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Abstract. We consider a mobile sensor network monitoring a spatio-temporal
field. Given limited caches at the sensor nodes, the goal is to develop a dis-
tributed cache management algorithm to efficiently answer queries with a known
probability distribution over the spatial dimension. First, we propose a novel dis-
tributed information theoretic approach assuming knowledge of the distribution
of the monitored phenomenon. Under this scheme, nodes minimize an entropic
utility function that captures the average amount of uncertainty in queries given
the probability distribution of query locations. Second, we propose a correlation-
based technique, which only requires knowledge of the second-order statistics,
relaxing the stringent constraint of a priori knowledge of the query distribution,
while significantly reducing the computational overhead. We show that the pro-
posed approaches considerably improve the average field estimation error. Fur-
ther, we show that the correlation-based technique is robust to model mismatch in
case of imperfect knowledge of the underlying generative correlation structure.

1 Introduction

Early sensor network research assumed that sensors are static with very low compu-
tation and storage capabilities, and once deployed, these nodes are not likely to be
recharged or moved. Hence, once separated from the network (e.g., due to failure of
nodes on the path to the rest of the network), nodes will remain disconnected until
their batteries die. Sensor network technologies have matured to the degree that they
are expected to be embedded in many platforms. Some of these platforms are mobile,
e.g., automobiles, handheld devices and wearable computers, giving rise to a rather new
paradigm for sensor networks, which allows for the consideration of mobility, including
the possibility of leveraging it for new classes of sensor network applications.

A paradigm, in which sensor networks are mobile, not only changes many tradi-
tional sensor network assumptions (e.g., node isolation may be only temporary due to
mobility), but also it gives rise to new applications, or to old applications under new
settings. One such application is field monitoring. An extensive body of research stud-
ied this problem in the context of static sensor networks [8, 21, 17, 13, 23, 7]. Dense
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node deployment is usually assumed. A unique party in the network (i.e., the sink)
is assumed to be responsible for posing queries to the rest of the network. Flooding
(whether network-wide or limited) is leveraged to discover the best forwarding paths
to and from the sink. Lack of change in the network topology allows these paths to be
useful for handling multiple queries, validating the cost of flooding.

Besides mobility, the field monitoring setting we consider in this paper is different
from the above scenario. Specifically, sensor nodes are not viewed as reactive elements
whose sole role is to sample a single location and respond to queries about this specific
location. Rather, we view sensors as being embedded or attached to larger entities (e.g.,
cars and handheld devices), which constitute points of interaction between the system
and its users. As such, users may pose queries to the system, and get replies from the
system through these points of interaction (nodes). As an example for this setup, con-
sider a firefighter’s backpack that contains a number of sensors (e.g., temperature sen-
sor, smoke sensor, carbon-monoxide sensor, etc.), along with a head-mounted display
and a keyboard to allow interaction between each firefighter and the system [1]. In such
a system, sensors could sample the environment in which firefighters work. Collected
samples should be managed and stored in order to satisfy queries issued by firefighters
to the system. A query can target any location in the scene, not only locations sam-
pled by the inquirer. For example, if one firefighter needs to go to some location in the
scene, then measurements of temperature, smoke levels, and concentration of carbon
monoxide would prove valuable to this firefighter. Thus, the goal of the system is to
provide an accurate estimation of the phenomenon of interest at the given query loca-
tion. A defining characteristic of this system is the mobility pattern of the mobile hosts
(firefighters in this example). This pattern is not governed by the need to optimize the
system performance, rather it is governed by an overarching mission (e.g., the need to
save someone trapped in a room, or constraints due to how the fire progresses). This
same setting applies equally well to a group of soldiers in a battlefield, or a group of
researchers performing a study in some urban field.

Another important factor in the paradigm we consider in this paper is that, users may
have specific preferences when posing queries to the system. Specifically, the spatial
distribution of interest over the field might be skewed as opposed to uniform (i.e., there
might exist some zones in the field that users are likely to inquire about more frequently
– e.g., near exits). Also, different phenomena of interest (e.g., temperature, and carbon
monoxide) might have different interest distributions. Knowledge of such distributions
can be leveraged to optimize the system performance.

