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Abstract—We leverage the buffering capabilities of end- assuming that every node in the system is capable (or willing)
systems to achieve scalable, asynchronous delivery of streamgg store the entire feed for future access by other nodes is
in a peer-to-peer environment. Unlike existing cache-and-relay ot \yarranted since nodes may have limited storage capacities
schemes, we propose a distributegrefetching protocol where L
peers prefetch and store portions of the streaming media ahead and/or nodes_ may opt t_o arbitrarily leave the P2P SyS'Fem.
of their playout time, thus not only turning themselves to possible Rather, what is needed is a scalable protocol for the unicast
sources for other peers but their prefetched data can allow them dissemination of such content so that it is available on-demand
to overcome the departure of their source-peer. This stands in tg any P2P node requesting it, with minimal assumptions
sharp contrast to existing cache-and-relay schemes where the 4t the resources made available to such a protocol by the

departure of the source-peer forces its peer children to go the . . - L
original server, thus disrupting their service and increasing server constituent nodes in the system. Specifically, it is prudent to

and network load. Through mathematical analysis and simula- assume that a node in the system is willing to contribute its
tions, we show the effectiveness of maintaining such asynchronouslimited storage and communication capacity as long as it is

multicasts from several source-peers to other children peers, and interested in receiving the contett not beyond.
the efficacy of prefetching in the face of peer departures. We

c_onf_ir_m the scalability of our dPAM protocol as it is shown to Leveraging Local Storage for Scalable Asynchronous Mul-
significantly reduce server load. ticast in P2P SystemsRecently Jin and Bestavros proposed
Index Terms— Streaming content delivery; Peer-to-Peer sys- a scalable “cache-and-relay” approach [17] that could be used
tems; Asynchronous multicast; Modeling, analysis, and perfor- for scenarios similar to the one motivated above. Using this
mance evaluation. approach, a recipient of the feed would “cache” the most
recently played out portion of the feed (after playing it out).
I. INTRODUCTION Such cached content could then be used by other nodes in
the system who request the feed within some bounded delay.
Motivating Application: In a large-scale peer-to-peer (P2Pyhis process of caching and relaying the content was shown
network community, any node in the system may become thescale well in terms of server as well as network loads. In
source of an interesting live, real-time feed that is (or Magg), a detailed analysis of this approach was presented.

quickly become) of interest to a large number of nodes. For.l.here are two problematic aspects of the cache-and-relay

example, a P2P node may witness an interesting phenome%'grﬁmach_ First, when a node leaves the system, any other

g;tz\;ir::tér?ég.(;rcsgn':;lr?r? aa\rllltijrftce)rfset?nfr?:? ?r\évrib;ﬁ\r/g Igvir?tl odes receiving the feed from that node are disconnected.
sav a su er’ bowl Entertginment “mish%a ”pln such a settin Tis means that such nodes will experience a disruption in
say pel P 9vice. Second, to resume, such disconnected nodes must
is unrealistic to assume that all requests for such a feed

) N treated as new arrivals, which in turn presents added load
arrive synchronously. Rather, it is likely that such requests w P

o ) . . . .10 the server (and network). This latter issue is especiall
be distributed over time, with each node interested in receivin ( ) P y

the entire feed (or a prefix thereof). Clearly. directing all %nificant because recent results by Jin and Bestavros
e entire feed (or a pre € ?0 ): ?a Y, GIrecting att su 6] have shown that asynchronous multicast techniques do
requests for the content to the “source” of the feed (which

e - .
ot scale as advertised when content is not accessed from

would term as the “server” of the content) is neither scalab eeginning to end (e.g., due to nodes prematurely leaving the

nor practical. Also, using asynchronous multicast approacgjﬁlticast and/or when non-sequential access is allowed to

requiring multicast capabilities (e.g., periodic broadcasts [2 lipport VCR functionality). Specifically, Jin and Bestavros
[12], [24]) is not practical. For starters, the server may n : ’ ' X L
even realize that the feed it is sharing with its P2P commun%zowed that techniques that ensured asymptotic logarithmic

s popular enouah that it is “worth’ multicasting! Finall rver scalability under a sequential access model would
IS popu ug s -w uitl ING* FINAY.h effect behave polynomially under non-sequential access

t This work was supported in part by NSF grants ANI-0095988, ANI-998639f7rJOdeIS (e.g., in the presence of premature departures and/or
EIA-0202067 and ITR ANI-0205294. jumps).
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Fig. 1. Overlay-based asynchronous streaming: lllustrative Example.  Fig. 2. Overlay-based aynchronous streaming: lllustrative Example.

