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1 IntroductionDuring the last decade, several studies supported by extensive measurements concluded the likely presenceof long-range dependence (LRD)1 in various types of network tra�c, including LAN [9, 18], WAN [25],variable-bite-rate (VBR) video tra�c [4, 11, 14], and WWW tra�c [6]. Yet, several aspects of the LRDphenomenon are still being debated within the research community. One of these aspects is related tothe relevance of tra�c correlations to the dimensioning of network resources (bu�er and bandwidth).While researchers, in general, agree on the importance of correlations, they still disagree on how much ofthese correlations should be captured in a practical tra�c model [12, 13, 29]. Earlier tra�c models areMarkovian in nature, with an autocorrelation function (ACF) that drops o� exponentially. Examples ofthese models are the autoregressive moving-average (ARMA) models, Markov Arrival processes (MAP),Markov modulated processes, etc. (see [10, 2, 19] for surveys of tra�c models). Markovian models exhibitan exponentially decaying autocorrelation structure, which makes them short-range dependent (SRD). AnSRD model is one for which the ACF is summable, i.e., Pk �k <1. Note, however, that an SRD model isnot necessarily Markovian. In fact, several types of non-Markovian SRD models have been recently studiedin the literature, including theM=G=1 process [23, 16] and a class of (subexponential) path-based Markovrenewal processes [15, 17]. The interest in such models has to do with their ability to produce a wide rangeof correlation structures, including, as extreme cases, both Markovian and LRD structures. LRD modelson the other hand exhibit a slowly decaying ACF (typically as a power function) to the extent that thecorrelations now have an in�nite sum, i.e., Pk �k =1.Foremost, the statistical evidence supporting LRD was based on the estimated value of the Hurst(H) parameter. This parameter, in fact, gauges the self-similarity, rather than the LRD, of a process.However, it is common practice to talk about H as a measure of LRD, since the \derivative" of a second-order self-similar process (i.e., the \rate" process) exhibits an LRD structure when the H value of the\parent" process is between 0.5 and 1. Several statistical techniques have been used to estimate the Hparameter, including [3]: the variance-time (VT) test, the R/S statistic, periodogram-based analysis, andmore recently wavelet-based techniques [32, 1, 28]. In this paper, we focus on the VT test, which is oneof the main tests used to discover the LRD phenomenon in network tra�c. We show that such a testcan give misleading indication about the true SRD/LRD nature of a time series, despite the availabilityof many data points. Although the bias in this test has been previously examined (albeit, empirically)and words of caution on its use have been reiterated [7, 30], it is still being applied in tra�c analysis andmodeling. One reason for that is that previous investigations of the VT test primarily focused on its biasin the presence of nonstationarities or trends (e.g., [31, 21, 20, 27]), giving the impression that the VT testdoes not necessarily su�er from any problems if the tra�c is stationary. Our goal in this paper is to takethe bias issue one step further and prove its presence even under stationary models.In [21] the authors investigated the inherent di�culty associated with estimating the Hurst parameter.They found that the estimatedH value depends on several factors, including the sample size, the time scale,and the level shifts (jumps in the mean). The e�ects of certain types of nonstationarity on the estimationof the H parameter was studied in [31] for variance-type estimators. It was suggested that using the �rst1Throughout the paper, we use `LRD' both as a noun and as an adjective.2



