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Abstract

As the Internet has evolved and grown, an increasing number of nodes (hosts or autonomous systems) have become multihomed,
i.e., a node is connected to more than one network. Mobility can be viewed as a special case of multihoming—as a node moves,
it unsubscribes from one network and subscribes to another, which is akin to one interface becoming inactive and another active.
The current Internet architecture has been facing significant challenges in effectively dealing with multihoming (and consequently
mobility), which has led to the emergence of several custom point-solutions. The Recursive InterNetwork Architecture (RINA) was
recently proposed as a clean-slate solution to the current problems of the Internet. In this paper, we present a specification of the
process of ROuting in Recursive Architectures (RORA). We also perform an average-case cost analysis to compare the multihoming
/ mobility support of RINA, against that of other approaches such as LISP and Mobile-IP. Extensive experimental results confirm
the premise that the RINA architecture and its RORA routing approach are inherently better suited for supporting mobility and
multihoming.
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1. Introduction

Support for multihoming and mobility was not a primary
goal in the original design of the Internet. As a result, the Inter-
net’s naming and addressing architecture is incomplete. Specif-
ically, the address of a multihomed host specifies a particular
interface (connection), rather than the node itself. Because rout-
ing is done based on this interface, i.e., Internet Protocol (IP)
address, if this active interface goes down, it is costly to switch
to another operational interface.

There have been several attempts to fix this addressing prob-
lem, including the Location ID Separation Protocol (LISP)—
currently being tested at Cisco [1, 2]—and Mobile-IP [3]. The
basic idea behind LISP is to assign the multihomed node a
provider-independent (location-independent) identifier (ID). A
border router maps a destination ID to the node’s location,
which is the address of another border router that is known to
have a path to the node. Routing is then done from the source’s
border router to the destination’s border router. If the latter
(node’s location) changes due to path failure or mobility, it be-
comes costly to propagate that change over the whole Internet
(to all possible source border routers).
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Mobile-IP (MIP) allows a mobile host to seamlessly move
from its home domain to a foreign location without losing con-
nectivity. This is done by having a foreign agent (router) update
the location of the mobile node at its home agent (router). Since
mobility is a special (dynamic) form of multihoming, MIP can
also be used to handle a change in the active interface (due to
failure or re-routing) leading to a multihomed node, where a
home agent directs traffic to the currently active (operational or
“better”) interface. However, this location update can be costly
since it needs to propagate from the foreign agent to the home
agent.

Note that both LISP and Mobile-IP (and combination
thereof) help reduce the size of the routing tables at the core
of the Internet, since several IDs can map to one location and
hence be represented by one routing entry. Further elaboration
on the benefits of LISP can be found in [4].

RINA [5] is a recently proposed Recursive InterNetwork Ar-
chitecture. It uses the concept of Distributed Inter-process com-
munication Facility (DIF) to divide communication processes
into manageable scopes across network subsystems, which re-
sults in a reduced routing table size per DIF. RINA routes hop-
by-hop based on the destination’s node address, not its inter-
face. At each hop, the next-hop node address is mapped to the
(currently operational) interface to that next-hop node. This late
binding of a node’s address to its interface (path) allows RINA
to effectively deal with interface changes due to multihoming or
mobility. The cost of such late binding is relatively small since
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its scope is local to the routing “hop” that traverses the underly-
ing DIF. By recursing the DIF structure to make the DIF scopes
small enough, the cost of such late bindings (location updates)
can be made arbitrarily small.

1.1. Our Contribution

We present a specification of the process of ROuting in Re-
cursive Architectures (RORA) adopted in RINA, and highlight
its inherent support for mobility and multihoming. We present
a cost model to quantitatively assess the effectiveness of LISP,
MIP, and RINA, in supporting multihoming / mobility. To the
best of our knowledge, this paper presents a first cost compari-
son of these approaches. Our definition of “cost” captures both
the average number of packets generated by a source node to a
(multihomed or mobile) destination node, as well as the aver-
age path length from the source to the destination (as indication
of delays or bandwidth usage). In our model, we compute the
overall average cost for a single interface change experienced
by the multihomed or mobile destination node. We validate our
analytical model for mobility using simulation and for multi-
homing using trace-driven simulation based on real data from
CAIDA [6].

1.2. Organization of the Paper

The rest of the paper is organized as follows: Section 2 re-
views MIP, LISP, and RINA. Section 3 presents the RORA rout-
ing process. We present our general cost model in Section 4,
and then we instantiate it for the various approaches. Section 5
presents numerical results for grid topologies. Section 6 evalu-
ates the cost of supporting mobility using simulations, and Sec-
tion 7 evaluates the cost of supporting multihoming using real
packet traces from CAIDA [6]. Section 8 reviews related work
and Section 9 concludes the paper.

2. Background

This section provides a basic background on the various ar-
chitectures we study, namely MIP, LISP, and RINA—for more
details, we refer the reader to references herein.

2.1. Mobile-IP

Mobile-IP (MIP) [3] has been mainly standardized to deal
with the mobility of nodes. As mentioned earlier, since mobil-
ity is merely a (dynamic) form of multihoming, the MIP con-
cept can also be used to deal with interface (path) change to a
multihomed node.

In MIP, two basic mechanisms are identified: (1) a discov-
ery mechanism, which allows a node to detect its new point-of-
attachment, and (2) a registration mechanism, which allows a
node to register itself with an agent that represents it at its home
network.

Figure 1 shows a source node (SN) sending packets to a des-
tination node (DN) in another Autonomous System (AS). The
destination moves to a new AS and acquires a care-of-address at
the Foreign Agent (FA). The FA then updates the corresponding
Home Agent (HA) with DN’s new location.

Figure 1: Mobile-IP Protocol.

The basic delivery process of data packets from a source node
to a destination node is as follows (highlighted as sequence 1–3
in Figure 1):

1. The datagram is delivered to HA via standard routing.
2. The HA intercepts the datagram and tunnels it to the des-

tination’s current location (care-of-address).
3. The FA at the current location intercepts the datagram and

delivers it to the destination node.