missing content is shown as H in Fig.2. If the download
Contributions: In this paper we show that a more effectiveate is the same as the playout rate, td@nhas no option
use of the local storage at P2P nodes (for purposes of asgot to download from the server. However, if the network
chronous multicast) must involve prefetching. In particulattotal) download rate is greater than the playback rate, then
rather than caching content already played out, a node Hs can open two simultaneous streams - one fr&mand
also allowed to cache content that will be played out ithe other from the server. It can start downloading from
the future. Such prefetching is possible if we assume thatfa at the playback rate (assuming that’s buffer is being
node can retrieve content at a rate higher (even if by a smallerwritten at the playback rat§ and obtain the content H
factor) than the playout rate. Such an assumption is commom the server. After it has finished downloading H from the
(and realistic) [26], [12], [14]. This “lookahead” bufferingserver, it can terminate its stream from the server and continue
capability provides each node with an opportunity to recoveibwnloading from R,. This stream patching technique to
from the premature departures of its source. Not only does tiégluce server bandwidth was proposed in [13] . Assuming a
allow the node to avoid a disruption of its playout, but alstotal download rate ofr bytes/second and a playback rate of 1
it allows the node to resume the reception of the feed frobyte/second, the download rate of the stream from the server
sources other than the server—thus reducing the load on #muld bea — 1 bytes/second. Hence, for this technique to
server and improving scalability. In this paper, in addition twork o« —1 > 1 = a > 2. Hence, we need the total download
presenting the algorithmic underpinnings of our protocol, weate to be at least twice the playback rate for stream patching
also provide a complete model and analysis of its scalability work for a new arrival.
under a workload with independent arrivals and departuresin the event that a client departs from the peer-to-peer net-
Our analysis is backed up by extensive simulations, whigork, all clients downloading from the buffer of the departing
demonstrate the superiority of dPAM when compared to thgient will have to switch their streaming session either to

cache-and-relay approach studied in [17], [6]. some other client, or the server. The stream patching technique
can be used by a client in this situation as well to avoid
Il. PRE-FETCH-AND-RELAY: DETAILS downloading from the server. As shown in Section II-C, unlike

the case for a new arrival, the stream patching technique may
work in this situation even when the total download rate is
ss than twice the playout rate, i®.< 2.
When the download rate is greater than the playout rate, a
ent canpre-fetch content to its buffer before it is time to
yout that content. Pre-fetching content can help achieve a
etter playout quality in overlay multicast. In a realistic setting,
ere would be a certain delay involved in searching for a peer
0 download from; for example, consider the situation depicted
in Fig. 3. R3 starts streaming fronRkR, on arrival. After R,
departs, as shown in Fig. 3, it tak&; D seconds (time units)
to discover the new source of downlo&y. If the pre-fetched
égture content inR3’s buffer, at the time ofR,’s departure,
reguires more tha® seconds (time units) to playout (i.e. the
size of the future content is greater thBnbytes, assuming

In this section, we present there-fetch-and-relay strat-
egy for asynchronous delivery of streams through overl
networks. We illustrate theéPre-fetch-and-relay strategy in
Figures 1 and 2. Assume that each client is able to buffer the
streamed content for a certain amount of time after pIaybaEk
by overwriting its buffer in a circular manner. As shown i a
Fig.1, R, has enough buffer to store content for time lengt
Wy, i.e. the data cached in the buffer is replaced by fre
data after an interval off’; time units. When the requefi;
arrives at time = t,, the content thak, wants to download is
available inR;’s buffer and, henceR, starts streaming from
R, instead of going to the server. Similarlgs streams from
R, instead of the server. Thus, in Fig.1, leveraging the cach
at end-hosts helps to serve three clients using just one stre
from the server.

In _Fig.2, by the time reql,_leSRQ_ a'jrives' part of the Cont_ent Iwe discuss the condition under whiéh s buffer will be refreshed at the
that it wants to download is missing frot;’s buffer. This playout rate instead of the download rate in Section Il



download the stream at a rate higher than the playout
x rate.

3) g = Future content 5 ronresents the ratio of the

AR 3 content yet to be p}ayed out, “future content”, to the
P it i P oo s content already played out, “past content”, in the buffer.

' P ' Next, we discuss the constraints, in termsagf3 and T;,
that must be satisfied for a client to be able to download the
. . stream from the buffer of another client available in the peer-
to-peer network.

B. Constraints in the case of an arrival

Fig. 3. Delay in finding a new source for a download: lllustration. . .
9 Y 9 The following theorem is stated from [23].

Theorem 1: A newly arriving client Ry can download from
a playout rate of 1 byte/second) then the playoufzatdoes the buffer of R, if one of the following conditions is satisfied:

not suffer any di§ruption omR,'s departure. If the si.ze of the  _ The inter-arrival time betweeR, and R, is less thar}.
future” content is smaller tha bytes, thent; will have  _ f the inter-arrival time betweeR; andR, is greater than
to open a stream from the server, after it has finished playing Ty, thena should be greater than or equal to/2, must
out its pre-fetched content, till it discovers;. In a Cache_- be over-writing the content in its buffer at the playout
and-relay strategy, clients do not pre-fetch contefihus, in rate and the size of the content missing fréyis buffer
the case ofCache-and-relay, R3 will have to open a stream should be less than or equal dox Tj.

from the server as soon as it realizes tRathas departed and
continue downloading from the server fér seconds (till it
discovers that it can download frof;). R3 cannot knowa
priori when R, is going to depart. Due to the delays involve
in opening a stream from the server, it is quite likely that th
playout at Rz would be disrupted omR,’s departure in the
case ofCache-and-relay. In the case oPre-fetch-and-relay, if .
the time required to playout the pre-fetched content is Iarggr Constraints in the event of a departure

than the delay involved in finding a new source to download Let us assume that, was streaming fronk;’s buffer. i,
from, the playout atR; would not be disrupted upoR,’s leaves the peer-to-peer network at time: tq4. If the available
departure from the peer-to-peer network. Pre-fetching contdiffer size atR, is o x T;, bytes and at = tq, the ratio of
is also advantageous when the download rate is variable."fiture” content to “past” content inky’s buffer is 3, then
client can absorb a temporary degradation in download rag has (222t ) bytes of the “future” content an@% bytes

