Providers Preferred non-simple, simple none yes

1There are other relaxations that can be considered such as sibling relationships (i.e., backup links) between
ASes [Gao, 2001].
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Violation 1: Non-Strict Economic Relationships

With non-strict economic relationships, a node can be both a(direct or indirect) provider and

a (direct or indirect) peer to another node. Figure 6·11 shows a comparison between strict and

non-strict economic relationships.

z

u peer

peer
provider

provider

Strict

z

u peer

peer
provider

provider

Non-Strict

Figure 6·11: Strict and non-strict economic relationships. In the strict variant,
nodeu cannot be an indirect provider and peer to nodez. The crossed edge
represents an edge that cannot exist in this variant.

Violation 2: Transiting Between Peers

Generally, an AS only carries traffic that is destined to (or originating from) one of its cus-

tomers. However, due to misconfigurations or complex agreements between peers, an AS may

transit traffic between its peers. Economic DPR instances with this violation have an enlarged

set of realizable paths. Paths containing valleys of typeD can be adopted by nodes. However,

paths are forbidden (not realizable) if they contain valleytypesA, B, or C. Paths are forbidden by

having nodes configure their import / export policies for paths accordingly (i.e., which paths are

advertised to which neighbors and which paths are accepted from which neighbors). Therefore,

every realizable path consists of a series of zero or more ascending customer-to-provider edges,

followed by zero or more peer edges, followed by zero or more descending provider-to-customer

edges, as shown in Figure 6·12.
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With Peer Transiting Without Peer Transiting

Figure 6·12: Allowable paths in economic DPR with and without violation 2.
Nodes at the same level are peers. On the other hand, nodes at higher levels are
providers for the nodes at lower levels that they are connected to.

Violation 3: Prefer Peer Paths Over Customer Paths

Whereas violation 2 is a relaxation on the set of realizable paths, violation 3 is a relaxation

of the path preferences. Nodes in economic DPR instances with violation 3 can prefer peer paths

over customer paths. Nodes, however, cannot prefer provider paths over peer/customer paths. Only

valley-free paths are realizable.

Violation 4: Prefer Provider Paths Over Peer / Customer Paths

Nodes in economic DPR instances with violation 4 can prefer provider paths over peer/customer

paths. Again, only valley-free paths are realizable. Againthis is achieved by having each node

configure its import / export policies for paths accordingly.

The four violations describe different variants of the economic DPR model. Each variant

results in different types of causation chains and cycles. Table 6.3 summarizes the effects of each

violation on the characteristics of causation chains and cycles. The first and second rows show the

strict and non-strict economic DPR models. They are the onlytwo variants guaranteed to be safe.

The three other violations induce routing behavior which ispotentially unsafe.

INTERFERENCEBEAT can be extended using the results of Table 6.3. Upon the detection of a

valley in the causation chain, its type (A, B, C, orD) can rule out possible causing violations. For

example, if a valley of typeB was detected using INTERFERENCEBEAT, then violations 1, 2, and

3 can be immediately ruled out as the possible causes for the observed behavior. Similar methods
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can be used upon detection of non-simple or horizontal causation cycles.

The theoretical proofs for the dynamics induced by each violation are presented next.

6.4.2 Violation 1: Non-Strict Economic Relationships

First we consider the dynamics induced by violation 1, outlined in the second row of Table 6.3,

where ASes can have non-strict economic relationships (i.e., an AS can be both a provider and a

peer to another AS). Similar to the case where there are no violations, we prove that vertical cycles

must be simple, horizontal cycles are not possible, all causation chains are valley-free, and the

resulting routing policy configuration is safe.

We start by formally defining non-strict economic relationships. If an economic DPR instance

has non-strict economic relationships, then it contains the operator�∗ whereD = (�∗,�, G).

From�∗, a tight economic relation is defined by:

u ≻∗ v iff u �∗ v andu �∗ v

and no relation is defined by:

u ‖∗v iff u �∗ v andu �∗ v

The customer, peer, and provider economic relationships can be derived from the operator�∗:

• If u is a customer ofv, thenu ≺∗ v.

• If u is a provider tov, thenu ≻∗ v.

• If u is a peer tov, thenu‖∗v.