Since its initial proposal, both for IPv4 and IPv6, different en-
hancements were suggested to deal with routing inefficiencies
like Proxy Mobile IPv6 [7], Hierarchical MIPv6 (HMIPv6) [8],
and Fast Handovers for Mobile IPv6 (FMIPv6) [9]. However
these approaches incur extra communication overhead, and rely
on special anchor routers with which mobile nodes register,
which leads to QoS deteriorations as the anchor nodes get con-
gested [7]. Furthermore, recent work [10] reports minor perfor-
mance (packet loss, bandwidth) improvements under HMIPv6
and FMIPv6 compared to MIPv6. Thus in this work, we only
consider the basic version of MIP.

2.2. LISP
The Locator/ID Separation Protocol (LISP), proposed by

Farinacci et al. [11], separates the address space into end-
systems’ identifiers (EID) for source and destination hosts, and
routing locators (RLOCs) where border routers act as RLOCs
for the end-systems inside their local domain. The mappings,
referred to as EID-to-RLOC mappings, are stored in a Mapping
Server (MS).

The basic delivery process of data packets from a source node
(SN) to a destination node (DN) is as follows (highlighted as
sequence 1–4 in Figure 2):

1. The data packet from the source is intercepted by the bor-
der router called Ingress Tunnel Router (ITR).

2. The source ITR performs a lookup query for a destination
EID-to-RLOC mapping [12].

3. ITR transparently tunnels the data packet to the destina-
tion’s RLOC referred to as Egress Tunnel Router (ETR).
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Figure 2: LISP Architecture.

4. Upon intercepting the packet, the destination’s ETR for-
wards the packet to the destination.

Upon failure of an active interface, a multihomed destination
node sends an update to its ETR, which in turn updates the EID-
to-RLOC MS. The sequence of messages is shown in Figure 3.

Figure 3: LISP cost of update.

Different variants of LISP only differ in how the EID-to-
RLOC mapping is maintained [12]. The use of caching for
lookup has also been recently explored in [13].

2.3. RINA

In RINA, application processes or services have globally
unique names, and networking is viewed as distributed Inter-
Process Communication (IPC). Each Distributed IPC Facility
(DIF) integrates both transport and routing tasks along with
other management tasks [5].

If an application process in RINA needs to communicate with
another application process, it requests service from the under-
lying DIF. This DIF maps the destination application name to
a node (process) address. A DIF in RINA can (recursively)
provide transport services between source and destination ap-
plication processes, using services of underlying (lower-level)
DIFs.
Routing: The route to the destination node address (to which
the destination application process is connected) is computed as
a sequence of intermediate node addresses within the DIF. At
each routing hop, the next-hop node address is in turn mapped
(recursively) to a lower-level node address by the underlying
DIF. This lower-level node address is viewed as the point-of-
attachment of the higher-level node. Thus, RINA’s addresses
are relative: a node address at a DIF level (N) is considered a

node name by a lower-level (N-1) DIF. At the (N-1)-DIF, this
name needs to be mapped to a node (N-1)-address by the DIF’s
directory service. Eventually, the node (process) address maps
to a specific path (interface). This late binding to a specific in-
terface (path) makes it easier for RINA to deal with mobility
(and multihoming). If an active interface (path) to a node fails,
RINA maps the (next-hop / destination) node address to another
operational interface (path). The cost of such interface/location
update is small because the update is only local to the rout-
ing hop—the next-hop / destination node address is mapped to
the lower-level node address that resides within the operational
lower-level DIF.

On the contrary, in the current Internet model, the interface
address (i.e., IP address) names both the node itself and the
interface (path) to that node—this static binding makes mobility
(and multihoming) difficult to manage.
RINA Example:

Figure 4 shows a source process “A” sending packets to a
destination process “E” using the services of the underlying
DIFs. Note that in RINA, a single system may have multiple
processes which are members of different DIFs at different lev-
els. The source process “A” and destination process “E” form
a (high-level 5-node) DIF with a set of intermediate processes,
which we call “intermediary” nodes (“B”, “C”, and “D”), such
that the intermediary “B” can reach the destination process us-
ing two separate interfaces over two different underlying DIFs
(numbered 2 and 5). Figure 4 also highlights the routing table
of each of the nodes and the next hop to each of the destina-
tions. This 5-node DIF can be thought of as an “overlay” (or
private network) to which the source, destination, and interme-
diaries had subscribed. When a packet reaches the intermediary
node (process) “B”, “B” forwards the packet based on the cur-
rent best / operational path / interface (underlying DIF) leading
to the destination process.
Remark: It is important to highlight the difference between
how BGP [14] and RINA handle route / interface failures. In
BGP, even if there is a specific path failure to a specific pre-
fix (node), the protocol may still broadcast a path to the des-
tination since it relies on advertising reachability to aggregate
destination prefixes. On the other hand, RINA would handle
such failures using hop-by-hop routing within the DIF of the
destination process. For example, in Figure 4, if the communi-
cation between nodes “B” and “E” passing through node “D”
and utilizing lower-level DIFs 2 and 3, goes down, then node
“B” would locally adapt and start routing through node “C” uti-
lizing lower-level DIFs 5 and 4. Thus, RINA provides finer
grained control over routing to multihomed destinations.

Upon mobility, a node (process) may need to join or leave a
DIF through a registration or unregistration procedure [5].

In the remaining sections we present the necessary inter and
intra DIF operations, such as, registration, unregistration, node-
address mapping, and routing, necessary to support mobility
(and multihoming) in RINA. We then present an analytical
model to compare the cost of supporting mobility/multihoming
in RINA with that of other solutions, namely, MIP and LISP
variants. Moreover, we validate our analysis using simulations.
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Figure 4: A RINA Network.

3. Protocol Specification

In this section we present the specifications of the process of
Routing in Recursive Architectures (RORA) adopted in RINA.
Naturally, the RORA functions are recursive, whereby each
function invocation (instance), in reality, represents processing
at a certain DIF level.