di�erence of the variance, rather than the variance itself, in the VT test can help distinguish between LRDand nonstationarities due to slow deterministic trends or level shifts. Other types of nonstationarity (e.g.,polynomial trends) were investigated in [20] for several LRD tests. For the VT test, the authors in [20] foundthat while the VT test is accurate when applied to a pure LRD process, namely the fractional Gaussiannoise (FGN), it gives misleading results when FGN is contaminated by certain types of nonstationarity.In [27] the authors investigated the robustness of the wavelet-based Abry-Veitch estimator [32] againstnonstationarities in the mean and/or variance of an LRD process. Our work is distinct from previous worksin two key aspects. First, we are particularly interested in distinguishing between LRD and SRD behaviorsunder the assumption of stationarity. Second, we use analytical arguments to investigate the inherentbias in variance-type estimators. All of the processes considered in this paper are stationarity, and theydo not exhibit any deterministic trends. We provide analytical expressions for the bias in three popularprocesses with di�erent correlation structures: M=G=1 process (SRD but non-Markovian), fractionalARIMA (LRD), and the discrete autoregressive of order one model (SRD Markovian). Focusing on threespeci�c models with contrasting autocorrelation behaviors does not diminish the impact of our results since,in fact, the analysis uses only the autocorrelation structures of these models (i.e., does not depend on themarginal distributions). So one can generalize the treatment to other models with known autocorrelationstructures. It should be emphasized that our work is not meant to advocate one model over another, butto illustrate the caveats in using the VT test for inference of LRD and to provide guidelines on the requirednumber of data points for which the test is credible.The rest of the paper is structured as follows. In Section 2 we briey describe the three processes thatare used in our study. The aggregated variance for each of these processes is derived in Section 3. In thesame section, we discuss the limitations of the VT test. In Section 4 we contrast the VT test with threeother estimators, namely the Abry-Veitch wavelet estimator, the R/S statistic, and the absolute-valuemethod. The paper is concluded in Section 5.2 Autocorrelated Processes2.1 M=G=1 Input ProcessThe M=G=1 process is the busy-server process of a discrete-time M=G=1 queue. It can be constructedas follows (see [16, 23] for details). Start with a discrete-time M=G=1 queue. During time slot [n; n+ 1)(n = 0; 1; : : :), �n+1 new customers arrive into the system. Customer j, j = 1; : : : ; �n+1, is presented toits own server, which begins its service by the start of slot [n + 1; n + 2), with a service time �n+1;j (innumber of slots). Let bn denote the number of busy servers, or equivalently, the number of customerspresent in the system at the beginning of time slot [n; n+1), with b0 being the initial number of customerspresent in the system. It is assumed that the IN{valued random variables (rvs) b0, f�n+1; n = 0; 1; : : :g,f�n;j; n = 1; 2; : : : ; j = 1; 2; : : :g and f�0;j ; j = 1; 2; : : :g satisfy the following assumptions: (i) theyare mutually independent; (ii) f�n+1; n = 0; 1; : : :g are i.i.d. Poisson rvs with parameter � > 0; (iii)f�n;j; n = 1; : : : ; j = 1; 2; : : :g are i.i.d. rvs with common pmf G on f1; 2; : : :g. Let � be a generic IN{valued rv distributed according to the pmf G; assume that E [�] < 1. Then, the M=G=1 input processis simply the busy-server process fbn; n = 0; 1; : : :g. 3



Although fbn; n = 0; 1; : : :g is in general not a (strictly) stationary process, it does admit a stationaryand ergodic version, fb?n; n = 0; 1; : : :g, that can be constructed by taking: (i) b0 to be Poisson distributedwith parameter �E [�]; (ii) f�0;j ; j = 1; 2; : : :g to be i.i.d. rvs distributed according to the forwardrecurrence time �̂ associated with �. The pmf of �̂ is given byP [�̂ = r] def= P [� � r]E [�] ; r = 1; 2; : : : (1)Based on the above construction, several useful properties of the stationary version fb?n; n = 0; 1; : : :g arereadily obtained [22]:(i) For each n = 0; 1; : : :, the rv b?n is a Poisson rv with parameter �E [�];(ii) The ACF of fb?n; n = 0; 1; : : :g is given by�k = P [�̂ > k] ; k = 0; 1; : : : (2)By varying G, the process fb�n; n = 0; 1; : : :g can display various forms of positive autocorrelations, theextent of which is controlled by the tail behavior of G.To close this section, we point out that the process fb?n; n = 0; 1; : : :g can induce both SRD and LRDbehaviors: From (2), it follows readily [24] that1Xk=0�k = E [�̂] = 12 + E ��2�2E [�] : (3)Consequently, the process fb�n; n = 0; 1; : : :g is LRD (resp. SRD) if and only if E ��2� is in�nite (resp.�nite). In particular, the M=G=1 input tra�c will be LRD when G is Pareto, with a shape parameter inthe interval (1; 2) [5].2.2 Discrete Autoregressive of Order One ProcessThe DAR(1) process is a popular Markovian (hence, SRD) model that has been used to characterize videoteleconferencing tra�c [8]. This process can exhibit any arbitrary marginal distribution. Its autocorrelationstructure is similar to that of the common AR(1) process. To generate a DAR(1) process, we start withtwo mutually independent random sequences fVn : n = 1; 2; : : :g and fYn : n = 1; 2; : : :g. The sample spacefor fVn : n = 1; 2; : : :g is f0; 1g, and its marginal distribution is given by:Pr[Vn = i] = 8<: r; if i = 11� r; if i = 0for n = 1; 2; : : :. The process fYn : n = 1; 2; : : :g is renewal with an arbitrary but countable sample spaceSY . Its marginal distribution is de�ned by:Pr[Yn = i] def= �i; for all i 2 SY4