The properties of the economic operator�∗ can be modeled using post-order conditions:

1. (reflexive)x �∗ x

2. (anti-symmetric)x �∗ y andy �∗ x impliesx = y

3. (transitive)x �∗ y andy �∗ z impliesx �∗ z
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The key difference between a strict and non-strict economicoperator is that peering relation-

ships are not transitive in the non-strict variant. Whereaspeering is represented by the equivalence

relation=$ in the strict variant, peering is represented by no relation‖∗ in the non-strict variant.

Strict economic relationships form equivalence classes with the peering relation=$ as shown in

Figure 6·13. Such equivalence classes are not present in the non-strict variant. This enables a

node to be both an indirect peer and provider to another node in the non-strict variant as shown in

Figure 6·11. However it should be noted that provider-to-customer relationships are transitive in

both variants.

Strict Non-Strict

Figure 6·13: Strict and Non-Strict economic relationships. The circlesover the
nodes in the strict variant represent equivalent classes ofpeers.

For ease of exposition, the following notation is used to describe that nodex is a peer or

provider to nodey:

x v∗ y iff x ⊀∗ y

We define paths by the economic relationship between a path’sstarting nodeu and its next-hop.

For all pathsP u:

Customer(P u) ⇔ u ≻∗ NextHop(P u)

Peer(P u) ⇔ u ‖∗ NextHop(P u)

Provider(P u) ⇔ u ≺∗ NextHop(P u)

Given a sequence of nodes〈a b c〉, valley types are represented as follows:
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Valley Type Condition Illustration

A a ≻∗ b ≺∗ c

B a ≻∗ b ‖∗c

C a ‖∗b ≺∗ c

D a ‖∗b ‖∗c

Theorem 13. All causation chains of non-strict economic DPR instances are valley-free.

Proof. This proof is identical to the one for Theorem 11, by replacing the≻$ with≻∗ and�$ with

v∗.

Theorem 14. All causation cycles of non-strict economic DPR instances are vertical and simple.

Proof. Let Y = 〈y0 y1 . . . yk〉
t be a causation cycle, wherey0 = yk. The cases for this proof can

be partitioned byy1’s economic relationship withy0:

Case (a):y0 ≻∗ y1

If y0 ≻∗ y1, sinceY is valley-free,yi ≻∗ yi+1 for 0 ≤ i < k. Howevery0 ≻∗ yk = y0, causing a

contradiction and eliminating this case.

Case (b):y0 ‖∗y1

If y0 ‖∗y1, sinceY is valley-free,yi ≻∗ yi+1 for 1 ≤ i < k. ThusY is vertical. Y has to

be simple, otherwise〈yk−1 y0 y1〉 would be a realized causation chain. Sinceyk−1 ≻∗ y0 and

y0 ‖∗y1, the causation chain is a valley, causing a contradiction. ThereforeY is simple and vertical.

Case (c):y0 ≺∗ y1

If y0 ≺∗ y1 thenY is vertical. The cases can be further partitioned byyk−1’s economic rela-

tionship withyk. If yk−1 ≺∗ yk, then by the definition of valley-free sequences,yi−1 ≺∗ yi for

all 0 < i ≤ k. Thusy0 ≺∗ yk = y0, which is a contradiction. Thereforeyk−1 v∗ yk. If Y

is non-simple, then〈yk−1 y0 y1〉 would be a realized causation chain. Sinceyk−1 v∗ y0 = yk

andy0 ≺∗ y1, the causation chain is a valley, causing a contradiction. ThereforeY is simple and

vertical.

Remark 1. DPR instances with non-strict economic relationships are safe. This follows directly

from the results in [Gao and Rexford, 2001].
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6.4.3 Violation 2: Transiting Between Peers

Next we consider the dynamics induced by violation 2, outlined in the third row of Table 6.3,

where ASes can transit traffic between their peers. We prove that all vertical cycles must be

simple, horizontal cycles can be simple or non-simple, onlycausation chains of valley typeD are

possible, and the resulting routing policy configuration ispotentially unsafe.

Theorem 15. Every causation chain in an economic DPR instance with violation 2 does not admit

valley typesA, B or C.