In our specifications, we assume the existence of a data struc-
ture, which we refer to as RIB (Resource Information Base), in
each DIF. Among other information, the RIB contains a set of
pairs (n, a), where n is the application name, and a is its cor-
responding node address. Given RINA’s relative addressing, n
is viewed as the higher-level node name. For example, in Fig-
ure 4, within DIF 2, “D” is viewed as node name and “K” is its
corresponding node address. Relatively speaking, “K” is also
viewed as a point-of-attachment (PoA) for “D”.

The RINA architecture consists of registration and unregis-
tration phases to support the subscription and unsubscription of
processes as they join and leave DIFs, respectively. RINA also
requires translation / mapping functionalities and the actual re-
cursive routing process.

3.1. Registration
In RINA, the registration process is done in a top-down fash-

ion. As a node (process) moves from one DIF to another, it
sends a registration request to a registration node located in that
DIF (level l). After being authenticated (a mechanism outside
the scope of our discussion) 1, the requester is assigned an ad-
dress (line 5 in Procedure 1). The registration process is recur-
sively propagated to the underlying DIFs to which lower-level

1Security aspects of RINA are highlighted in [15].

processes on the same machine subscribe (line 8). During the
registration process, and after allocating an address to the node,
the DIF updates its RIB (line 6). Once the registration process
is complete, a registration response (shown in Procedure 2) is
propagated upwards to each requesting DIF node (line 9).

Procedure 1 : Register Request()
Require: n:String, l: long {n represents the node wanting to

register, while l represents the DIF level}
1: if (l == 0) then
2: Return {End of recursion; reached bottom DIF}
3: end if
4: if authenticate(n, l) then
5: a⇐ allocate address(n)
6: RIB Update(n, a,“ADD”)
7: end if
8: Register Request(a,l− 1) {Recursively register in the lower

DIF}
9: Register Response(n,a)

Procedure 2 : Register Response()
Require: n:String, a:String {respond with the allocated ad-

dress information to the requesting node}

Registration Example: We illustrate the registration process
of RINA using the network shown in Figure 4. Assuming
that the source wants to register. It starts by calling Regis-
ter Request(source, l) where l is the topmost level. Once it
is authenticated, it will be assigned an address A, which will
be registered recursively at layer l − 1 and in turn assigned an
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Procedure 3 : UnRegister Request():
Require: n:String, l: long

1: if (l == 0) then
2: Return
3: end if
4: if authenticate(n, l) then
5: a⇐ allocate address(n)
6: RIB Update(n,a,“REMOVE”)
7: end if
8: UnRegister Request(a,l − 1) {Recursively unregister in the

lower DIF}
9: UnRegister Response(n)

Procedure 4 : UnRegister Response():
Require: n:String {respond with the unregistration confirma-

tion to the requesting node}

address F.

3.2. Unregistration
Procedure 3 highlights the unregistration process in RINA

which is similar to the registration process. The node n is-
sues an UnRegister Request to a node in a DIF. The node that
receives the unregistration request removes n from the RIB
(line 6), and subsequently issues a recursive unregistration re-
quest (line 8) to the lower DIFs. Once this process is complete,
an unregistration response (shown in Procedure 4) is propagated
upwards to each requesting DIF node (line 9).
Unregistration Example: We illustrate the unregistration pro-
cess of RINA using the network shown in Figure 4. Assuming
that the source wants to unregister. It starts by calling UnReg-
ister Request(source, l) where l is the topmost level. Once au-
thenticated, its address will be removed and the unregistration
will be processed recursively until all processes on the same
machine (A and F) have unsubscribed from their respective DIF.

3.3. Mapping Functions
The mapping functions are a set of primitives that update and

query a DIF’s RIB data structure. They are called by a node to
obtain a mapping between a name and its address.

Procedure 5 highlights the RIB Update method, which is
called whenever node information needs to be added to or re-
moved from the RIB. RIB∪ (n, a) and RIB \ (n, a) should work
as any database add and remove function, respectively.

Procedure 5 : RIB Update():
Require: n:String, a:String, type:string

if type == “ADD” then
RIB ∪ (n, a)

else
RIB \ (n, a) {remove entry}

end if

The Map Request function (Procedure 6) queries for node n
in the RIB, and when found, its address is returned.

Procedure 6 : Map Request()
Require: n:String

if ∃ n ∈ RIB then
a⇐ Find address(n) {Returns the address of node n}
Map Response(n,a)

end if

Procedure 7 : Map Response()
Require: n:String, a:String {replies to the requesting node with

either successful connection to node address or error}

The Map Response(n, a) (Procedure 7) function establishes
a transport connection based on the node address, or signals an
error (e.g. timeout, credential not found).

3.4. Recursive Routing
The recursive routing function (Procedure 8) is considered

the core of RORA, and requires a source and a destination node,
s and d. We denote by i any intermediate node, and m as the
message to be delivered.

The function starts by recursively obtaining the source and
next-hop/destination addresses using the Map Request func-
tion (cf. Procedure 9). Based on the routing policy adopted, the
next-hop (or intermediate node) to the destination is obtained
by calling getNextHop(d). Whenever the message reaches its
destination process at the lowest DIF, the message is decapsu-
lated and delivered to the higher level DIF directly using the
function Deliver up (Procedure 10). Whenever the message
reaches its next-hop, it continues to be sent recursively down to
its next-hop / destination. Eventually the message reaches its fi-
nal destination and gets delivered to the destination application
process using the function Deliver App.
Routing Example: We illustrate the routing process of RINA
using the network shown in Figure 4. Assuming that source
A wants to send a message to E. It starts by calling
RRoute(A,E,m). The function finds out the next-hop node (B in
this case), and sends the message down to the lower-level DIF,
which maps the source and next-hop addresses to their lower-
level addresses and calls RRoute recursively. In particular, the
lower layer process F will forward the message to G, which in
turn will deliver it to node (process) B. Node B will repeat the
same process to send the message to D 2, which in turn sends
the message to node E.
Remark: It is important to note that RINA deals with scala-
bility of routing by utilizing the following approaches: first, in-
ternal addresses in RINA are topological (location dependent),
rather than today’s provider/graph-based, and second, PoA ad-
dresses change more frequently in DIFs of lower rank (smaller
scope). Thus upon user mobility, the scope of update is smaller
than the scope of update in the current Internet. Third, com-
munication across each hop is based on a soft-state mechanism
[16]. This allows address mapping/resolution at each hop to be