Then, the DAR(1) process fXn : n = 1; 2; : : :g is de�ned as follows:Xn = VnXn�1 + (1� Vn)Yn; n = 1; 2; : : : (4)It is easy to show that fXn : n = 1; 2; : : :g constitutes a Markov chain with an autocorrelation structure ofthe form �k = rk for k = 0; 1; : : :.2.3 Fractional ARIMA ProcessThe last process that we will examine is the popular fractional ARIMA(0; d; 0) process. This LRD Gaussianprocess was proposed as a basis for modeling VBR video tra�c [11]. Its ACF is given by�k = d(1 + d) � � � (k � 1 + d)(1� d)(2� d) � � � (k � d) ; k = 1; 2; : : : (5)where 0 < d < 0:5 is the fractional di�erencing parameter given by d = H � 1=2. As k ! 1, �k behavesas k��, where � = 2� 2H. See [11] for details on how to generate synthetic F-ARIMA traces.3 Analysis of Aggregated VarianceConsider a second-order stationary process fXn : n = 1; 2; : : :g with mean X and variance v. Let Ck def=cov(Xn;Xn+k) = E h(Xn �X)(Xn+k �X)i. The ACF is de�ned as �k def= Ck=v, for k = 0; 1; : : :. Form = 1; 2; : : :, let X(m)n def= Pnmi=nm�m+1Xim ; n = 1; 2; : : : (6)so that fX(m)n g is an averaged version of fXng, with the averaging taken over non-overlapping blocks oflength m. The variance of the new time series is given by:vm def= var(X(m)n ) = vm + 2m2 m�1Xp=1 pXq=1Cq (7)We will refer to vm as the aggregated variance at level m. If fXng is an LRD process, then it must satisfymvm !1 as m!1. More speci�cally, for an LRD process vm � m�� when m is large, where 0 < � < 1is the same parameter de�ned above. For an SRD process, � � 1. To test whether a given time seriesis LRD or not, the empirical VT test proceeds by plotting log(vm=v) versus logm for various aggregationlevels m. The asymptotic slope of the plot is then taken as an estimate of ��. If � < 1, the empiricalsequence is believed to exhibit LRD. As an example, the VT plot for the Star Wars trace is shown inFigure 1. Its asymptotic slope, ignoring aggregation levels smaller than 100, is estimated by least-squaremethod to be 0.43, roughly in agreement with the numbers in [4] and [11].Next, we obtain analytical expressions for the slope of the VT plot in the three examined processes.
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3.1 Aggregated Variance in the M=G=1 ModelLet fXn(N) : n = 1; 2; : : :g be a subclass of M=G=1 processes that is parameterized by N and thatpossesses the following ACF form: �k = e�� Npk; k = 0; 1; 2; : : : (8)where � > 0 and N = 1; 2; 3; : : :. For �xed � and N , it is easy to see that fXn(N) : n = 1; 2; : : :g is anSRD process, since 1Xk=0 �k = 1 + 1Xk=1�k � 1 + Z 10 e�� Nptdt = 1 + N !�N <1 (9)Our interest in this subclass of M=G=1 processes stems from the fact that it o�ers a rich spectrumof autocorrelation forms, which on the two extremes give rise to Markovian (N = 1) and LRD (N = 1)forms. Naturally, the regime in the middle (2 � N < 1) is of particular interest to us. The ACF in (8)results in a Weibull-like service-time distribution (G).Now consider the aggregated process fX(m)n (N) : n = 1; 2; : : :g for m = 1; 2; : : :. The normalizedaggregated variance of this process can be written as [5]:evm def= vmv1 = 1m + 2m2 mXk=1(m� k)�k (10)Since m is discrete, the instantaneous slope of the curve that describes log evm as a function of logm isde�ned by the �rst di�erence: sm def= log evm+1 � log evmlog(m+ 1)� logm (11)Without loss of generality, we assume that all logarithms are to the base ten. Note that in the empiricalVT test, sm is replaced by its average value that is obtained using least square �tting. We now derivealmost exact expressions for evm and sm. To do that, we allow m to take any nonnegative real value. Todistinguish it from its discrete-time counterpart, we indicate the variance of the aggregated series in thecontinuous case by fv�, which is given by [5]:fv�m = 2m2 Z m0 (m� h)�hdh = 2m2 Z m0 (m� h)e�� Nphdh (12)Equation (12) can be written as follows:fv�m = 2m2 �m Z m0 e�� Nptdt� Z m0 te�� Nptdt� (13)Consider the two inde�nite integrals R e�� Nptdt and R te�� Nptdt. Their solutions are given by:Z e�� Nptdt = �e�� NptN ! NXk=1 t(N�k)=N�k(N � k)! (14)Z te�� Nptdt = �Nt2 ��t1=N��2N �(2N;�t1=N ) (15)6