Proof. Assume not. Then there exists a causation chainY = 〈y0 y1 . . . yk〉
t and an indexi such

that0 < i < k and at least one of these two conditions hold:

(a) yi−1 ≻$ yi �$ yi+1

(b) yi−1 �$ yi ≺$ yi+1

Case (a):yi−1 ≻$ yi �$ yi+1

If case (a) holds, then it can be shown that bothρ(yi) ≻$ yi andρnext(yi) ≻$ yi. This can be

seen by looking at the causation conditions ofyi. If causation condition 1 holds foryi, thenyi−1 =

ρ(yi) and RankDec(yi). It cannot be the case thatρnext(yi) �$ yi, since this would imply thatyi

switched from a provider path throughyi−1 to a non-provider path, sinceyi ≺$ ρ(yi) = yi−1 and

yi �$ ρnext(yi). This would imply RankInc(yi), causing a contradiction. Thusρ(yi) ≻$ yi and

ρnext(yi) ≻$ yi. If causation condition 2 holds foryi, thenyi−1 = ρnext(yi) and RankInc(yi). It

cannot be the case thatρ(yi) �$ yi, since this would imply thatyi switched from a non-provider

path to a provider path throughyi−1, sinceyi �$ ρ(yi) andyi ≺$ ρnext(yi) = yi−1. This would

imply RankDec(yi), causing a contradiction. Thus for both cases,ρ(yi) ≻$ yi andρnext(yi) ≻$ yi.

Thus given the results above, we can prove thatyi+1 had a realized path with valley typeA or

B. If causation condition 1 holds foryi+1, thenπ(yi+1) = 〈yi+1 π(yi)〉. Sinceyi+1 �$ yi and

yi ≺$ ρ(yi), thenπ(yi+1) is a realized path with valley typeA or B, causing a contradiction. If

causation condition 2 holds foryi+1, thenπnext(yi+1) = 〈yi+1 πnext(yi)〉. Sinceyi+1 �$ yi and

yi ≺$ ρnext(yi), thenπnext(yi+1) is a realized path with valley typeA orB, causing a contradiction.

Case (b):yi−1 �$ yi ≺$ yi+1

If case (b) holds, then using an argument similar to case (a) it can be shown that bothρ(yi) �$

yi andρnext(yi) �$ yi. We can then prove thatyi+1 had a realized path with valley typeA or C,

causing a contradiction.
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Theorem 16. Every vertical causation cycleY = 〈y0 . . . yk〉
t in an economic DPR instance with

violation 2 is simple.

Proof. This proof proceeds by determiningy1’s economic relationship withy0 andyk−1’s eco-

nomic relationship withyk = y0. SinceY is a vertical causation cycle, there exists a minimal index

i, 0 < i < k such thatyi 6=$ yi−1. Note thati 6= k, otherwisey0 =$ y1 =$ . . . =$ yk−1 6=$ yk,

implying y0 6=$ yk, which is a contradiction. Eitheryi ≻$ yi−1 or yi ≺$ yi−1. It cannot be that

yi−1 ≻$ yi since by Theorem 15,y0 =$ yi−1 ≻$ yi ≻$ yi+1 . . . ≻$ yk, implying y0 ≻$ yk which

is a contradiction. Thereforeyi−1 ≺$ yi. If i > 1, thenyi−2 =$ yi−1 ≺$ yi, representing a valley

of typeC, which is a contradiction. Soi = 1 andy0 ≺$ y1.

Let j be the first index,1 < j < k, whereyj−1 ≻$ yj. Note thatj has to exist otherwise

y0 ≺$ y1 �$ . . . �$ yk, implying y0 ≺$ yk which is a contradiction. From Theorem 15,

yh−1 ≻$ yh for all j < h ≤ k. Soyk−1 ≻$ yk = y0. ThereforeY must be simple, otherwise

〈yk−1 y0 y1〉 must be a causation chain. However sinceyk−1 ≻$ y0 andy0 ≺$ y1, Y contains a

valley of typeA, contradicting Theorem 15, and thus proving the theorem.

Theorem 17. An economic DPR instance with violation 2 admits simple and non-simple horizon-

tal causation cycles.

Proof. This follows directly from the example shown in Figure 6·14 which is identical to the “Bad

Gadget” instance described in [Griffin et al., 2002].

Theorem 18. An economic DPR instance with violation 2 is potentially unsafe.

Proof. Again from the example shown in Figure 6·14, no stable assignment exists.

Path preferences:
Nodea: 〈a b root〉

〈a root〉
Nodeb: 〈b c root〉

〈b root〉
Nodec: 〈c a root〉

〈c root〉

Peer

root

c

a b

Peer

Peer Peer

Peer Peer

Figure 6·14: Non-simple horizontal cycle for an economic DPR instance with
violation 2. Paths not listed in the path preferences are forbidden.
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6.4.4 Violation 3: Prefer Peer Paths Over Customer Paths

Next we consider the dynamics induced by violation 3, outlined in the fourth row of Table 6.3,

where ASes can prefer peer paths over customer paths. This violation induces dynamics that are

similar in nature to those induced by violation 2. We prove that all vertical cycles must also be

simple, horizontal cycles can be simple or non-simple, and the resulting routing policy configura-

tion is potentially unsafe. The only difference is that, in addition to causation chains of valley type

D, we prove that causation chains of valley typeC are now also possible.