We assume that in such systems the storage space of mobile nodes allotted to each
phenomenon of interest is limited. This is a realistic assumption for two reasons: 1)
considering the fact that data from different phenomena share the same storage space
(or cache). Adding more sensor types increases the number of phenomena that the sys-
tem is able to handle, but also increases contention over the limited memory available
for storage. 2) As we alluded above the type of applications we target are parasitic
applications; in the sense that these applications exploit mobility of the host and its re-
sources (e.g., storage of a firefighter wearable system) to provide some service. Hence,
it is conceivable that, although the host might have plenty of storage, our target appli-
cations will be allowed access to a limited fraction of this storage. These two reasons



motivate the need for a cache management algorithm. We assume that samples from
different phenomena are independent, hence, solving the problem for one phenomenon
is enough.

To this end, in this paper we propose two cache management algorithms for tackling
this problem. Our techniques aim to minimize some utility function that captures the
average amount of uncertainty in queries given the distributional characteristics of query
locations. Our contributions are as follows:

– Assuming knowledge of the entire spatio-temporal distribution of the target phe-
nomenon, we develop an information-theoretic framework to optimize the cache
content, and provide accurate answers to queries (Section 3).

– We propose a different approach based on optimizing a correlation-based function
relaxing the stringent constraint of full distribution knowledge. We develop a strat-
egy that only requires knowledge of the second order statistics of the phenomenon
of interest. Furthermore, this technique lowers the required computational com-
plexity (Section 4).

– We provide extensive performance evaluation of our techniques, showing (and
quantifying the impact of) the various factors and parameters that affect perfor-
mance (Section 6). We, also, study the robustness of the technique developed in
Section 4 to model mismatch in case of imperfect knowledge of the correlation
structure.

The rest of the paper is organized as follows. In Section 2 the setup and problem def-
inition are provided. Details of the proposed techniques are presented in Sections 3 and
4 together with an analysis of their corresponding computational complexity. Based on
these two cache management algorithms, we show how to design a cooperative scheme
in Section 5, where nodes benefit from samples cached at their neighbors to obtain more
accurate query estimates. We then present in Section 6 an evaluation of the cache man-
agement strategies for two phenomena generated using different processes. We provide
a summary of related work in Section 7, discuss future work and conclude the paper in
Section 8.

2 Problem Definition

We start with the problem definition along with a description of the system goal. The
setup, system parameters, and notation we use are as follows:

– The system consists of n autonomously mobile nodes (i.e., node mobility is not
controlled by the system).

– Each node has a cache of size c.
– The nodes move in a field F with area A = L× L.
– While roaming the field, sensor nodes sample a target phenomenon and this process

continues for T time units.
– Location information is accessible to the sensor nodes, such that they can associate

each sample with the location where it was collected.

We leave the relaxation of this assumption to future work on this problem.



– We use capital letters to represent random variables and small letters to represent
realizations of these random variables.

– V`,t is a random variable that represents the value of the field phenomenon at loca-
tion ` and time t. v`,t denotes a realization of this random variable.

– We use the boldfaced letter s
i
t = [s1, s2, .., sc] ∈ R

c to denote the c-dimensional
cache content vector of node i at time t. To simplify notation and since we would
be generally referring to any arbitrary node i, we will drop the superscript i, unless
it is not clear from the context. Note that any cached sample sj corresponds to a
field value v`j ,tj

, where `j is the location from which this sample was collected and
tj its corresponding time stamp.

– It is assumed that a query posed at any time instant τ inquiring about location `
targets the value of the field phenomenon v`,τ .

– The field phenomenon is fully characterized by a space-time multivariate probabil-
ity distribution p({v`,t}; ` ∈ F , 0 ≤ t ≤ T ) with a L2 × T × L2 × T correlation
matrix R, such that R(v`1,t1 , v`2,t2) represents the correlation between two values
of the phenomenon with space-time coordinates (`1, t1) and (`2, t2), respectively.

– Define the random variable L(q) as the location which query q targets (called the
query target). We assume that L(q) follows some spatial distribution Q, where
Q(`(q)) is the probability of querying field location `(q). Q is assumed to be sta-
tionary. Similarly, we use t(q) to denote the time at which query q was posed.
Obviously, the best answer to q would be v`(q),t(q).

System Goal: After some warm-up time, each node in the system is expected to an-
swer queries about the target phenomenon in the field. The query specifies some field
location, the node is expected to provide an estimate of the phenomenon at the query
target and the goal is to minimize the mean square estimation error (MSE) of the sys-
tem’s response. Hence, the nodes are required to maintain an efficient cache content to
be able to answer queries reliably. In the next sections, we develop different strategies
for cache management at the sensor nodes.