. ) O L 1+
without affecting the playout quality if it has sufficient preof the “past” content in its buffer. At @layout rate of 1

The first condition in the above theorem ensures that the
content needed by, is present inR;’'s buffer. The second
ondition defines the scenario in which the stream patching
(fechnique can be used . Due to space limitation, please
fefer to [23] for a detailed discussion.

fetched content in its buffer. byte/time unit,R, has ‘iﬁﬂ”) time units to find a new source
to download from after; departs.
A. Control Parameters If o =1, then afterR,’s departure R, can download from

In this paper, we analyze the importance and effect of tﬁlgother clientRy’s buffer if and only if the content in their

following three parameters in achieving scalable (in ter buffers overlaps (partially). Fig. 4(a) shows the situation when

of server bandwidth), asynchronous delivery of streams inrqr%e buffers OTRO and R, are.conuguous. Any client that is
ahead ofRy, in terms of playing out the stream, would have

peer-to-peer environment through analysis and S|mulat|onsi30me content thafz, needs to download missing from its

buffer and hence, unsuitable fdt, to download from. Fig.
Download rate \zn ; ' 0
1) a = Playout rate Without loss of generality, we 4(b) depicts such a situation.
take thePlayout rate to be equal to 1 byte/second and, With reference to Fig. 4(b), let us assume that the ratio of
hence theDownload rate becomesy bytes/second. We “future” content to “past” content inRy’s buffer is  and

assumen > 1. hence, it currently ha ﬂfﬁ;) bytes of pre-fetched data.

, i i i Assume that the “missing” content By bytes and that the
2) Tl? : The time it takes to fill the buffer available .at aglayout rate is 1 byte/second.df> 1, then R, can open two
client at the download rate. The actual buffer size @jy jtaneous streams, one from the server and the other from
a client is, henceq x Ty, bytes. The available buffer p = 5.4 terminate its stream from the server after it has down-
size at a client limits the time for which a client CaNgaded the “missing” content and continue to download from
2lt can be due to the fact that the playout rate is equal to the downlodi thereafter. Note that for_ Fhls stream p_atc_:hlng technique to
rate or clients may choose not to pre-fetch content. work, R, should be over-writing contents in its buffer at a rate




from the server andR; at time t =t¢4. Since it is
downloading fromR, at the playout rate, at any time
instant the size of data downloaded frara is exactly
equal to the size of the data played out By after¢,.
Thus, to store the content downloaded from the server,
Firitel Fy Ry will have to over-write the “past” content in its
buffer. Hence 'y cannot be greater than the size of the
“past” content inRy’s buffer att,;. By our assumption,
the “past” content inRy’s buffer att, is ({’fg) bytes
and hence,

)

- I1l. SERVERBANDWIDTH REQUIREMENT: ANALYSIS

We consider the case of a single CBR media distribution.
The playback rate is assumed to be 1 byte/time unit. The client
requests are generated according to a Poisson process with
rate \. The time spent by a client downloading the stream is
exponentially distributed with ratge.

Let us assume that a client is able to determine whether it
should download the stream from the server or from the buffer
of some other client without any delays both in the case of a
new arrival as well as in the event of a departure; i.e. we do
] ] _not take delays like propagation delay and the delay involved
less thana; in our model we assume that clients over-writg, searching the peer-to-peer network for a suitable client to

the content in their buffer either at the download rai¢ ¢r  gownload from into consideration. We later incorporate such
at the playout rate. Hence, in this cade, should be over- gg|ays in Section I1I-D.

writing its buffer at the rate of 1 byte/second. If this is the
case, thenk, can download fromR, at the playout rate of .
1 byte/second and download the “missing” content from tHAé Arrivals
server at the rate ofa(— 1) bytes/second. A new arrival, Ry, would have to download from the server

The following constraints must be satisfied by the size &1 either of the following two cases:
the “missing” content]y bytes, forR, to able to stream from
Ry's buffer [23]:

(1) Constraint imposed due toa:

The time taken byR, to playout the pre-fetched content

Fig. 4. Possible buffer overlap/non-overlap scenariosHgrand Ra.

« The inter-arrival time betweeR, and the arrival imme-
diately precedingRy, say R, is greater thariV; where

W="ifl<a<20W=(axT)(55) i

)

in its buffer and the “missing” contenf[’y bytes, is
equal to(a x Tp) (%J + Ty seconds (at the playout
rate of 1 byte/second). The total time needed Ry
to downloadTy bytes from the server at the rate of
(o — 1) bytes/second isaT_i1 seconds. In order to have
the “missing” content available &, before its playout
time, the following inequality must be satisfied:

a > 2. As mentioned in Theorem 1 in Section II-B,
if a > 2, Ry can use the stream-patching technique to
“catch-up” with R; iff the size of the content “missing”
from R;’s buffer is less than or equal t@ x T;. If Ry
maintains the ratio3d in its buffer, then the maximum
value of W for Ry is

W = max. “missing” content
Ty +“past” content atR;
axTy)|l— | +Ty > —— 1 T
( b)(1+ﬁ> H a_1 1) _ (O‘XTb)"‘(lO;bﬁ)

The above inequality demands that the time taken
to playout the pre-fetched and the “missing” content
should be greater than the time taken to download
the “missing” content. Note that ifv > 2, then the .
condition (1) is always satisfied. The stream patching
can be used in this case of a departure even when
1 < a < 2 if a client has sufficient pre-fetched content.