2Depending on routing configurations during the forwarding stage, node B
might decide to send the message to node C.
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Procedure 8 : RRoute()
Require: s:String, d:String, m:String

1: if “me” == d then
2: Deliver up(m) {If my address is the same as the destina-

tion, then deliver to the upper layer DIF}
3: else
4: i = getNextHop(d)
5: m′ = (s,d) ‖ m {add header}
6: send down(“me”,i, m′)
7: end if

Procedure 9 : Send down()
Require: s:String, d:String, m:String

1: s′ = Map Request(s)
2: d′ = Map Request(d)
3: RRoute(s′,d′,m)

done per communication flow between a node and the next hop.
So messages to the next hop are sent via the readily available
established (transport) flow.

4. Cost Model

In this section we study the average (communication) cost of
supporting mobility under MIP, LISP and RINA architectures.
For the LISP architecture, we also analyze extended variants
that employ caching for EID-to-RLOC mappings, or Mobile-IP
running over basic LISP. Our cost model has similar character-
istics to that of cellular systems [17, 18, 19], however, unlike
cellular systems, our model captures additional characteristics
and intricacies that are inherent to different proposed Internet
architectures such as the multilevel hierarchy of LISP-MIP and
recursive RINA DIFs.

4.1. Assumptions, Cost Definitions, and Parameters
We assume a single source-destination model where the

source sends data packets according to a Poisson process. We
analyze the average cost of managing a single interface (path)
change to the destination due to the mobility of the destination
node.

The cost of delivery of a single packet is denoted by CD. The
total cost per interface change, denoted by CT , is a function of
the location lookup cost (CL), the location update cost (CU), the
location inconsistency cost (CI), and CD. Location lookup cost
is defined only for LISP, to capture the cost of querying a map-
ping server for information about the destination’s RLOC given
the destination’s EID. In computing the location inconsistency
cost, we assume that packets delivered to the wrong location
due to inconsistency of location / routing information, need to
be delivered again.

We assume that for all approaches considered (LISP,
MIP, and RINA), directory and routing processes have pre-
established security mechanisms (i.e. common secret keys) that
allow them to (1) encrypt and decrypt their routing/control mes-
sages for confidentiality, and (2) generate and piggyback autho-
rization keys in routing/control messages for authentication and

Procedure 10 : Deliver up()
Require: m:String

1: if header(m) == φ then
2: Deliver App()
3: return
4: end if
5: (s,d) = header(m)
6: m = m\ (s, d) {decapsulate}
7: if “me” == d then
8: Deliver up(m)
9: end if

10: RRoute(s,d,m)

access control. Thus, our focus is on the cost of communicat-
ing such routing/control messages and its impact on the delivery
performance of data messages in terms of packet delay and loss.

In our model, we assume that the inter-arrival times of data
packets and the lifetime of the destination’s interface, each fol-
lows an exponential distribution, denoted by fp(t) and fm(t), re-
spectively. We define the following two parameters:

• λ: the mean packet arrival rate, i.e., fp(t) = λe−λt.

• µ: the rate at which the interface to the destination
changes, or mobility rate, i.e., fm(t) = µe−µt.

Assuming that both packet arrival and interface lifetime pro-
cesses are independent, the mean number of data packets re-
ceived by the destination per single interface change is given
by: ρ = λ

µ
.

We define P to be the probability that the source has the cor-
rect (i.e., consistent) location / interface information. For exam-
ple, under MIP, P defines the probability that the home router
contains consistent routing / location information. Under LISP,
P defines the probability that the Mapping Server contains cor-
rect EID-RLOC mapping information. Under RINA, P defines
the probability that the DIF contains correct routing informa-
tion.

To allow for ease of analysis, we make the simplifying
assumption that upon an interface change, the source does not
send packets until the network state becomes consistent. We
relax this assumption in the experimental section 3. In steady
state, P can be defined as the probability that the interface to
the destination has not changed since the last packet arrival. Let
tp be the exponential random variable representing the packet
inter-arrival time, and tm be the exponential random variable
representing the residual time during which the interface to the
destination node does not change4. Thus, we have:

P = Prob(tp < tm) (1)

3Note that our analytical model still captures the cost of being in an incon-
sistent state through the cost of updating routing / location information so as to
make it consistent.

4Recall that the residual time of an exponentially distributed time is also
exponential due to the memoryless property.

6



Parameters/Costs Definitions
λ packet sending rate of the

source
µ mobility rate of destination or

rate of interface failure for mul-
tihomed destination

ρ λ
µ

CL Cost of lookup
CU Cost of location update
CD Cost of delivery
CI Cost of inconsistency

Table 1: Definitions of Parameters and Costs.

=

∫ ∞
tp=0

fp(tp)
∫ ∞

tm=tp

fm(tm)dtmdtp (2)

=

∫ ∞
tp=0

λe−λtp

∫ ∞
tm=tp

µe−µtm dtmdtp (3)

=
λ

λ + µ
(4)

The total cost per destination’s interface change, CT , is given
by:

CT = CL + CU + ρ(P ×CD + (1 − P) ×CI) (5)

where the cost of inconsistency CI is defined as (CD +COLD
D ),

and COLD
D is the cost of packet delivery to the old location /

interface. The term (1 − P) × CI defines the cost of deliver-
ing packets that were in flight when the destination’s interface
changed. Henceforth, we take COLD

D = CD, assuming that pack-
ets delivered to the wrong location need to be re-delivered to the
correct location at the same cost. CU represents the cost of mes-
sages propagated to restore the consistency of location/routing
information after an interface change. For example, in the case
of LISP, CU represents the cost of updating the mapping server.

Table 1 summarizes our parameters.