3 Information Theoretic Cache Management

In this section we develop an information theoretic strategy via which nodes locally up-
date their caches based on knowledge of the space-time distribution of the phenomenon
of interest.

3.1 DEBT Cache Maintenance Strategy

At each time instant, local decisions are made at the mobile nodes concerning which
samples to keep, and whether or not a new sample should be acquired at the current
location. These decisions are made so as to minimize an entropic utility function that
captures the average amount of uncertainty in queries given the probabilistic query tar-
get distribution — hence the name of the strategy: Distributed Entropy Based Tech-
nique (DEBT). Specifically, at each time instant t, a node i greedily decides in favor of
the cache content that minimizes the conditional differential entropy averaged over the
query distribution Q, i.e.,



st = argmin h(VL(q),t/st, L(q))

= arg min
st∈St

∫
`(q)∼Q

Q(`(q))h(V`(q),t/st, `(q)) (1)

where, st ∈ R
c is the cache content selected by node i at time t, and h(VL(q),t/st, L(q))

is the differential entropy of the values of the phenomenon, conditioned on a given cache
content, at the possible query locations `(q) which follow a spatial distribution Q. St is
the set of all possible decisions leading to all possible cache contents at node i at time t
which is given by:

St = {st : st ∈ Cc,c+1(st−1

⋃
{v`t,t})} (2)

where Cc,c+1(A) denotes all the (c+1 choose c) possible combinations of the elements
of a set A and v`t,t denotes the value of the phenomenon at the current location of the
i-th node, `t.

The expression above simply enumerates all the possible cache contents at time t;
the options being to drop any of the samples from time t − 1 and acquiring the new
sample at the current location of node i, or just keep the old set of samples.

The intuition behind DEBT is that a node always keeps a cache content that min-
imizes the uncertainty in the values of the phenomenon (captured by the conditional
entropy) given the knowledge of the spatial distribution of the query targets over the
field of interest. It might well be true that an old sample taken at a specific location is
more valuable, and hence is worth caching than a newer sample taken at a different loca-
tion given the aggregate effect of the spatial query distribution and the spatio-temporal
distribution of the phenomenon.

It is worth mentioning that the computation of h(V`(q),t/st) (Eq.3 [5]) requires
knowledge of the posterior density p(v`(q),t/st), which can be generally obtained by
proper marginalization of the full space-time distribution. For the Gaussian case, this
simplifies to a computation of the conditional mean and variance µv`(q),t/st and λv`(q),t/st .

h(V`(q),t/s) = −

∫
v`(q),t

p(v`(q),t/s) ln p(v`(q),t/s)dv`(q),t (3)

3.2 Least Square Error (LSE) Query Response Strategy

To answer a posed query q, a node computes an estimate of the phenomenon at the
query target given its cache content. Given the knowledge of the space-time distribution,
it would be natural to resort to a Bayesian Least Square Estimate (BLSE), which is

Note that the differential entropy h(VL(q),t/s) that we use in the minimization of Equation(1)
is conditioned on a given realization of the cache content. That is to say, no averaging is
taken over the conditioning random vector since we are dealing with real-time selection of
the samples. This is clearly different from the standard quantity h(VL(q),t/S) with S being a
random variable.



given by the conditional expectation of the posterior density, to minimize the mean
square estimation error. Hence each node’s task is to compute the expected value of the
phenomenon at q given its cache content s, that is:

V̂`(q),t(q) = E[V`(q),t(q)/s] (4)

where V̂`(q),t(q) is the node estimate. Again we point out that this generally requires the
computation of the posterior density p(v`(q),t(q)/st). Under Gaussian assumptions, the
BLSE estimate in Eq.(4) is always linear in the cache content, that is the BLSE is equal
to the Linear Least Square Estimate (LLSE). For general distributions, the computa-
tional complexity could be reduced if we only restrict ourselves to linear functions of
the cache content, i.e. LLSE, which would only require knowledge of the second-order
statistics of the phenomenon. Note that the LLSE, X̂LLSE, of a random variable X with
mean µX , given a random vector Y = y, with mean vector µY is given by [22]:

X̂LLSE = µX + ΛXY Λ−1
Y (y − µY ) (5)

where ΛXY denotes the cross-covariance between X and Y , and, ΛY is the covariance
matrix of the observation vector Y . While the DEBT/LSE techniques outlined in this
section are expected to yield accurate performance, they are not practical. Specifically,
we note the following two types of limitations on DEBT practicality:

– Informational Limitations: DEBT assumes knowledge of the entire distribution of
the target phenomenon. Such information may not be always available, or if avail-
able (e.g., through historical monitoring of the phenomenon of interest), it may not
be accurate.