Theorem 19. Every causation chain in an economic DPR instance with violation 3 does not admit

valley typesA or B.

Proof. Assume not. Then there exists a causation chainY = 〈y0 y1 . . . yk〉
t and an indexi

such that0 < i < k andyi−1 ≻$ yi �$ yi+1. The same reasoning as case (a) from the proof of

Theorem 15 can be used. By considering the causation conditions ofyi, it can be shown that both

ρ(yi) ≻$ yi andρnext(yi) ≻$ yi. We can then prove thatyi+1 had a realized path with valley type

A or B, causing a contradiction.

Path preferences:
Nodea: 〈a b root〉

〈a root〉
Nodeb: 〈b c root〉

〈b root〉
Nodec: 〈c a root〉

〈c root〉

Peer

root

c

a b

Provider

Provider Provider

Peer Peer

Figure 6·15: Non-simple horizontal cycle for an economic DPR instance with
violation 3. Paths not listed in the path preferences are forbidden.

Theorem 20. Every vertical causation cycle in an economic DPR instance with violation 3 is

simple.

Proof. Assume not. Let vertical causation cycleY = 〈y0 y1 . . . yk〉
t be non-simple. SinceY is a

vertical causation cycle, there exists a minimal indexi, 0 < i < k such thatyi 6=$ yi−1. Following

an argument similar to the one used to prove Theorem 16, we canprove thatY contains a valley

of typeA orB, which is a contradiction.
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Theorem 21. An economic DPR instance with violation 3 admits simple and non-simple horizon-

tal causation cycles.

Proof. This follows directly from the example shown in Figure 6·15 which is identical to the “Bad

Gadget” instance described in [Griffin et al., 2002].

Theorem 22. An economic DPR instance with violation 3 is potentially unsafe.

Proof. From the example shown in Figure 6·15, no stable assignment exists.

6.4.5 Violation 4: Prefer Provider Paths Over Peer / Customer Paths

Finally we consider the dynamics induced by violation 4, outlined in the last row of Table 6.3,

where ASes can prefer provider paths over peer / customer paths. We prove that vertical cycles

can be simple or non-simple, horizontal cycles do not occur,only causation chains of valley types

A andB are possible, and the resulting routing policy configuration is potentially unsafe.

Theorem 23. Every causation chain in an economic DPR instance with violation 4 does not admit

valley typesC or D.

Proof. Assume not. Then there exists a causation chainY = 〈y0 y1 . . . yk〉
t and an indexi such

that0 < i < k andyi−1 =$ yi �$ yi+1. The rest of the proof is similar to that of Theorem 15.

First we show that bothρ(yi) �$ yi andρnext(yi) �$ yi. Then we show that eitherπ(yi+1) or

πnext(yi+1) is a valley path of typeC orD, causing a contradiction.

Theorem 24. There are no horizontal cycles in economic DPR instances with violation 4.

Proof. This follows directly from Theorem 23, which states that causation chains of typeD do not

exist.

Theorem 25. An economic DPR instance with violation 4 admits simple and non-simple vertical

causation cycles.

Proof. This follows directly from the example shown in Figure 6·16 which is identical to the “Bad

Gadget” instance described in [Griffin et al., 2002].

Theorem 26. An economic DPR instance with violation 4 is potentially unsafe.

Proof. From the example shown in Figure 6·16, no stable assignment exists.
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Path preferences:
Nodea: 〈a b root〉

〈a root〉
Nodeb: 〈b c root〉

〈b root〉
Nodec: 〈c a root〉

〈c root〉

Figure 6·16: Non-simple vertical cycle for an economic DPR instance withvi-
olation 4. All edges are customer/provider links. Paths notlisted in the path
preferences are forbidden.



Chapter 7

Conclusion

We introduced the Dynamic Policy Routing (DPR) model which extends the Stable Paths Problem

(SPP) [Griffin et al., 2002] with discrete synchronous time.DPR captures the propagation dynam-

ics of path changes due to arbitrary changes in topology or path preferences. We introduced policy

digraphs—a time-invariant structure which captures how routing update messages can propagate

in the network.