4.2. MIP Cost Analysis
For MIP, we define the cost terms in Equation (5) as follows:

• CD = CSN−HR + CHR−DN,
where the cost of delivery of a single packet, CD, is the
sum of CSN−HR, representing the cost of delivering a packet
from the source node (SN) to the home router (HR), and
CHR−DN, representing the cost of delivering the packet
from HR to the destination node (DN).

• CU = CDN−FR + CFR−HR,
where the cost of updating the destination’s interface / lo-
cation is the sum of CDN−FR, which represents the cost of
updating the foreign router, and CFR−HR, which represents
the cost of updating the home router.

Note that in MIP, CL = 0, since the home router readily main-
tains the location of the destination node, and does not look up
any mapping service.

4.3. LISP Cost Analysis

Under LISP, we define the cost terms in Equation (5) as fol-
lows:

• CD = CL + CSN−DN,
where the lookup cost, CL, represents the cost of querying
the EID-RLOC Mapping Server (MS) to identify the lo-
cation of the destination Tunnel Router (TR). This lookup
cost is incorporated in the delivery cost of every single data
packet.

• CU = CDN−TR + CTR−MS,
where CU , the cost of updating the MS, is the sum of
CDN−TR, which represents the cost of location update from
the destination node to its TR, and CTR−MS, which repre-
sents the cost of updating the MS.

4.4. RINA Cost Analysis

Support for mobility is inherent in the RINA architecture [5].
As described earlier, a data packet is delivered hop-by-hop to
the destination across limited-scope Distributed Inter-process
communication Facilities (DIFs). If the destination’s interface
changes, then the mapping from the destination node’s address
to the new interface is locally propagated. This local update
involves unsubscription / withdrawal from/of the old interface
(underlying DIF), and subscription / registration to/of the new
interface (underlying DIF), which in turn results in updating the
routing information to map to the new interface.

Figure 5: RINA DIF Structure.

As described in Section 3, in RINA, a node registers at a
higher level DIF and gets an address assigned to it, which in
turn serves as the node name for the lower level DIF. Thus, a
communication request for that destination name can be readily
resolved at the lower level DIF to a node address at that level.
This process is repeated recursively over all RINA DIFs.

For analytical simplicity, as illustrated in Figure 5, we define
the DIF structure of RINA as a binary tree where the scope (in
terms of propagation delay) of each DIF is recursively parti-
tioned into two lower-level scopes of half the size each.

To model the cost of propagation of routing change, we as-
sign a topological based address prefix of zero or one to each
part of the tree. Each node gets assigned an address whose pre-
fix is derived from the DIF assigned values. For example, a
node that resides in the rightmost lowest level DIF gets allo-
cated an address whose prefix is 00.
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When a destination node moves from one lowest level DIF
to another, routing along the tree gets updated to point to its
current location. The cost of update is determined by the scope
of the DIF(s) that will need to be updated as a result of a user’s
mobility. We define l as the level (height) of routing propaga-
tions up the tree, which is obtained by taking the exclusive-or
(XOR) of the destination’s current address prefix and its previ-
ous address prefix, and computing l as the position of the most
significant (leftmost) bit being set to one (assuming the position
of the least significant bit is 1).

The total cost for routing updates is equal to:

l−1∑
j=0

2 ×
D

2h− j

where D is the diameter of the network, and h is the height of
the tree.
Example: Referring to Figure 5, assume that a node with ad-
dress prefix 00 moves to the nearby lowest level DIF to the
right, then the node address prefix changes to 01. In this case,
00 XOR 01 = 01, so l = 1, and the total update cost is equal to
2 D

22 = 2 D
4 (given the height of the tree h = 2). This is the case

since the parent node (with address prefix 0) needs to update its
routing to point toward the new lowest level DIF instead of the
old DIF. This requires the propagation of routing update across
two lowest level DIFs, each of which spans a delay equal to
fourth the diameter delay across the whole network.

Since our analysis deals with average costs, our goal is to
compute the average value of l over possible mobility between
different lowest level DIFs. To this end, we define an event βi

such that given m bit prefix addresses, bit i is flipped and bit
i + 1 to m remain unchanged—in other words, βi represents the
probability of movement of a node that requires route updates
to propagate up i levels, given a certain node mobility model.
We also define the probability of bit i flipping as αi. Thus, the
probability of event βi = αi

∏m
j=i+1(1 − α j). The expected value

of the level of route update propagations l is given by E[l] =∑m
i=1 iβi.
Thus under RINA, we define the cost terms in Equation (5)

as follows:

• CD = CSN−DN,
since RINA strives to maintain a “direct” route to the des-
tination.

• CU =
∑E[l]−1

j=0 2 × D
2h− j ,

which is the cost of routing updates upon mobility of the
destination node.

As in MIP, CL = 0 since each node (process) readily maintains
the next-hop (routing) information to the destination node, and
does not look up any mapping service.

4.5. LISP-MIP Cost Analysis

Farinacci et al. [11] propose the use of MIP as a means to
managing fast mobility in LISP. This LISP-MIP variant can be
generally used to deal with a change of destination’s interface

whether because of mobility or re-routing to a multihomed des-
tination.

Figure 6 highlights the cost of message delivery under the
LISP-MIP architecture. The source is sending a packet to the
destination node that has already moved to another domain and
got a new care-of-address and updated its home agent, follow-
ing the MIP protocol. Once the home agent intercepts the mes-
sage, it tunnels it to the new location. An additional MS lookup
is needed to obtain the address of the current destination Tunnel
Router (TR).

Thus under LISP-MIP, assuming no caching of location in-
formation, we define the cost terms in Equation (5) as follows:

• CD = CSN−L + CSN−HR + CHR−L + CHR−DN,
where CSN−L and CHR−L represents the cost of querying
the EID-RLOC mapping server at the source’s TR, and at
the destination’s home TR, respectively.

The cost of update CU in LISP-MIP is the same as that of MIP.

Figure 6: LISP-MIP cost of packet delivery.