where �(x; y) is the incomplete Gamma function, de�ned as:�(x; y) def= Z 1y ux�1e�udu (16)Accordingly,�(2N;�t1=N ) = Z 1�t1=N u2N�1e�udu= e��t1=N �(�t1=N )2N�1 + (2N � 1)(�t1=N )2N�2 + � � �+ (2N � 1)!� (17)Substituting the last expression for �(2N;�t1=N ) in (15), and after some manipulations, we end up withZ te�� Nptdt = �N(2N � 1)!e�� Npt 2NXk=1 t(2N�k)=N�k(2N � k)! (18)From (14) and (18), we obtain the solution for the two de�nite integrals in (13):Z m0 e�� Nptdt =  �N !e�� Npm NXk=1 m(N�k)=N�k(N � k)!!+ N !�N (19)Z m0 te�� Nptdt =  �N(2N � 1)!e�� Npm 2NXk=1 m(2N�k)=N�k(2N � k)!!+ N(2N � 1)!�2N (20)Using the above two equations, fv�m in (13) can be written as:fv�m = e�� Npm  (2N)! 2NXk=1 m�k=N�k(2N � k)! � 2(N !) NXk=1 m�k=N�k(N � k)!!+ 2(N !)m�N � (2N)!m2�2N (21)Note that as m ! 1, fv�m � 2(N !)=(m�N ) � O(1=m), as expected (since the process is SRD). Figure 2depicts fv�m, obtained using (21), versus m when �k = e��pk (N = 2). This special case of the M=G=1process has been shown to accurately characterize the behavior of variable-bit-rate video [16]. The plotdepicts clear convexity, which is the source of the bias in the VT test. Figure 3 depicts fv�m for variousvalues of N with � = 0:06. We found these plots almost indistinguishable from their discrete counterparts(not shown) obtained directly from (10). It is interesting to note that fv�m depends on � and m onlythrough the term em def= � Npm. More speci�cally, (21) can be rewritten as:fv�m = e�em  (2N)! 2NXk=2 1emk(2N � k)! � 2(N !) NXk=2 1emk(N � k)!!+ 2(N !)emN � (2N)!em2N (22)Now that we have obtained an expression for fv�m, we proceed to derive the instantaneous slope of fv�m,which is de�ned as follows: s�m def= d(logfv�m)d(logm) = mfv�m dfv�mdm (23)
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With some basic algebraic manipulations, it can be shown that:s�m = "e�em  �(2N)!N 2NXk=2 em+ kemk(2N � k)! + 2(N � 1)! NXk=2 em+ kemk(N � k)!!� 2(N !)emN + 2(2N)!em2N # =fv�m (24)As m!1, s�m ! �1, as expected. From the concavity of fv�m, it readily follows thatj s�m j<j sm j<j s�m+1 j (25)In the special case of N = 2, (24) reduces to:s�mjN=2 = e�em h�20em2 � 48em3 � 48em4 � 4emi� 4em2 + 48em4e�em h 8em2 + 24em3 + 24em4 i+ 4em2 � 24em4 (26)Figure 4 depicts �s�m versus the aggregation level m for four values of N (� = 0:06). For N > 1, s�mconverges very slowly to �1. In fact, even at an aggregation level of m = 8000 and N = 2, j s�m j is stillsmaller than 0.8. The speed of convergence decreases rapidly as N increases. For example, when N = 4,even at an aggregation level as high as 8000, j s�m j does not exceed 0.1, far from indicating any SRDstructure. Had we not known in advance that the underlying process is SRD, we would have mistakenlydecided (based on the VT test) that the data exhibit LRD behavior. Figure 5 depicts the impact of variousvalues of �. Clearly, the larger the value of �, the faster is the convergence of s�m to �1.The plot of �s�m versus em is shown in Figure 6 for N = 2. From this �gure, it can been seen thatthe absolute value of the slope of the analytically obtained VT plot is always less than one for a �nite em.This critical observation implies that when applied to traces of an SRD M=G=1 process with �k = e�� Npk,the VT test will always indicate, wrongly, the presence of an LRD structure irrespective of the length ofthese traces. Only when such traces are of in�nite length, the slope of the VT plot will be �1. If for thesake of empirical approximation, one is to take j s�m j� 0:95 as an indication of SRD, then in the case ofN = 2 we must have em � 11:2. If � = 0:05 (which is a typical value for video sequences �tted using anM=G=1 model with �k = e��pk [16]), then we need at least 50176 data points to correctly infer that thedata exhibit SRD.3.2 Aggregated Variance in the DAR(1) ModelNext, we consider the DAR(1) process. Substituting the expression for the ACF, �k = rk, in (10), andafter some straightforward manipulations, we obtain:evm = 1m + 2m2 �r(rm �mr +m� 1)(r � 1)2 � (27)As m ! 1, evm � (1 + 2r=(1 � r))=m, which is, as expected, O(1=m). By substituting the values forevm and evm+1 in (11), we can plot the �rst-order di�erence sm versus m, as shown in Figure 7. Note thatwhen r is close to one, the convergence of sm to �1 becomes very slow. We will come back to this issuelater in this section.Next, we provide a closed-form expression for s�m, the continuous version of sm, which was de�ned in8