Constraint imposed by the size of the buffer:
Suppose thatR, starts downloading simultaneously

(o x Tp) (%)

SupposeR, arrives at time = t,. It can be easily verified
that as a consequence of Theorem 1, Section RB¢an
download from only those users that arrived during the
interval Tp = [tg — W, o). If all the users that arrived
during the intervall, have already departed from the
peer-to-peer network by = ¢y, then Ry would have to
download from the server.



Sincew; € [0,W) Vi=1,---,n,

bl | R| I:|'|3'|.li'llr.--' P{Event A} _
4 o e w w
i i i B * Z/ / (Integrand) dwy - - - dw,
T N tinse n=170 0
B = By B B g Fo where thelntegrand is
W n
Wy
w . . P{N =n} [ Ply: < wi} P{wi}
i=1

To keep the analysis tractable, we solve the above equation
for N = 1. Then,
P{Event A}

Fig. 5. Timeline illustration of an arrival event (fdko).

:/OWP{N=1} XP{yl Swl} xP{wl}dwl

: L . w

Let w represent the inter-arrival time between any two client _ / AW e MW « (1 — ey x AN dapy
requests. Since the arrival process is Poisson with xatbe 0
inter-arrival time is exponentially distributed with me Ae~A+mW
eile P Y e (S —eW) @

ence: A4 u A p
P{w>W}=e W (3)  Thus,

Suppose a new client requedty, arrives at timet = ¢,. Let P{a new arrival goes to the seryer
N represent the number of arrivals in the inter¥a) = [to — = P{w > W} + P{Event Al

W, tp). Let N = n. As mentioned earlierR, would have to
download from the server if all the users that arrived during Where P{w > W} and P{Event A} are given by equations
the intervalT), have departed by = ty. Let R;, i = 1,...,n, (3) and (4), respectively.

represent the users that arrived during the intervB}. Lety,

be the time spent py cIierR_,; dov_vnloading the stream beforeg Departures

it departs. Let the inter-arrival time between uggrand R
be w;. If y; < w;, R; would have departed by the time,
arrives (see Fig. 5). LeA represent the event thd, has
to download from the server because all the users that arri
during the intervall’, departed beford?y’s arrival. Then:

Suppose useR, is downloading the stream from the buffer
of user R;. Let R; depart from the peer-to-peer network at
\;gaet = t4 such that by this time?, has been downloading
and playing out the stream for a duration @Qf time units;
i.e. Ry has been in the peer-to-peer network fottime units

P{Event AN = n,y;,w;} = when R; departs. We assume that is long enough forR
n to have achieved the desired ratif),between its “future” and
P{N =n} [[ P{vi < wi} x P{w;} “past” content.
=1 Fig. 4 presents a snapshot of buffer/®f and another user,
where P{w;} is the probability that the inter-arrival time [z, from whose buffer?, can start downloading from instead
betweenR,; and R, is w;. of going to the server afteR; has departed. Since we have

Let the inter-arrival time betweeR; and R;_; bet; with assumed a sequential access model for client requests, i.e.
t1 being the inter-arrival time betweeR; and R, and hence, each client downloads the stream from the beginning and the
t; = w;. Note that because of the memoryless nature of théayout speed is 1 byte/time unit, afté has spent, time
Poisson arrival process, eacth is exponentially distributed units downloading the content, its “present’tisbytes away

with mean% time units. Thus, from the beginning of the content.
The difference, in terms of nhumber of bytes, between the
wy = 11+t “present” of Ry and R», represented b¥’; in Fig. 4(b), is

wy = t]+ta +t:
‘5. thm Ty = "future” content atR

w7: = btlod e+t +“missing” content + “past” content aks
ﬁaTb aTb
Since eachw; (i > 2) is a sum of; i.i.d. exponential random — Ty = (1 + lg) +Tn+ (1 + 5)
variables with mean}(, w; is an Erlang random variable of
orderi with mean+. Hence,

The size of the “future” content a@, and the “past” content
at R, have been calculated using the assumption that Bgth
A(Aw;)i—temAwi and R, maintain the ratig3. As discussed in Section II-C the

(i —1)! ’ download ratex and the buffer size impose certain constraints



To keep the analysis tractable, let us assuwe= 2; this
" I, depmiz  represents the scenario whekg starts downloading froni;

4 o on arrival and could potentially download frof, on R;'s
i Y i i = departure. We have,
- - [ ] - - faiape 00 Tf
" : B ot L P{Event B} = / / (Expression) dwadts (6)
2 W - 0 0
- 4 " where Expression? is:
e T (ATy)? i [ ADwe)e 2 _ w
- ( 2(! ¥) ) (pe Mt§) < ( 21)! ) (1—e w(ts+ 2))
Fig. 6. Timeline illustration of a departure event (f85). C. Server Load

Let eventS represent the situation that a client request
downloads the stream from the server. From the preceding

on the size of the “missing” conterify;, for R, to be suitable discussion in Section Ill-A and I1I-B,

for Ry to download from. The maximum value @ is P{Event § — P{w > W) + P{Event A} + P{Event B
(ax 1) %) if o< (%) where the right-hand terms are given by equations (3), (4) and
Ty = 5) g
(axT) (%5) otherwise (6), respectively.
N In our model we have assumed that client requests are

We provide a detailed derivation of Equation 5 in the appendigenerated according to a Poisson process with xatdence,

After the departure ofR;, only those clients whosein steady state, i.e. after there are enough end-hosts in the
“present” is ahead oRRy’s “present” by a value less than orpeer-to-peer network, the average number of client requests
equal to the maximum value df; are suitable forR, to start that download the stream from the servenis P{Event §.
downloading from, assuming that all such clients maintain the
same ratios in their buffers.