4.6. LISP-Cache
Iannone et al. [13] studied the use of caching at the source

Tunnel Router (TR) under LISP. Naturally, caching would de-
crease the per-packet cost of looking up the EID-RLOC map-
ping information, as long as the cached location information is
accurate. The packet delivery process is still the same as that of
Figure 2 with the only difference being that the lookup is only
done once per cache entry lifetime (which, we assume, based on
an infinite cache size, corresponds to the expected inter-failure
time of the destination’s interface). Thus we define the cost
terms in Equation (5) as follows:

• CL > 0,
which represents the cost of querying an EID-RLOC map-
ping server to identify the location of the destination TR.
This lookup is done once whenever the destination’s inter-
face changes and then cached for subsequent data packets.

• CD = CSN−DN,
where we assume that looking up the cache for the location
information is negligible, and thus does not contribute to
the cost of delivery of every single data packet.
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• CU = CDN−TR + CTR−SNcache ,
where CDN−TR represents the cost of location update from
the DN to its TR, and CTR−SNcache represents the cost of
invalidating the source TR’s cache due to the change in
the destination’s interface.

4.7. LISP-MIP-Cache

As a last LISP variant, we augment the LISP-MIP model de-
scribed above with caching to reduce the cost of looking up lo-
cation information. The delivery process still follows the same
pattern shown in Figure 6, the only difference is that the lookup
is only done once per cache entry lifetime (which, we assume,
based on an infinite cache size, corresponds to the expected
inter-failure time of the destination’s interface). We define the
cost terms in Equation (5) as follows:

• CL = (CSN−L + CHR−L) > 0,
which represents the costs of querying a mapping server
at the source’s TR and the destination’s home TR, respec-
tively. We note that these lookup costs are only incurred
once whenever the destination’s interface changes. The
location information is then cached for future use. Thus
these lookup costs do not contribute to the delivery cost of
every single data packet.

• CD = CSN−HR + CHR−DN,
which defines the cost of delivery of a single data packet.
The cost of looking up the cached location information is
assumed to be negligible.

• CU = CDN−FR + CFR−HR,
which defines the cost of updating the destination’s loca-
tion at its home router.

A summary of the costs under all schemes is shown in Ta-
ble 2.

5. Numerical Results

We present numerical results using the cost equations defined
in Section 4, assuming grid topologies. As mentioned earlier,
we define costs in terms of average path lengths between com-
municating entities, e.g., between a source’s TR and a mapping
server in LISP.

For an N × N grid topology, the average distance between
any two nodes is given by 1.333(N/2) hops. We use this aver-
age distance as the cost of communication between two nodes
that are not on the same network. On the other hand, if the
communicating nodes are on the same network, the cost is rel-
atively smaller (and independent of the size of the topology) —
we take the cost to be two hops between a node and its TR, and
one hop otherwise. For RINA we model a binary DIF tree on
top of the grid topology such that each leaf (lowest level) DIF
contains two network nodes.

Figure 7 presents results for an 8 × 8 grid for the various
schemes as ρ takes on different values. The height of our RINA
binary tree is 5.
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Figure 7: Numerical results for an 8 × 8 grid.

We assume a skewed probability distribution for the move-
ment of nodes between (lowest level) DIFs such that the prob-
ability of moving from the leftmost DIF to the rightmost DIF
is minimum — the probability of address bit i being flipped is
1/2i (cf. Section 4.4). This is a reasonable assumption since
non-local movements would not be practical in reality. Given
the above mobility distribution, E[l] ≈ 3.

As ρ increases, the total cost for all schemes decreases (as
expected). RINA has the lowest total cost, while LISP has the
worst cost. It is worthwhile to mention that even when the total
cost of location update in RINA is higher than that of MIP, due
to RINA’s use of the “direct” path to the destination, RINA’s
total cost of packet delivery is lower.

10 20 30 40 50 60 70
0

100

200

300

400

Grid size

C
T
  
 [
P

a
c
k
e
t 
D

e
liv

e
ry

 C
o
s
t]

 

 

LISP!MIP

LISP!MIP!CACHE

LISP

MIP

LISP!CACHE

RINA

Figure 8: Numerical results for varying grid sizes.

Figure 8 shows the total costs of the various schemes for
varying grid sizes N for ρ = 2. As N increases, the total cost
for all schemes increases, with RINA incurring the lowest cost
at a sublinear increase rate.

6. Mobility Simulation Results

We validate our cost model using simulation. In our simu-
lations, “cost” is represented by average packet delay, packet
drop ratio, or inverse of packet delivery ratio. To obtain an
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Costs Mobile IP RINA LISP LISP-Cache LISP-MIP LISP-MIP-
Cache

CD CSN−HR +

CHR−DN

CSN−DN CL + CSN−DN CSN−DN CSN−L +

CSN−HR +

CHR−L +

CHR−DN

CSN−HR +

CHR−DN

CU CDN−FR +

CFR−HR

CDIF−UNREG +

CDIF−REG

CDN−TR +

CTR−MS

CDN−TR +

CTR−SNCACHE

CDN−FR +

CFR−HR

CDN−FR +

CFR−HR

CI CD + COLD
D CD + COLD

D CD + COLD
D CD + COLD

D CD + COLD
D CD + COLD

D
CL 0 0 CTR−MS +

CMS−TR

CTR−MS + CMS−TR 2(CTR−MS +

CMS−TR)
2(CTR−MS +

CMS−TR)

Table 2: Components of total cost in response to a single interface change.

internet-like topology, we use the BRITE topology generator
[20] to generate a network of autonomous systems (ASes) and
their router topologies. We use the top-down generation model
of BRITE which is based on two phases. In the first phase,
an AS topology is initially generated using the Barabasi-Albert
model with incremental growth type and preferential connec-
tivity. In the second phase, a router-level topology is generated
for each AS, where router nodes are placed randomly on the
2D-plane and connected using the Waxman model. The aver-
age path length between nodes in the generated topologies is 14
hops, consistent with Internet measurement studies [21].

We simulate a single source-destination pair where the
source sends packets at a rate λwhile µ defines the rate at which
the destination interface changes as a result of node mobility.
We adopt a random walk mobility model where the destina-
tion node moves within a specified hop radius from its cur-
rent location. For MIP, we assume that the cost of update is
the round-trip propagation delay between the mobile destina-
tion node’s current location and its designated home router. For
LISP, we assume that updating the EID-RLOC mapping server
takes an exponentially distributed time with a mean value that
corresponds to the average path length, upper bounded by the
network diameter. We also assume an infinite cache size for
LISP-Cache and LISP-MIP-Cache.