(23). By substituting �h = rh in (12) and after some manipulations, we arrive at the following expressionfor fv�m: fv�m = 2m2 �rm �m ln r � 1(ln r)2 � (28)where ln(:) is the natural logarithm. As m ! 1 (with r < 1), fv�m � �2=(m ln r), which is O(1=m). Asin the case of the M=G=1 model, the VT plots for the DAR(1) model in the continuous case are almostindistinguishable from their discrete-parameter counterparts. For brevity, we only show the plots in thecontinuous case (Figure 8).Di�erentiating fv�m in (28) with respect to m, we obtaindfv�mdm = 2(ln r)2 (m ln r � 2)rm +m ln r + 2m3Hence, from (23) s�m for the DAR(1) model is given bys�m = (m ln r � 2)rm +m ln r + 2rm �m ln r � 1 (29)As m ! 1, s�m ! �1, as expected. The speed of convergence of s�m is this case is rather fast due to thefast decay of the geometric terms in (29). To get an idea about how many data points are su�cient toinfer SRD/LRD, we �rst rewrite (29) in terms of the variable x def= rm as follows:s�m = (lnx� 2)x+ lnx+ 2x� lnx� 1 (30)Figure 9 depicts the plot of s�m as a function of x. As x! 0, s�m converges to �1. However, as x! 1, s�mapproaches zero! So the utility of the VT test as an indicator of the SRD structure of the DAR(1) model,or any Markovian model to that extent, depends on the value of x = rm. For a �xed r < 1, the number ofpoints in a Markov-based trace must be large enough to ensure a su�ciently large m, so that rm is close tozero. For example, to ensure that js�mj � 0:95, we must have m � �20:95= ln r. In this case, if r = 0:999,then we need an aggregation level m � 20936 (i.e., about 21,000 points per block). The size of the datatrace should be at least ten times this number to give a meaningful sample estimation of the variance fv�m.3.3 Aggregated Variance in the F-ARIMA ModelFinally, consider the F-ARIMA process described before. We �rst provide a simple recursive approach forcomputing evm for this process. First, we de�ne the sums Xm def= Pmk=1 �k and Ym def= Pmk=1 k�k, for m � 1.Equation 10 can now be written as follows:evm = 1m + 2m2 (mXm � Ym): (31)Since Xm = Xm�1 + �m, Ym = Ym�1 +m�m, and �m = (m� 1 + d)=(m � d)�m�1, (31) can be computedrecursively starting from X1 = Y1 = �1 = d=(1 � d). Figure 10 depicts the VT plots for various values ofd. It is interesting to note the linearity of the plots, with slopes that barely change with the aggregationlevel. (Contrast these plots with their nonlinear counterparts in Figure 2 and 8 for the M=G=1 and the9