Using our policy digraphs we formalized the Routing Dynamics Minimization Problem (RDMP)

to solve a graph optimization problem. This optimization problem explicitly minimizes one pos-

sible metric, namely, the longest sequence of routing update messages in any dynamic network.

This is done by changing the path preferences of nodes. We show that finding a policy configu-

ration which minimizes the length of the policy digraph is NP-Hard. While RDMP is NP-Hard,

we believe that it complements SPP and we envision that its formulation will allow us to explore

problems where the dynamics of policy routing can be examined.

We characterized policy routing in the presence of policy conflicts to develop an efficient policy

conflict detector. We introduced SAFETYPULSE—a distributed policy conflict detection algorithm.

We derived several invariant properties of routing dynamics in a safe (economic) policy con-

figuration. We introduced INTERFERENCEBEAT—a distributed algorithm to detect and diagnose

policy violations. INTERFERENCEBEAT was further enhanced by modeling common policy vio-

lations and characterizing the resulting dynamics.
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Appendix A

Asynchronicity with DPR

A.1 Overview

This section describes how the DPR model can simulate asynchronicity. We assume that we have

a regular DPR instanceD = (�, G) which we wish to augment with asynchronicity. There are

several ways to represent asynchronicity. We will use link delays. This choice enables us to use the

existing DPR model without adding new constructs. At any time t, each link(u, v)t ∈ E admits a

variable time delay between 1 and a finite upper limitM .

This delay is specified by the functionL(u, v, t) which outputs an integer in[1,M ]. The

time delays are considered ordered, such thatL(u, v, t) − L(u, v, t + k) < k. Thus the values

L(u, v, 4) = 100 andL(u, v, 5) = 2 are not allowed sincev would getu’s path at time 5 before

receivingu’s path at time 4. From DPR instanceD and delay functionL, a new DPR instance

D′ = (�′, G′) can be constructed to simulateD with the time delays.

For every pair of nodes in the original instanceD, a set ofM − 1 transit nodes will be added

to D′. These transit nodes represent the “communication wire” between every two nodes. The

dynamic nature of the links in DPR instances will be used to control the length of the “communi-

cation wire”. If L(u, v, t) = 5, then a path of length 5 betweenu andv through the transit nodes

will appear at timet.

A.2 Graph of Asynchronous DPR Instances

For every nodeu in the original DPR instanceD, there is a corresponding node in the asynchronous

DPR instanceD′:

u ∈ V ⇒ u ∈ V ′
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u vxuv
M xuv

M-1 xuv
2

⇔ (u, v)t ∈ E

. . . .
u vxuv

M xuv
M-1 xuv

2

⇔ (u, v)t 6∈ E

Figure A·1: Transit Nodes

For every two nodesu, v in D, there areM − 1 transit nodes:

u, v ∈ V ⇒ xuv
i ∈ V ′ for 2 ≤ i ≤M

Each transit node is connected to its neighbors. This connection forms the longest possible com-

munication between nodesu andv. It toggles on/off with the connectivity of(u, v)t ∈ E for each

time t, as shown in Figure A·1.























(u, xuv
M )t ∈ E′

(xuv
i+1, x

uv
i ) ∈ E′ for all 1 < i < M

(xuv
2 , v)t ∈ E′























iff (u, v)t ∈ E

The time delaysL(u, v, t) describe the “shortcut” available through the transit nodes at each

time t:

(u, v)t ∈ E′ iff (u, v)t ∈ E andL(u, v, t) = 1

(u, xuv
i )t ∈ E′ iff (u, v)t ∈ E andL(u, v, t) = i

An example of a delay of one and three between nodesu andv can be seen in Figures A·2 and

A·3.

u vxuv
M xuv

M-1 xuv
2xuv

3

Figure A·2: Transit nodes simulating a delay ofL(u, v, t) = 1.
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u vxuv
M xuv

M-1 xuv
2xuv

3

Figure A·3: Transit nodes simulating a delay ofL(u, v, t) = 3.

A.3 Path Preferences of Asynchronous DPR Instances

The path preferences of the asynchronous DPR:D′ = (�′, G′) discount the presence of transit

nodes in paths. Let the operation RemoveTransit remove all transit nodes of a sequence. This

operation allows us to derive the asynchronous path preferences from the original synchronous

path preferences. Thus for all non-transit nodesu ∈ V ′:

P u
1 �

′tP u
2 iff RemoveTransit(P u

1 ) �t RemoveTransit(P u
2 )

Each transit nodexuv
i prefers a path through its source nodeu than through its transit neighbor to-

ward the source:xuv
i+1. Paths containing sequences in the opposite direction of the “communication

link” (from xuv
i to xuv

i−1) are forbidden.