For RINA, we assume a two-level hierarchy where at the AS
level, border routers form the higher level DIF, whereas internal
routers of each AS constitute the lower layer DIFs. We simu-
late hop-by-hop routing in RINA, and at the higher level DIF,
whenever the destination’s interface changes due to mobility,
we calculate the cost of updating the “intermediary” leading to
the destination to be the round-trip propagation delay between
them. If there is no path to the destination from the “interme-
diary”, we assume the source needs to be updated to route to
a new “intermediary” leading to the destination. The cost of
updating the source is calculated as the round-trip propagation
delay between the source and the destination.

Figures 9 and 10 show the packet delivery ratio and the av-
erage packet delivery time under the various approaches. All
results are presented with 90 percent confidence intervals. The
results are consistent with our analytical results. RINA yields
the lowest cost in terms of packet drop ratio, delivering packets
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Figure 9: Packet Delivery Ratio.

at the lowest possible delay due to its local routing adaptation
within the scope of the lower level DIFs connecting the inter-
mediary and destination. LISP-MIP has higher packet delivery
ratio compared to LISP, but higher average packet delivery de-
lay.
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Figure 10: Average Packet Delivery Time.

As the mobility rate decreases, approaches that utilize
caching like caching over LISP and caching over LISP-MIP

10



DataSet Chicago San Jose
Unique ASes 66 97
Packets 74123 74123
Nodes (routers) 2178 2425
Edges 4488 5041

Table 3: Topology Properties.

gain a significant advantage over non cached approaches. In
Figure 9, and contrary to our analytical results, MIP and LISP-
MIP perform better than LISP in terms of packet delivery ra-
tio. This is due to the fact that the communication between
the source node and the home router does not suffer any losses,
which leads to better packet delivery ratio. However, MIP and
LISP-MIP do incur a higher packet delay, which is consistent
with our cost model.

7. Multihoming Trace-driven Simulation

In this section we validate our analytical results using trace-
driven simulation based on CAIDA’s anonymized packet traces
[6]. This simulation considers only multihoming, so we do
not include experimental results for Mobile-IP. We select two
datasets from two Equinix locations: Chicago and San Jose
(dated 20090219-045912 and 20090219-060100, respectively).
The traces consist of anonymized tcpdump packets from dif-
ferent source-destination pairs. Each trace file contains more
than a million records. The traces provide only anonymized
source-destination pairs and packet arrival times. Due to the
unavailability of complete real Internet topologies, and the dif-
ficulty of mapping the packets to any real topology since they
are anonymized, we use the BRITE topology generator to gen-
erate an underlying AS and router network topology in the same
way described in Section 6.

To keep the simulation and generated topologies manage-
able, we only consider the first 74123 packets from each packet
trace. We assume that all IP addresses which have a common
16-bit prefix belong to the same AS. Table 3 highlights proper-
ties of our two simulated topologies.

We utilize the packet timestamp as the packet arrival time,
thus we relax the Poisson arrival assumption made in the analyt-
ical model. Furthermore, the time between link failures follows
an exponential distribution. To allow for exact measurement of
the effect of interface failures, we simulate the failure of only
a single link (interface) at a time. We also make sure that in-
terface failures occur only on destinations that are multihomed.
We also assume an infinite cache size for LISP-Cache. Similar
to our mobility simulations (cf. Section 6), we assume that for
LISP, updating the EID-RLOC mapping server takes an expo-
nentially distributed time with a mean value that corresponds to
the average path length, upper bounded by the network diame-
ter. Simulation of routing in RINA models a similar approach
to the one described in Section 6.

7.1. Results

In this section, we present the results of our simulations. We
measure packet drop ratio, and packet delivery delay. We exper-
imented using topologies generated using BRITE’s top-down
approach, where in the initial phase, the AS topology is gener-
ated using either the Barabasi-Albert (BA) model or Waxman’s
model [22].

11 12 13 14 15 16 17
0

1

2

3

4

5

6

7

Inter!Failure Time [ms]
P

a
c
k
e

t 
L

o
s
t 

[%
]

 

 

BGP

LISP

LISP!Cache

RINA

Figure 11: Packet Drop Ratio (Chicago dataset, Waxman AS-topology).
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Figure 12: Packet Drop Ratio (San Jose dataset, Waxman AS-topology).

Figures 11 and 12 show the simulation results of packet drop
ratio using Waxman’s AS topology based on the two datasets
(Chicago and San Jose), the Figures 13 and 14 show results of
packet drop ratio for BA AS topology. The results confirm our
analytical model. As the link inter-failure time increases the
percentage of packets dropped decreases. Based on the Wax-
man’s AS topology (Figures 11 and 12), RINA drops around
2% and 2.5% of the packets, respectively, while BGP, LISP,
and LISP with caching, drop around 4% and 8% of the packets,
respectively. BA AS topology results, are consistent with the
Waxman’s AS topology (Figures 13 and 14) with RINA drop-
ping around 4.5% and 5.5% of the packets, respectively, while
BGP, LISP, and LISP with caching, drop around 6% and 10%
of the packets, respectively.
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Figure 13: Packet Drop Ratio (Chicago dataset, BA AS-topology).
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Figure 14: Packet Drop Ratio (San Jose dataset, BA AS-topology).

Figures 15 and 16 show the average packet delivery time for
packets that reach the destination using Waxman’s AS topology,
while Figures 17 and 18 show the average packet delivery time
results for BA AS topology. The delivery time of RINA and
BGP is smaller due to the fact that there is no need to contact a
mapping server. The benefit of caching for LISP is highlighted
by a smaller average packet delivery time.

RINA yields the lowest cost in terms of packet drop ratio,
delivering packets at the lowest possible delay due to its local
routing adaptation within the scope of the overlay involving the
source, destination, and “intermediary” node.