Since we have assumed the playout speed to be
byte/second, a client whose “present”’i$ bytes ahead of
Ry must have arrived’y time units beforeR,. Hence, the
constraint on the suitability of a client (mentioned in th
preceding paragraph) can be re-statedoasR;’s departure
Ry can download from only those clients that arrived at most
Ty time units before Ry; where the value of T is given by

D.1 Incorporating the delays

Let us revisit the scenario discussed in Section II-C. Sup-
pose thatR, is a suitable client forR, to start downloading
érom after R,’s departure but it take®, D time units after
Ry’s departure to determine thi&; needs to know what is
available on each client’s buffer and process that information
to determine the suitability of each client. There will also be

) : some propagation delay involved in the transmission of the
. 4 : : .

Suppose that the client requei arrives att — t,. Let N meta-data’ _trafnc amongst clients in the oﬁvaejtlay _networl.<.
represent the number of arrivals in the interjtal — Ty, t,). At the time of R,’s departure,Ry has( 1+ﬁb> time units

Let N = n and R;,i = 1,---,n be then client requests. of “future” data. We assume that iR, is not able to find

SupposeR, starts downloading the stream froRy and R, Rz by theTtime it finishes playing _out its “future” content
departs the peer-to-peer networkiat= to +t,. Thus,R, has (D > Bfiﬂb), R, starts downloading from the server. If

spentt, time units downloading the stream whéh departs. p < 5aTb)’ R, can absorb the delay without any disruption

; e 143
Let w; be the inter-arrival time betweeR; and Ry andy; be ¢ jis* playout. In the next section, we present analytical

the time spent byR; downloading the stream (see Fig. 6);o5its after incorporating the delay involved in the event of a

I all the clients ;,7 = 2,---,n have departed by the timeyonartyre into our model assuming that the delay is uniformly
tq = to + ts, I.€.y; < ts +w;, then Ry would have no option distributed.

but to download from the server aR,’s departure. Let event
B represent the situation th@, downloads from the server
on Ry’s departure. Then,

IV. PERFORMANCEEVALUATION
In this section, we evaluate the performancePoé-fetch-

P{Event BN = n,ts,y;,w;} = and-relay based on the analytical model presented in this
n . . . .
B paper and compare it with simulation results. We also present
P{N =n}P{ts} H Plwi}Ply: < ts + wi} analytical and simulation results after incorporating the various
1=2

delays into our model (as discussed in Section IlI-D). We also
where P{t,} is the probability thatR, has downloaded the ' _ _ _
stream fort. time units by the timeRk, departs,P{w} is the 3The integrand for computing®{Event B} is computed assuming th&o

s v starts downloading fronR; on arrival.

pmbab"'ty that the inter-arrival time betweef; and Ry is 4The messages exchanged in determining the clients who are still present
w; andi =2,---,n. in the peer-to-peer network and their buffer contents.
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In the Pre-fetch-and-relay scheme, as calculated in Section
[, the probability that Ry downloads from the server after
the premature departure of its current source is given by
P{Event B}. Note that in computingP{Event B} we had
ost 1 not taken the various delays mentioned in Section IlI-D, into
\ consideration. Lep represent the probability thak, is not
able to locate a new source to download from, affars
departure, before it finishes playing out jt®e-fetched content.

Ry would be forced to start downloading from the server in
such a scenario. Thus, under tRee-fetch-and-relay scheme,

XS

TRTTT T
cooooo
WA NE

;

°

ratio of server cost (Pre—fetch/Cache-and-Relay)

" request arrival rate (req./60 time units) the probability thatR, will doyvnload from the server due to
the premature departure of its current source, represented by
Fig. 7. Importance of Pre-fetched content Pr, is

Pr = P; x P{Event B} + P; x (1 — P{Event B}) x p

compare the performance Bfe-fetch-and-relay with Cache- where the first term represents the scenario where there are no
and-relay with respect to savings in server bandwidth. Weew sources in the peer-to-peer network fy to download
refer to the protocols oStream [6] and OSMOSIS [17] by thgom after the departure of its current source, and the second
generic termCache-and-relay because they correspond to théerm represents the situation whekg finishes playing out its
situation whena = 1 (hence, a client cannot pre-fetch anyre-fetched content before it is able to locate a new source.
content). The probabilityp can be thought of as the fraction of time
when a client does not have enougte-fetched content to be
able to locate a new source after the departure of its current
) ] source. Fig. 7 compares the performanceCathe-and-relay