– Computational Limitations: In order to provide optimized decisions about whether
or not to sample visited field locations, and how to manage the cache, DEBT cal-
culates the conditional differential entropy of the query distribution Q given any
cache setting. This requires performing multiple numerical integration operations,
which might not be always suitable due to the limited computational capabilities at
the sensor nodes.

This motivates taking a different approach that is less-demanding in terms of knowl-
edge about the spatio-temporal field. In the next section, we propose a more practical
(yet quite competitive) strategy that only requires knowledge of the correlation struc-
ture, i.e., second-order statistics.

4 Correlation-Based Cache Management

In this section, we propose a Correlation-Based Technique (CBT) as a practical alter-
native to the DEBT approach presented before.

CBT averts the limitations of DEBT by only assuming knowledge of the space-time
correlation structure of the field phenomenon R. Namely, instead of calculating the



conditional entropy to make caching decisions, CBT decides which samples to cache
using only the correlation structure of the target phenomenon R. Notice that defining
R implies only knowledge of the second-order statistics of the target phenomenon, as
opposed to knowledge of the entire distribution in case of DEBT. Like DEBT, the crux
of the CBT technique is to be able to assign a measure of utility capturing knowledge
about the field to any given set of samples s = {s1, s2, .., sc} with respect to the query
distribution Q. Then, it retains the set of samples that maximizes the utility. First, we
need to assign a measure of utility u(q, s) to a set of samples s with respect to a specific
query q with location `(q), and time t(q). Then by averaging u(q, s) over the spatial
distribution Q, we get a weighted information metric over the entire field, M(Q, s).
More specifically, for a query q, we gauge the utility of s with respect to q as follows:

u(q, s) =
Q(`(q))

Λq|s
(6)

Averaging u(q, s) over Q, we get

M(Q, s) =

∫
Q

u(q, s) =

∫
`∼Q

Q(`)

Λq|s
d` (7)

where Q(`(q)) is the probability of querying field location `(q), and Λq|s is the condi-
tional covariance of q|s, given by

Λq|s = Λq − Λq,sΛ
−1
s

ΛT
q,s (8)

where Λq is the variance of the stationary process, Λq,s is the cross-covariance between
q and s, and Λs is the covariance matrix of the cache content s. Notice that calculation of
Λq|s only requires knowledge of the correlation matrix R. Then, CBT makes its caching
decisions by maximizing the total utility over the choice of possible cache content s

(i.e., maxs M(Q, s)).

5 Nodes Cooperation

So far we have described operation of a single node. However, in a mobile network
of numerous nodes, cooperation between nodes could be engineered to yield a better
performance. In this paper, we limit our attention to cooperation concerning query re-
sponse. This is done as follows. Whenever a node i gets a query q, i broadcasts q to
its direct neighbors. Upon receiving the query, each neighbor j of i estimates its an-
swer based on its local cache content, then, submits the estimate back to i along with
a measure of confidence in this answer. Node i performs the same task, and receives
query replies from its neighbors. The answer with the highest confidence is used as the
query response. In our setting we use the conditional covariance Λq|s (Equation 8) as
the measure of confidence in the estimated answer. The intuition is that a lower condi-
tional covariance corresponds to less uncertainty about the query. Notice that, the radius
of flooding the query could be increased to values larger than one (i.e., consult nodes
beyond direct neighbors), however, we choose not to do this in order to avoid query
flooding and its associated communication overhead.



Also, notice that, while we chose to limit nodes cooperation to the query handling
(i.e., estimation) plan, cooperation between nodes could be done on different plans, for
example, the sample caching (i.e., decision-making) process. In this case, nodes would
take decisions as to which samples to cache and which ones to evict based not only
on the contents of local cache, but on the contents of neighboring caches as well. This
would require broadcasting the cache content (or a summary of it thereof) to neighbors,
which is a costly process in terms of power. Also, performing cooperation on the de-
cision making plan requires more coordination in presence of mobility, since the set
of neighbors changes with time. In this paper we evaluate the first option, and leave
investigation of the second to future work.

6 Performance Evaluation

In this section we evaluate the performance of the different proposed cache manage-
ment techniques. We start in Subsection 6.1 with a description of the data generation
models we used to generate the input data. In Subsection 6.2, we provide the details
of our evaluation methodology. Next, in Subsection 6.3, we introduce the performance
metrics we use in our evaluation. Finally, we present the results of our experiments in
Subsections 6.4, and 6.5.