DAR(1) models, respectively). Moreover, these plots seem to be distinctly di�erent from the empiricalVT plot for the original Star Wars trace (Figure 1). This says that from an aggregated variance stand-point, the M=G=1 model (non-Markovian SRD) is more appropriate than the F-ARIMA model (LRD) incharacterizing the JPEG-coded Star Wars sequence. The slope of the VT plot for the F-ARIMA model isshown in Figure 11 as a function of m (obtained using (11)).So far, we have examined the behavior of the aggregated variance analytically, without involving anystatistical estimation. One may question whether the trends observed in the previous �gures still holdwhen the empirical VT test is used. To verify this point, we applied the empirical VT test to synthetictraces from theM=G=1 and F-ARIMA models. Figures 12 and 13 depict the results for two representativetraces. For the M=G=1 trace, we set � = 0:076 and N = 2, which give a good �t for the empirical ACF ofthe Star Wars JPEG-coded sequence [16]. For the F-ARIMA trace, we took d = 0:3. The M=G=1 traceconsists of 1,000,000 data points, while the F-ARIMA has 500,000 points (the computational complexityinvolved in generating M=G=1 traces grows linearly with the trace length, while this complexity growsquadratically in the case of F-ARIMA traces). Figure 12 indicates asymptotic slopes of �0:79 and �0:75for aggregation levels in the ranges [103:5; 104:5] and [104; 105], respectively. This would suggest that theunderlying data exhibit LRD. However, we know that the data were generated from an SRD M=G=1model! Despite the length of the M=G=1 trace, the VT test may wrongly suggest the presence of LRDin this trace (if one is not careful in interpretting its outcome). Note that the concavity of the VT plot(which is predicted from the analysis) is not so apparent at large values of m, mainly because of thestatistical inaccuracy in estimating vm. Hence, it would be di�cult to simply rely on visual inspection todetermine the inappropriateness of the VT test by monitoring the concavity in the empirical VT plot. Forthe F-ARIMA trace (Figure 13), the slope of the VT plot is estimated at �0:58. Although vm (also, theACF) of a F-ARIMA is expected to behave as k�0:4 when k ! 1, it takes extremely long time to reachthis asymptotic behavior. Figure 14 depicts the ACFs for the two tested traces along with the ACF forthe real Star Wars trace.4 Comparison with Other LRD TestsWe now contrast the VT test with three other methods: the wavelet-based Abry-Veitch (AV) test [32], theR/S method, and the absolute-value method (see [30] for descriptions of the latter two). The AV method isa semi-parametric estimator that is based on the discrete wavelet transform. It estimates both parameters �and cf that appear in the spectral representation of an LRD process at the origin; namely, f(v) � cf jvj��as v ! 0 (H is related to � through H = (1 + �)=2). The method enjoys signi�cant computationaladvantages along with an amenability for real-time implementation [28]. It is known to provide less biasedestimates than traditional tests, although the bias has been studied mainly within the LRD regime (and forreal traces). We used the Matlab code written by D. Veitch (see http://www.emulab.ee.mu.oz.au/�darryl)to apply the AV test to a 1,000,000-point-long SRD trace generated from an M=G=1 process with �k =e�0:076pk (the same trace that was used in Figure 12). Figure 15 depicts the Logscale Diagram (LD),plotted over the complete range of available scales (the 95% con�dence intervals are indicated by the shortbars). The LD is essentially a log-log plot of the estimated variances of the wavelet details. For eachscale j, the variance of the details (�j) is estimated as the average of the squared details at that scale.10