It a client does notpre-fetch content (as inCache-and-  angprefetch-and-relay for different values of. Note thatPy
relay), then on premature departure of its current source it héégenerates t&, for p = 1. The ratio of the server bandwidth
no option but to start downloading from the server till the tim?equirement forPre-fetch-and-relay to the server bandwidth
it is able to locate another source in the peer-to-peer ”etwofgquirement forCache-and-relay is plotted along the y-axis.
In this section, we analytically compare the performance e value ofx is 2 and is 100,000. The buffer size i€ time
our Pre-fetch-and-relay scheme against th€ache-and-relay  nits. It is evident from the figure that in the presence of client
scheme proposed in [6]. departurespre-fetching “sufficient” content by clients can help

SupposeR, starts downloading the stream frof upon  reduce the server bandwidth requirement significantly.
arrival. Let the inter-arrival time betweeR; and R; be w;

and the time spent by; (i = 0,1) downloading the stream i )

be t;. Under theCache-and-relay scheme,R, will have to B- Simulation Model

start downloading from the server at some poinRif departs  Table | presents the settings of the various parameters used
before Ry. In both Cache-and-relay as well asPre-fetch-and- to obtain the results presented in this section.

relay, a client that is forced to download from the server after

A. Advantage of Pre-fetching

the premature departure of its source can stop downloading Figure | Buffer size| J (1/p) | Delay
from the server after it has found another source in the peer- 8 > 100000 | 1000 | No
; P 9 10 100,000 1000 | No
to-peer network. To keep the analysis tractable, we have not 10 20 100,000 | 1000 | No
considered this “optimization” in this analysis. But since this 1 10 100,000 | 100 No
D - ; ; 12 10 1 1000 | Yes
optlmlzatlon technique to reduce the server bandwidth is 13 o 100,000 1000 T Yes
possible under both schemes, the trend exhibited by the results
presented in this section would remain the same. Using the TABLE |
same analytical model of Section I, SETTINGS OF VARIOUS PARAMETERS USED IN SIMULATIONS
P{R; departs beforer,}
= P{t; <to+wi} x P{to} x P{w:} The quantity(1/u:) represents the average time spent by a
=(1- e*u(toﬂvl)) X pe Mo x e AW client downloading the stream. ANb” in the column labeled

- ) “Delay” indicates that the various delays discussed in Section
Thus, the probability thak, will have to download from the j|_p were not considered in calculating the server bandwidth

server under th€ache-and-relay scheme due to the prematurgequirement; aYes indicates that the delays were considered.
departure of its current source, representedPhyis The plots on the left-hand-side of Figures 8, 9, and 10
show the server bandwidth requirements obtained from our
Y lytical model for the simplified cases wheéh = 1 in
Pd:/ / (1 — e #0H w1y s e ™10 5 Xe™ 1 dtodun analy Impiifieo =
o Jo Section llI-A and N = 2 in Section IlI-B. The plots on
the right-hand-side show the corresponding simulation results.
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Fig. 10. Analysis (left) and simulation (right) when mean download time = 1000 time units and buffer size = 20 time units.

All of these results are under an assumption of Delay=No.In all simulations, the total number of client arrivals was
This assumption is relaxed in the results shown in Figurest at 3,000. Each point on a graph represents an average over

12 and 13. Namely, we assume that the total delay involvé@ independent runs.
in switching the streaming session to another client after a
departure is uniformly distributed over the interval [0,9]. WitfC. Summary of Observations

a buffer size of 10 time units and = 100, 000, a client will If the download rate is sufficiently highy > 2, dPAM
have 9.999 time units of “future” content in its buffer after i35 an advantage oveache-and-relay in reduciﬁg the server
achieves the“rathﬁ Yyhereas with3 = 1 it will have only 5 pandwidth when the resources available for overlay stream
time units of “future” content. multicast are constrained, for example when the buffer size is



Buffer size = 10 time units

~

due to the departure of clients they were downloading from.

| Tgllshail.Z I Fig. 11 presents the simulation results when the mean time
L aphacis spent by a client downloading the streaity() is 100 time

o Loz units. Compared to the case whepu = 1000, the server
—— alpha=10

bandwidth requirement is considerably higher even for very
high client arrival rates.

We refer the reader to [23] for a more detailed discussion on
the simulation results presented in Figures 8(right), 9(right),
10(right) and 11.

The server bandwidth requirements obtained from our an-
‘ ‘ ‘ ‘ ‘ alytical model (Figures 8(left), 9(left), 10(left)) display the
* request arival ate (req./60 tme unis) . same trends as observed through simulations. The analytical
! ) ) ) ) __results are more optimistic than the results obtained through
Fig. 11. Simulation results when mean download time = 100 time units and . . .
buffer size = 10 time units. simulations because of the assumption that clients are able
to achieve the rati@ in the buffer before they are forced to
switch their streaming session because of client departures.