6.1 Data Generation model

In this subsection, we describe the two data generation models we used in this study.

Model 1: A Gaussian Phenomenon: In the first model, the underlying space-time dis-
tribution of the phenomenon is a multivariate Gaussian. Thus, the field distribution is
fully captured by the mean vector and the joint spatio-temporal correlation (STC) ma-
trix R, L2 × T × L2 × T . To generate the field, we first generate the data to satisfy
the spatial correlation using the standard Cholesky decomposition transformation by
pre-multiplying a matrix of independent Gaussian random variables by the square root
of the desired spatial covariance [18]. Each individual temporal signal associated with
a given location is then filtered using a temporal filter to provide the correct spectral
shape. This approach results in an STC covariance structure where the off-diagonal
blocks are scalings of the diagonal blocks with a scaling factor that depends on the cor-
responding time lag. Here we note that other methods based on techniques described in
[6] could also be used for generation of fields with arbitrary joint space-time correlation.

Model 2: A Random Phenomenon: In the second model, the generated data does not
follow a Gaussian distribution. The purpose of this experiment is to study the perfor-
mance of the CBT technique proposed in Section 4, which only requires knowledge of
the second-order statistics, when the underlying field follows an arbitrary distribution.
We generated data that satisfies a desired STC by first applying a spatial transforma-
tion to a vector V of uniformly distributed random variables, and then by filtering the
resulting vector through an autoregressive (AR) digital filter to introduce the desired
temporal correlation. The coefficients of the autoregressive filter were obtained using



the standard Levinson-Durbin algorithm which takes as input the targeted correlation
for the different time lags, and outputs the filter coefficients for the specified order [9].
Since the driving noise (V ) we used in the first place is non-Gaussian, the resulting pro-
cess is also non-Gaussian, and only matches the second-order statistics requirements.

6.2 Simulation Model and Methodology

We assume that n nodes, each with a cache of size c, perform a random walk in a 2-
D field of dimensions L × L. At every time unit, each node decides whether or not
to sample its current location. This decision is made based on the utility that this new
sample provides compared to utility of the original cache content. If the new sample
does not increase the utility of the cache, it is not kept in the cache. Otherwise, one of
the old samples that provides the least utility is evicted in favor of the newly acquired
one. After allowing a warmup period of w time units, each node is required to answer
a query every time unit. The query specifies a location in the field, referred to as query
target. A query answer is an estimate of the value of the phenomenon at the query
target given each node’s locally cached field samples. Notice that each node is asked
an independent query whose target is drawn from the spatial query distribution Q. This
distribution is assumed to be a bivariate normal distribution whose mean is the center
of the field, and variance is σ2

Q × I , where I is the identity matrix of size 2 × 2. The
answer to any query is calculated using Eq. (5), where Y in Eq. (5) is the vector of
samples cached by the queried node.

In the experiment with the Gaussian phenomenon, evaluation of the posterior den-
sities by the mobile nodes only required evaluation of a mean vector and a covariance
matrix which capture the entire distribution. However, in the non-Gaussian scenario,
the computational complexity of DEBT becomes prohibitively expensive, especially for
large cache sizes. The reason is that the evaluation of the posteriors requires marginal-
ization of the space-time distribution over the range of the variables of interest for the
entire duration of the evaluation (i.e., length of the simulation in time units). Hence, in
the experiment with the Random phenomenon, we only evaluate CBT.

In order to assess the robustness of CBT to model mismatch, we also conducted an-
other experiment in which noise is added to the second-order statistics knowledge used
by the nodes for managing their caches (to reflect uncertainty in correlation knowledge).
We then evaluate the performance for different signal-to-noise ratios (SNR), where SNR
is defined as:

SNR = 10 log10
σ2

σ2
noise

(9)

where σ2 is the variance of the phenomenon, and the added noise is Gaussian with
mean µ = 0, and variance σ2

noise. We experimented with SNR’s = 2db, and 15db.
To quantify the gains achieved by the proposed techniques, we compare them to

random caching, which provides us with a lower bound on performance. With random
caching, at every time unit, each node randomly decides whether or not to sample its
current location. If a node decides to sample its current location, and its cache is full,
it randomly chooses one of its local samples to be evicted to accommodate the newly
acquired sample.