So the LD is a plot of yj def= log2 �j versus j. An estimate of � is given by the slope of a weighted linearregression of the yj's over an \appropriate" range of scales (j1; j2). To choose the optimal j1, call it j�1 , theMatlab code produces a graph of the goodness-of-�t function, Q(j1), versus j1 with j2 �xed at its maximumpossible value. An example of such a graph is shown in Figure 16. For small scales, Q(j1) increases withj1, indicating a better �t. This trend continues up to the scale j�1 , after which Q(j1) barely changes withj1. Regression is performed over the scales from j�1 up to the maximum available scale. Based on thisregression, H � 0:645 with a 95% con�dence interval [0.566,0.725]. This says that the test indicates,wrongly, the presence of LRD in the M=G=1 trace. In other words, the AV method is also biased whenthe underlying tra�c is SRD.Since the estimated � (and consequently, H) in the AV test depends on several parameters, mostnotably the regression region (j1; j2) and the vanishing moment (Mvan), we repeated the AV test usingseveral values of (j1; j2) and Mvan. Estimates for H along with their con�dence intervals are shown inTable 1. Changing the values of j1 and j2 does not seem to help; in fact, the estimates deviate further fromSRD. However, using Mvan = 4 is found to yield a highly accurate estimate of H (for (j1; j2) = (13; 16)and Mvan = 4, H � 0:491). This could indicate that with appropriate selection of Mvan, the AV test maybe able to produce unbiased estimates of H even when the underlying tra�c is slowly converging SRD.The appropriate selection of Mvan is currently under investigation.The next test that we examined is the absolute-value method. According to this method, one plots thesample mean of the sum of the absolute values of fX(m)n : n = 1; 2; : : :g for various values of the aggregationlevel m. The plot is �tted by a line, and the slope of that line is taken as an estimate of H � 1. Figure 17depicts the resulting plot for the M=G=1 trace being examined. The H parameter is estimated at about0.4932, in line with the true SRD identity of the trace.Finally, we consider the R/S statistic, which is one of the earliest tests used for estimating the Hparameter. The pox plot used in this test is shown in Figure 18 for the same SRD M=G=1 trace. Usinglinear regression, H is estimated at about 0.76, indicating a signi�cant estimation bias.5 ConclusionsEvidence supporting the existence of LRD in network tra�c has been based on statistical techniques forestimating the Hurst parameter. In this paper, we examined the reliability of the VT test. We analyzed theaggregated variance in three, di�erently correlated random processes. Our main result is that this techniquein inherently biased, and can often lead to incorrect conclusions about the true correlation structure of theexamined data. This is true even in the absence of shifts in the mean of the process. Our �nding can havesigni�cant implications on capacity planning and bu�er engineering practices in QoS-based networks. Thebias in the VT test gradually diminishes with the size of the data. For the examined models, we providedsome guidelines on the required number of data points that are needed to render the bias insigni�cant. TheVT test is not the only one that su�ers from a bias; in fact, when the wavelet-based AV test and the R/Sstatistic were applied to a very long SRD M=G=1 trace, they also gave biased estimates of H. However,with proper selection of the vanishing moment, the AV test was able to produce an unbiased estimate. Theabsolute-value test gave an unbiased estimate for the same examined trace. Our future work will focus onproducing more reliable variance-type tests for inference of LRD. One such attempt is found in [26].11
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Figure 2: Analytically obtained VT plot forthe M=G=1 model (N = 2).

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

log
10

(m)

lo
g 10

(v
m

/v
1)

N=1 

N=2 

N=3 

Figure 3: Analytically obtained VT plot forthe M=G=1 model (N = 1; 2; 3). 0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aggregation Level (m)

−
1 

x 
S

lo
pe

 o
f t

he
 V

T
 P

lo
t

N=1 

N=2 

N=3 

N=4 Figure 4: �s�m versus m for the M=G=1 pro-cess (N = 1; 2; 3; 4).