} ] If the ratio between the “future” and the “past” content in
small or when the request arrival rate is low. The advantagegjient's buffer is less thar, then not only does it have

stems from the fact that a higher download rate enables a cligfds time to discover another client to download from but the
to open two simultaneous connections for a short duration iamper of suitable clients available in the peer-to-peer network
“catch-up” with the buffer of another client using the techniqug 51so reduced because of a smallgrs
of stream patching. This advantage is more pronounced forFigures 12 and 13 present the results from analysis and
higher client departure rate. If clients depart frequently froRyulations after incorporating the various delays into our
the peer-to-peer network, it reduce_s the caching capacity of theqel. In Figure 12, with3 = 1, clients have 5 time units
peer-to-peer network, thus patching content from the Serygr«tre” content whereas the delays involved are uniformly
becomes more beneficial. As the buffer size and the requgiliributed over the interval [0,9]. Hence, in a significant
arrival rate increase, the advantage of our dPAM protocol ov§fimber of cases, a client would be forced to download the
Cache-and-relay is mitigated and for a given buffer size, at &yream from the server after a departure because it would
sufficiently high request arrival rat€ache-and-relay matches e ynaple to find another client to download from before it
the performance of dPAM in terms of server bandwidth evghishes playing out the “future” content. As a result, the server
when the download rate is very high. bandwidth requirement keeps on increasing even for high
Whenl < « < 2, Prefetch-and-relay leads to a greater cjient arrival rate. In Figure 13, with = 100, 000, clients have
server load thaache-and-relay for small arrival rates. As we 9 99 time units of “future” content. Hence, clients are able
increasey, the time taken to fill the buffer at download speedq apsorb the delays without any disruption to their playout
T, decreases. For example, for a buffer size of 5 time unitgng are not forced to download from the server. As a result,
for Cache-and-relay (o = 1), T, = 5; whereas whem=1.8, the server bandwidth requirement displays the same trend as
T,=2.78. Thus, in the former case, a new arrival can reuse {§served when delays were not considered. These results aim
stream from someone who arrived at most 5 time units earligf ynderscore the importance of taking advantage of a higher
whereas in the latter case a new arrival can download fraf@wnload rate tgre-fetch content in achieving a better playout

someone who arrived at most 2.78 time units earlier. Hence:ﬁ'@rformance and lower server bandwidth requirement.
the latter case, more new arrivals have to download from the

server. This effect can be mitigated by increasing the buffer
size and also for increasing client arrival rate.

The results presented in this section also show that as thd here are two main components to dPAM: (1) Buffer
available buffer at the client increases, the required senfdgnagement: How should a node manage its buffer? and (2)
bandwidth to support a particular request arrival rate decrease§ntent Location: How does a node locate a set of potential
both in Cache-and-relay as well asPre-fetch-and-relay (for all sources.from. which to prefetch its content upon arrival, or
values ofa). This observation is in agreement with the resultdPOn being disconnected due to the premature departure of its
obtained in [6]. current source? In this paper, we have focuseq on the puffer

The amount of time that clients spend downloading management component of dPAM. In this section, we briefly

stream is an important factor in determining server bandwid@4tine how the content location component of dPAM could
requirements. Peer-to-peer network based asynchronous m&§igeadily implemented. . .
content distribution is suited for situations in which the content First; we note that the content cached in any P2P node is
being distributed is large: so that the end-hosts participatifgiduely identifiable by the absolute time of the first byte of
in the peer-to-peer network are available for a long time. Int4€ féed currently being played out at t:}‘lat node. For example,
scenario where end-hosts keep departing after a short interaft ime ¢ @ node: is playing out thed™ second of a feed
the server load can be considerably high d_ue to the fact that 8as discussed in Section I1I-B, the size B} is related to the “future” and

lot of requests may have to start downloading from the serv@e “past” content in the buffers of the clients.
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V. IMPLEMENTATION ISSUES
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f, then the content of nodé storage at any point in time a node arriving atf, needs to query a string range that
is uniquely identified by the string@t, wheret, = ¢t — spans the arrival timeg, — W, ty). If matches exist (or are

d. Thus one can treaf@t, as the unique reference stringocatable using the content location protocol), that node would
for the content available at node Similarly, it also follows receive a list of all candidate sources, possibly with additional
that a node;j searching for content could uniquely generatmeta information coded into the matching reference strings
the reference string for the cached content it is seeking t®.g., load information, network distance, etc.) From such a
specifying the name of the feed and its own starting time feaandidate list, the node would select the most appropriate
that feed. source. If matches do not exist, or if the candidate list is not

Our ability to uniquely name the cache content at any nod#@sponsive (perhaps due to delays in propagating departures
in the system gives us a simple mechanism for implementiffyough the P2P name space), the node will resort back to the
dPAM’s content location component. Specifically, this coul8€rver.
be done using any number of existing P2P content location
protocols, ranging from widely deployed controlled flooding VI. RELATED WORK

protocols (e.g., gnutella [1]) to more scalable DHT-based pelivery of streams to asynchronous clients has been the
protocols (e.g., CAN [21] and CHORD [23]), or recentlyfocus of many studies, including periodic broadcasting [26],
proposed hybrids thereof [10]. [14], [12], [18] and stream patching/merging techniques [5],
Upon joining (leaving) the asynchronous multicast of a fegd1], [7], [8]. In periodic broadcasting, segments of the media
f, a node would advertise the availability of its cached portiasbject (with increasing sizes) are periodically broadcasted on
of f by adding (removing) the appropriate reference strirdedicated channels, and asynchronous clients join one or more
into (from) the pool of available content (this is akin to a nodbroadcasting channels to download the content. The approach
adding/removing a file to/from the set of files it is contributingf patching [13] allows asynchronous client requests to “catch
to a P2P file sharing application). When a node needs to locafg with an ongoing multicast session by downloading the
a new source of content, it would query the system usimgissing portion through server unicast. In merging techniques
an appropriately formed reference string (possibly includir{d], clients merge into larger and larger multicast session
wild-cards to allow for ranges, etc.) In our dPAM schemegpeatedly, thus reducing both the server bandwidth and the