A.4 Redundant Connections

The transformation from synchronous to asynchronous DPR instances described above needs to

be enhanced to avoid transient routing losses. This can occur during abrupt changes in connection

delays as shown in Figure A·4.

In order to remedy this situation, redundant links between the source nodeu and the transit

nodes are established, as shown in Figure A·5. This enables path consistency during changes of

communication delays. Thus the proper transformation of links from synchronousD to asyn-
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chronousD′ can be represented as:

(u, v)t ∈ E′ iff (u, v)t ∈ E andL(u, v, t) = 1

(u, xuv
i )t ∈ E′ iff (u, v)t ∈ E andL(u, v, t) ≤ i

A.5 Causation Chains in Asynchronous DPR Instances

The definition of causation chains is not changed for asynchronous DPR instances. Given delay

L(u, v, t) = 3, a causation chain of〈u v〉t in the original DPR instanceD would correspond to a

causation chain of〈u xuv
3 xuv

2 v〉t in the asynchronous DPR instanceD′.

A.6 Asynchronous Economic DPR Instances

Asynchronous economic DPR instances can follow the Gao-Rexford guidelines. Transit nodes

have no economic relationships with the other nodes. The domain of the economic operator�$

is only over non-transit nodes. Characterization of sequences (causation chains or paths) is ac-

complished by using the RemoveTransit operator. A pathP in D′ is valley-free if its correspond-

ing transit-free path RemoveTransit(P ) is valley-free. Similarly, a causation chainY in D′ is

valley-free if its corresponding transit-free chain RemoveTransit(Y ) is valley-free. Similar use of

RemoveTransit can be employed to characterize customer, peer, and provider paths. From this con-

struction, the proofs in this thesis are unchanged except for the application of the RemoveTransit

operator.
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Graph Node Path

u vxuv
2xuv

3

root

t=0

u 〈u root〉
xuv

3 〈〉
xuv

2 〈〉
v 〈〉

u vxuv
2xuv

3

root

t=1

u 〈u root〉
xuv

3 〈xuv
3 u root〉

xuv
2 〈〉

v 〈v u root〉

u vxuv
2xuv

3

root

t=2

u 〈u root〉
xuv

3 〈xuv
3 u root〉

xuv
2 〈xuv

2 xuv
3 u root〉

v 〈〉

u vxuv
2xuv

3

root

t=3

u 〈u root〉
xuv

3 〈xuv
3 u root〉

xuv
2 〈xuv

2 xuv
3 u root〉

v 〈v xuv
2 xuv

3 u root〉

Figure A·4: Nodev has a transient path loss from nodeu. This is due to an
increase in delay fromL(u, v, 0) = 1 to L(u, v, 1) = 3. At time t = 0 only node
u has a path toroot and link(u, v) becomes unavailable. At timet = 1, nodexuv

3

receives a route update from nodeu while nodev has the best path〈xuv
3 u root〉

from the previous round. At timet = 2, nodexuv
2 receives a route update from

nodexuv
3 while nodev realizes that link(u, v) is unavailable and loses its path.

At time t = 3, nodev receives a new route update from nodexuv
2 and updates its

path to〈v xuv
2 xuv

3 u root〉.

u vxuv
2xuv

3

root

t=0

Figure A·5: The transient path loss at nodev is prevented by having redundant
connections. Nodev will never have an empty path when link(u, v) becomes
unavailable.
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resource allocation and transport solutions for cellular data networks
[Java, C/C++, Tcl, Perl, MATLAB, Datalog]

Teaching Fellow, Boston University, Boston, MA (1/2004 — 5/2010)

• CS 111: Computer Science Iwith Dr. Dave Sullivan[Java]

• CS 320: Algorithmswith Dr. John Byers

• CS 455/655: Computer Networkswith Dr. Ibrahim Matta[Java, C/C++]

• CS 112: Data Structures and Algorithm Analysiswith Dr. William Mullally [Java]

• CS 556: Advanced Computer Networkswith Dr. Ibrahim Matta[Java, C/C++, Tcl]