Note that BGP’s delay is slightly lower than that of RINA,
since BGP’s lack of fine-grained routing control makes it inca-
pable of adapting to a failure of the shortest path to a specific
destination node, however, for those packets that get delivered
when the shortest path is up, their delivery delay is smallest.
On the other hand, RINA enables the construction of an “over-
lay” network between the source node, destination node, and
an intermediate node(s) (intermediary) that are capable of re-
routing around failed paths (interfaces). Thus, under RINA,
more packets are successfully delivered, but those packets tak-
ing alternate paths when the primary paths are down, experi-
ence slightly higher delay.
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Figure 15: Average Packet Delivery Time (Chicago dataset, Waxman AS-
topology).
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Figure 16: Average Packet Delivery Time (San Jose dataset, Waxman AS-
topology).

We also observe that under LISP, the delay is almost double
that of RINA and BGP, since LISP requires a mapping lookup
which adds extra delay that is in the order of the average path
length of around 14 hops (msec) in our topologies.

8. Related Work

8.1. Architectural Changes

File transfer and email were the main applications when, in
the 70s the Internet protocols were designed. The number of
connected hosts have grown from less than 200 in 1980, to 570
millions in 2008 [23]. Experience and technological progress
that would make a redesign of the Internet nowadays substan-
tially different, together with the deficiencies of the current ar-
chitecture are motivating research efforts in how the Internet
architecture should be. Such research efforts could be classified
along two main dimensions:
Approach: Purist versus pluralist. The former supports flex-
ibility to meet current and future application requirements, and
the latter envisions parallel protocol stacks able to cope with
multiple service requirements. The approach envisioned in
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Figure 17: Average Packet Delivery Time (Chicago dataset, BA AS-topology).
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Figure 18: Average Packet Delivery Time (San Jose dataset, BA AS-topology).

RINA is classifiable as both pluralist and purist. This is be-
cause we can flexibly compose a diverse set of end-to-end ser-
vices across several underlying DIFs, where each DIF may run
a different set of policies to meet certain local service require-
ments.
Design: Evolutionary versus clean-slate [24]. For many
years, extensive research have been conducted to overcome the
Internet impasse, with improvements and patches that would
coexist within the design constraints of the current architec-
tures, see e.g., all the efforts on overlays mostly inspired by [25]
and [26]. On the other hand, clean-slate approaches ignore
such constraints to exploit potential benefits [27, 28, 29].

Unlike evolutionary approaches, our RINA architecture is a
clean-slate design based on the inter-process communication
(IPC) principle. Quoting Robert Metcalfe: “Networking is
inter-process communication and only inter-process communi-
cation.” (1972) In this view, all network services, e.g. transport
and internetworking tasks, together constitute a Distributed IPC
Facility (DIF) to application processes. RINA applies this con-
cept recursively, whereby the processes that make up a DIF can
themselves act as application processes to request services from
lower level DIFs.

Recursion has been recently promoted in network architec-

tures, but to the best of our knowledge, this has been limited
to tentative proposals of repeated functions of existing layers,
and how one may either reduce duplication or create a meta-
function (e.g., error and flow control) that could be re-used in
many layers, e.g., Touch et al [30]. Independently, we have
pursued a general theory to identify patterns in network archi-
tecture [31, 5], which the RINA architecture embodies.

8.2. Multihoming and Mobility
We are certainly not the first to advocate the need for new

support for mobility [32]. In the current Internet, a system is
identified by its IP / Internet address. As a result, when a system
changes its point-of-attachment, its IP address changes. This
makes reaching mobile systems difficult.

Multiple efforts have attempted to address this naming /

addressing problem, proposing and deploying new mobility
and multihoming protocols and architectures, including Mo-
bile IP [3], and its hierarchical extension HMIPv6 [8], Mob-
cast [33], a system based on a Proxy IP Anycast Service (PIAS),
Internet Indirection Infrastructure [34], Host Identity Proto-
col [35], and others [36, 28].

Those attempts may be classified as network or routing-
oriented (e.g. [11, 36, 28]), host-centric ([35, 3, 37]), and hybrid
edge-based solutions ([38]).

An example of network-oriented solution is the so-called
LISP: location / identifier split [11]. LISP uses the locator not
to locate the destination node (i.e., where it is), rather a path
that leads to it (i.e., how to get there).

Host-centric solutions instead do routing at the end points of
the network (hosts). IP addresses are given both ID and loca-
tor semantics. Route selection is done at the host where the ID
is mapped to a particular locator, rather than letting routers se-
lect the best path. Shim6 [37] is an example of a host-centric
solution that addresses multihoming.

The HAIR [38] architecture proposes to separate locators
from identifiers in a hierarchical fashion. In fact, it can be seen
as a hierarchical version of LISP. If a host moves across adja-
cent domains at the same hierarchical level, then routing up-
dates do not necessarily have to propagate to the core of the In-
ternet. Although HAIR addresses scalability by restricting the
visibility of routing updates as in RINA, it suffers from the same
drawbacks of network-based solutions, that is, routing based on
interface (IP) addresses rather than node addresses. All these
solutions in fact, bind IP/anycast host names to addresses, mak-
ing it hard to utilize alternate paths in case the corresponding
interface goes down.

By adopting and extending Saltzer’s naming and address-
ing schema [39] in a recursive fashion, RINA names applica-
tions/nodes rather than interfaces (point-of-attachment). This
late binding of a node’s address to its interface allows RINA to
effectively deal with interface changes due to multihoming or
mobility.

9. Conclusion

We highlighted the benefits of ROuting in Recursive Archi-
tectures (RORA) as a model for the future internet. We de-
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veloped a cost model to evaluate the mobility / multihoming
support of RINA, LISP, and MIP. RINA incurs the lowest cost,
while LISP incurs the highest cost. We also validated our
model for both mobility and multihoming using simulation on
an Internet-like topology and based on real packet traces from
CAIDA. We are currently investigating dynamic DIF formation
that optimizes routing in the RINA architecture in the presence
of arbitrary node/link failures and mobility. We are also proto-
typing RINA’s recursive routing.
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