network link cost. These techniques rely on the availability af such a source, and that the replenishment of the client's
a multicast delivery infrastructure at the lower level. buffer is done by contacting only one source-peer. Clearly, a
The idea of utilizing client-side caches has been proposelient can minimize the delay experienced in finding a new
in several previous work [24], [20], [15]. The authors of [6]peer to download from after the departure of its source-peer
propose an overlay, multicast strateg@gream, that leverages by pre-computing and maintaining a list of other potential
client-side caching to reduce the server bandwidth as well theurce-peers. In the event of the departure of its source-peer,
network link cost. Assuming the client arrivals to be Poissaa client can reduce its search time for a new peer by first
distributed, they also derive analytical bounds on the serveecking out the peers on its list. Also, when replinishing its
bandwidth and network link cost. However, this work does ngirefetched buffer, a client may be able to leverage multiple
consider the effect of the departure of the end-systems fr@murces concurrently [22].
the overlay network on the efficiency of overlay multicast. More importantly, a client can proactively switch from one
As mention earlieroStream, does not consider the effect ofsource-peer to another in order to reduce the transmission
streaming rate, it is &ache-and-relay strategy, and hence,delay of its download or to optimize the overall network
does not incorporate patching techniques to reduce serligk cost. To that end, maintaining a list of potential source-
bandwidth when the download rate is high. The main objectipeers can also help reduce the delay in finding the “opti-
of the protocol,OSMOSIS, proposed in [17] is to reduce themal” source- peer. In effect, one may think of this process
network link cost. The effect of patching on server load hass a distributed optimization process whereby each peer in
not been studied. the P2P asynchronous multicast overlay is performing local
A different approach to content delivery is the use of peréptimization (by proactively selecting its source from many
odic broadcasting of encoded content as was done over bropgtential candidates). Currently, we are exploring the impact
cast disks [2] using IDA [19], and more recently using thef the above mentioned optimizations on the performance of
Digital Fountain approach which relies on Tornado encodiraur protocol. This includes issues of convergence and stability.
[4], [3]. These techniques enable end-hosts to reconstruct the
original content of size using a subset of anysymbols from APPENDIX
a large set of encoded symbols. Reliability and a substantialAs discussed in Section [I-C the download rateand
degree of application layer flexibility can be achieved usirifpe buffer size impose certain constraints on the size of
such technigues. But these techniques are not able to efficietttly “missing” contentTy, for R, to be suitable forR, to
deal with real-time (live or near-live) streaming media contetownload from (see Fig. 4). I > 2, condition (1), Section
due to the necessity of encoding/decoding rather large stote€ is always satisfied and hence, the maximum size of the
data segments. “missing” content is given by condition (2), Section II-C.
Hence, whena > 2, the maximum value offy, assuming
VII. CONCLUSION AND FUTURE WORK that bothR, and Ry maintain the ratio3 in their buffers, is

We proposed dPAM, gre-fetch-and-relay protocol that BaTy, oy oy
allows a peer to serve as a source for other peers, while Ty = <1+5> <1+5> <1+ﬁ)

prefetching a portion of the stream ahead of its playout time. In 2+

contrast to existing cache-and-relay schemes, dPAM is more =Ty = (a xT}) (Hﬁ)

scalable in highly dynamic P2P systems. This is because a

departure of a peer does not necessarily force its children peer§ow consider the case af< o < 2. Condition (1), Section
(for whom it is serving as source) to go to the original servel-C can be restated as

Rather a child peer can continue its playout uninterrupted Ty < (OéﬁTb> (a— 1)

from its prefetched data until it discovers a new source-peer. “A\1+0 2—-—«w

Through mathematical analysis and extensive simulations, waye can derive the condition om that determines whether
show that, if the download rate is sufficiently greater thagpndition (1), Section II-C or condition (2), Section II-C
the playout rate > 2), our distributed prefetching schemerestricts the maximum size of the “missing” content; condition
significantly reduces the load on the server as it effectivejy) section II-C determines the maximum size of the missing
increases the capacity of the P2P system. At the same tiragntentiff
clients can achieve a better playout performance.

One aspect of dPAM that we did not evaluate (but should <a6Tb> (a — 1> < aTh )
be evidently obvious) is that the prefetching buffer allows a 1+5 145
client to withstand, not only the departure of source-peers, — 0 < (ﬂ) @)
but also network jitters associated with the bandwidth from - 1+p
the source. Indeed, buffering (via prefetching) is commonly If (7) is satisfied then the maximum value Bf, assuming
used in streaming media players for that purpose, suggestifgt bothR, and R, maintain the ratio3 in their buffers, is

2—«

that the same storage capacity at a client could be used for 8aT, BT, o—1 T,
smoothing network jitteras well as improving the scalability Tr = (1 = B) + (1 +6> (2 — a) (1 m 5)
of P2P asynchronous multicast.

In this paper, we have assumed that a client starts the process  — (o x T3) ( f-at? )
of replacing a source-peer upon discovering the departure (1+8)2-a)
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