14



0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Aggregation Level (m)

−
1 

x 
S

lo
pe

 o
f V

T
 P

lo
t

β = 0.02

β = 0.04

β = 0.06

β = 0.08

Figure 5: �s�m versus m for the M=G=1 pro-cess with N = 2. 0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m* = β√m  (m is the aggregation level)

−
s(

m
* )

Figure 6: �s�m versus em = �pm for theM=G=1 process.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aggregation Level (m)

−
1 

x 
S

lo
pe

 o
f V

T
 P

lo
t

r = 0.8

r = 0.99

r = 0.999

Figure 7: �sm versus m for the DAR(1)model. 0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log10(m)

lo
g 1

0(
v m

/v
1)

r = 0.99

r = 0.8

r = 0.6

r = 0.4

r = 0.1

Figure 8: Analytically obtained VT plot forthe DAR(1) model (�k = rk, 0 < r < 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−
1 

x 
S

lo
pe

 o
f V

T
 P

lo
t

x = rm (m is the aggregation level)Figure 9: �s�m versus x = rm in the DAR(1)model. 0 0.5 1 1.5 2 2.5 3 3.5 4
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log10(m)

lo
g 1

0(
v m

/v
1)

d = 0.1

d = 0.2

d = 0.3

d = 0.4

Figure 10: Analytically obtained VT plot forthe LRD F-ARIMA(0; d; 0) model.15



0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Aggregation Level (m)

−
1 

x 
S

lo
pe

 o
f V

T
 P

lo
t

d = 0.1

d = 0.2

d = 0.3

d = 0.4

Figure 11: �sm versus aggregation level m inthe F-ARIMA(0; d; 0) model.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2.5

−2

−1.5

−1

−0.5

0

log
10

(m)

lo
g 10

(v
m

/v
1)

slope = −0.79 

slope = −0.75 slope = −1

Figure 12: Empirical VT plot for a 1,000,000-long synthetic M=G=1 trace (for m in therange [103:5; 104:5], the slope of the LMSE �tis �0:79, while for m in the range [104; 105],the slope is �0:75).

log 10(m)

lo
g 1

0
(v

m
/v

1
)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

slope = −1

slope = −0.58

Figure 13: Empirical VT plot for a syntheticF-ARIMA trace. 0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag

A
ut

oc
or

re
la

tio
n 

F
un

ct
io

n

Real Star Wars      
Synthetic M/G/∞
Synthetic F−ARIMA   

Figure 14: Autocorrelation functions for threetested traces.
16



2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

Octave j

y
j
 

(j
1
,j

2
) = (12,18) 

H = 0.645 

CI’s for H = [0.566, 0.725] 

Number of vanishing moments = 1 

Q = 0.9294 

weighted MLSE fit 

Figure 15: Logscale diagram in the AV test fora one-million-point M=G=1 trace with �k =e�0:076pk. 0 2 4 6 8 10 12 14 16
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

j
1

lo
g 10

 [ 
Q

( 
j 1 )

 ]

 

Number of vanishing moments = 1 

Optimal j
1
 = 12 

Figure 16: Goodness-of-�t statistic Q(j1) ver-sus the lower limit of the scaling range (j1).
Vanishing Moment Range (j1; j2) Estimated H CI for H1 (12,18)� 0.645 [0.566, 0.725]1 (12,17) 0.641 [0.560, 0.722]1 (12,16) 0.629 [0.542, 0.717]1 (10,18) 0.801 [0.766, 0.836]1 (10,17) 0.801 [0.766, 0.837]2 (12,17)� 0.643 [0.557, 0.729]2 (12,16) 0.647 [0.556, 0.738]2 (12,15) 0.619 [0.515, 0.724]2 (10,17) 0.805 [0.768, 0.841]2 (10,16) 0.809 [0.772, 0.847]3 (12,17)� 0.661 [0.569, 0.753]3 (12,16) 0.661 [0.567, 0.755]3 (12,15) 0.638 [0.532, 0.745]3 (10,17) 0.812 [0.775, 0.850]3 (10,16) 0.814 [0.776, 0.852]4 (13,16)� 0.491 [0.319, 0.663]4 (13,15) 0.473 [0.267, 0.680]4 (11,16) 0.701 [0.641, 0.762]4 (11,15) 0.714 [0.650, 0.778]Table 1: Estimated value of H and its con�dence interval (CI) based on the AV test. Estimation is doneby means of weighted LSE �tting over the range of scales (j1; j2). For a given vanishing moment, the rangefor which j1 is \optimal" and j2 is maximal is indicated by a `*'.
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Figure 17: Estimation of H based on theabsolute-value method for a 1,000,000-point-long SRD M=G=1 trace (H � 0:4932).
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