Network Consultant, Movik Inc., Littleton, MA (7/2008 — 3/2009)
Built a simulation testbed in the network simulator ns2 to evaluate the performance of applications
on mobile devices in 3G/UMTS networks running various proxy-based solutions
[C/C++, Tcl, Perl, MATLAB]

Research Intern, Sprint Labs, Burlingame, CA (6/2006 — 12/2006)
Developed an application-level transport solution for Sprints CDMA2000 EV-DO cellular network
and evaluated it using the network simulator ns2
[Java, C/C++, Tcl, MATLAB, Perl]

Research Intern, Sprint Labs, Burlingame, CA (5/2005 — 8/2005)
Evaluated the performance of TCP over Sprints CDMA2000 1xRTT cellular network using a cus-
tom probing and measurement application
[Java, C/C++, Tcl, MATLAB, Perl]

Research Assistant, UMass Amherst, Amherst, MA (5/2002 — 5/2003)
Advisor: Dr. Lixin Gao. Implemented a tool to aid in visualizing BGP routing information,
relationships between autonomous systems and the Internethierarchy
[Java]

Teaching Assistant, UMass Amherst, Amherst, MA (1/2003 — 5/2003)
ECE 242: Data Structures and Algorithms with Dr. Lixin Gao
[Java]
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GRADUATE COURSES

Programming Languages, Computer Networks (I/II), Cryptography, Probability in Computing,
Algorithms, Operating Systems, Databases, Performance Analysis, Machine Learning, and Infor-
mation Theory

GRADUATE COURSEPROJECTS

• Machine Learning
Developed code for training and testing a support vector machine classifier with a nonlinear
kernel; implemented the markov chain monte carlo techniquefor approximate inference in
bayesian networks; implemented the multi-class decision tree method
[MATLAB]

• Performance Analysis
Implemented a discrete-event simulator for a G/G/1 queue
[MATLAB]

• Computer Networks I/II
Implemented a client-server application to probe and measure end-to-end path performance;
implemented a reliable transport protocol; implemented a distance vector routing proto-
col; evaluated the fairness of several transport protocolsand simulated a low-rate denial-
ofservice attack on TCP using the network simulator ns2
[Java, C/C++, Tcl]

• Databases
Implemented several buffer management policies for the backend server of PostgreSQL;
designed and implemented a database system for a web-based picture sharing application
[Java, JSP, HTML, SQL]

• Operating Systems
Implemented a dynamic thread pool, with priorities to support quality of service, for a video
server to disseminate streaming video to clients over the Internet; implemented a file system
as a loadable module in the Linux Kernel
[C/C++]

SKILLS

Platforms: Unix, Linux, Windows
Programming: Java, Perl, MATLAB, C/C++, Tcl, Datalog, Scheme, Bash, Shell
Web Technologies: HTML, CSS, Javascript, Java Servlets, XML, JSP
Databases: PostgreSQL
Languages: Fluent spoken/written English/Arabic; Intermediate French
Leadership: Strong interpersonal, communication and leadership skills
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HONORS ANDAWARDS

• Teaching Fellow Award, College of Arts and Sciences, BostonUniversity (2009-2010)

• Travel Grant Award for the Passive and Active Measurements Conference, Belgium (2007)

• Presidential University Graduate Fellowship, Boston University (2004)

• Fidelity Technology Fellows Scholarship, 2 years (20012003)

• Biography published in the National Deans List (2003)

• Commonwealth College and Departmental Honors, UMass Amherst (2003)

• Deans List, 8 semesters, College of Engineering, UMass Amherst (1999 — 2003)

• Member of the National Society of Collegiate Scholars (2003)

THESES

TCP over CDMA2000 Networks: A Cross-Layer Measurement Study
Masters Thesis, Department of Computer Science, Boston University
Technical Report BUCS-TR-2007-016, Dec 14, 2007

PUBLICATIONS

Declarative Transport: A Customizable Transport Service for the Future Internet
Karim Mattar, Ibrahim Matta, John Day, Vatche Ishakian and Gonca Gursun
Networking Meets Databases (NetDB), Montana, USA, 2009

Principles of Safe Policy Routing Dynamics
Samuel Epstein, Karim Mattarand Ibrahim Matta
International Conference on Network Protocols (ICNP), NewJersey, USA, 2009

Networking is IPC: A Guiding Principle to a Better Internet
John Day, Ibrahim Matta and Karim Mattar
Re-Architecting the Internet (Re-Arch), Madrid, Spain, 2008

TCP over CDMA2000 Networks: A Cross-Layer Measurement Study
Karim Mattar, Ashwin Sridharan, Hui Zang, Ibrahim Matta and Azer Bestavros
Passive and Active Measurement Conference (PAM), Louvain-la-neuve, Belgium, 2007

TECHNICAL REPORTS

On the Complexity of Policy Routing Dynamics
Karim Mattar, Samuel Epstein and Ibrahim Matta
Technical Report BUCS-TR-2010-033, Sep 12, 2010
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On the Detection of Policy Conicts in Interdomain Routing
Karim Mattar, Samuel Epstein and Ibrahim Matta
Technical Report BUCS-TR-2010-009, Apr 16, 2010

Principles of Safe Policy Routing Dynamics
Samuel Epstein, Karim Mattarand Ibrahim Matta
Technical Report BUCS-TR-2009-013, Apr 21, 2009

On the Performance and Robustness of Managing Reliable Transport Connections
Gonca Gursun, Ibrahim Matta and Karim Mattar
Technical Report BUCS-TR-2009-014, Apr 21, 2009

Foundational Theory for Understanding Policy Routing Dynamics
Karim Mattar, Samuel Epstein and Ibrahim Matta
Technical Report BUCS-TR-2009-001, Jan 30, 2009

Networking is IPC: A Guiding Principle to a Better Internet
John Day, Ibrahim Matta and Karim Mattar
Technical Report BUCS-TR-2008-019, Aug 15, 2008

An Online Distributed Algorithm for Inferring Policy Routi ng Configurations
Samuel Epstein, Ibrahim Matta and Karim Mattar
Technical Report BUCS-TR-2008-017, Aug 15, 2008

Declarative Transport: No more transport protocols to design only policies to specify
Karim Mattar, Ibrahim Matta, John Day, Vatche Ishakian and Gonca Gursun
Technical Report BUCS-TR-2008-014, Jul 12, 2008

TCP over CDMA2000 Networks: A Cross-Layer Measurement Study
Karim Mattar, Ashwin Sridharan, Hui Zang, Ibrahim Matta and Azer Bestavros
Technical Report BUCS-TR-2006-030, Oct 25, 2006

On the Interaction between TCP and the Wireless Channel in CDMA2000 Networks
Karim Mattar, Ashwin Sridharan, Hui Zang, Ibrahim Matta and Azer Bestavros
Technical Report BUCS-TR-2006-009, Jun 6, 2006

TALKS

Declarative Transport: A Customizable Transport Service for the Future Internet
Networking Meets Databases (NetDB), Montana, USA, 2009

Principles of Safe Policy Routing DynamicsInternational Conference on Network Protocols
(ICNP), New Jersey, USA, 2009

TCP over CDMA2000 Networks: A Cross-Layer Measurement Study Passive and Active Mea-
surements Conference (PAM), Belgium, 2007

On the Interaction between TCP and the Wireless Channel in CDMA2000 Networks Work-
shop on Wireless Traffic Measurements and Modeling (WiTMeMo), Boston, MA, 2006
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SPONSOREDRESEARCH

• NSF Grant for Building a Recursive Internet Architecture, $560K (5/2010 5/2013)
Research Principal Investigator: Dr. Ibrahim Matta

• Movik Support for Application Performance over 3G/UMTS, $40K (7/2008 3/2009)
Principal Investigator: Dr. Ibrahim Matta

• Sprint Support for Transport over Cellular Data Networks, $35K (9/2006 8/2007)
Principal Investigator: Dr. Ibrahim Matta (co-PI: Dr. AzerBestavros)

• Sprint Support for Characterizing Cellular Data Networks,$20K (5/2005 8/2005)
Principal Investigator: Dr. Ibrahim Matta (co-PI: Dr. AzerBestavros)

ACADEMIC SERVICES

Reviewer for

• IEEE International Conference on Network Protocols (2004,2010)

• Transactions on Mobile Computing (2009)

• Passive and Active Measurements Conference (2008)

• ACM SIGMETRICS (2007)

• IEEE INFOCOM (2007, 2006)

• IEEE Symposium on Computers and Communications (2005)

• International Conference on Mobile and Ubiquitous Systems(2005)

Volunteer for

• IEEE International Conference on Network Protocols (2005)

• Fourth Workshop on Applications and Services in Wireless Networks (2004)

V ISA STATUS

F-1 Student

REFERENCES

Available upon request