In the following evaluation, we set the default value of the parameters of our sim-
ulation and data models as follows. L = 8, c = 10, n = 5, simulation time = 100
time units, warmup time w = 50 time units, variance of the Gaussian phenomenon σ2

G

= 50, variance of the random phenomenon σ2
R = 50, and variance of the spatial query

distribution σ2
Q = 4. The default mobility model is a random walk on a 2D discrete

field, under which, each node is initially placed at random location in the field. Then at
every time unit, each node moves to one of its four neighboring locations with the same
probability (i.e., 0.25 for each location).

6.3 Performance Metrics

The main performance metric we used in our evaluation is the Mean Squared Error
(MSE): Given a specific query, a node returns an estimate of the value of the phe-
nomenon at the query location. We then measure the mean squared error associated
with this estimate. Thus, given a query q at time t whose target is `(q), the MSE in the
estimation of q is:

MSE = E[(V`(q),t − V̂`(q),t/st)
2] (10)

We calculate the MSE for each query received by each node after the warmup period,
then we report the average of 20 independent simulation runs.

We start by showing results of a single node as a function of the cache size c, and
the variance of the query distribution σ2

Q. Then we show results of cooperation between
a number of nodes. More results can be found in the extended version of this paper [15].

6.4 Single-Node Results

Effect of Cache Size: Figure 1 (left) shows the effect of cache size on the MSE of the
different considered strategies for a Gaussian and non-Gaussian phenomena. Intuitively,
as the cache size increases, the better the MSE performance of CBT and DEBT since
a larger cache size implies a better reconstruction of the phenomenon by the queried
nodes. DEBT has a lower MSE compared to CBT, however, CBT’s performance is very
competitive at a much lower computational cost.

Similar effects could also be observed for the non-Gaussian phenomenon (Figure 1
right), regarding the efficiency of CBT. CBT outperforms random caching by a factor
of two orders of magnitude. As expected, adding noise to the correlation structure of
the phenomenon (i.e., decreasing SNR), degrades the CBT performance. However, even
with SNR of as low as 2db, CBT still outperforms random caching with a significant
gain.

Query Spatial Distribution Variance: Figure 2 quantifies the effect of a larger vari-
ance, σ2

Q, for the query distribution on the MSE for both Gaussian and non-Gaussian
phenomena. Intuitively, a larger variance implies more uncertainty in the target query
locations for a fixed cache size and a fixed number of nodes, which explains the de-
crease in estimation quality for the various schemes.
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Fig. 1. Performance as a function of the cache size for a Gaussian phenomenon (left), and a non-
Gaussian phenomenon (right).

1 2 3 4 5 6
100

101

102

103
Mean Squared Error as a function of query variance

Query Variance

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 

Random
CBT
DEBT

1 2 3 4 5 6
100

101

102

103
Mean Squared Error as a function of query variance

Query Variance

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 

Random
CBT
CBT, SNR = 15db
CBT, SNR = 2db

Fig. 2. Performance as a function of the variance of the query distribution for a Gaussian phe-
nomenon (left), and a non-Gaussian phenomenon (right).

In case of a Gaussian phenomenon (Figure 2 left) both DEBT and CBT have MSE
that is an order of magnitude lower than that of random caching. While in case of a
non-Gaussian phenomenon (Figure 2 right), CBT achieves a huge improvement over
random caching, with respect to the MSE. Adding noise to the correlation information
decreases the performance of CBT, but is still much better than random caching.

6.5 Multi-Node Results

In the following experiments, we gauge the performance improvement due to coop-
eration between multiple nodes, as we explained it in Section 5 for a non-Gaussian
phenomenon. Intuitively, we expect cooperation between nodes to improve the perfor-
mance of all techniques, where the degree of improvement depends on the density of
the nodes. We study this effect by varying the cache size and the number of nodes in
the field. We also plot the cooperation gain, which is defined as the ratio between MSE
from experiments with one node to MSE of the same node when there are n cooperating
nodes in the network. In [15], we show results of varying the variance of the distribution
of query targets. In the following experiments, n = 5, and communication range = 8.
Effect of Cache Size: Figure 3 shows the effect of cache size on the MSE of the differ-
ent considered strategies for a non-Gaussian phenomenon. The improvement of MSE
due to cooperation is evident. It is clear that, after increasing the cache size to a certain
point, cooperation causes the gap between random and CBT to shrink. The reason is
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(right), cooperation gain (ratio of MSE with a single node and with n nodes).
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Fig. 4. Performance of multiple cooperative nodes as a function of the number of nodes n.

that, at this point, there is enough storage capacity in the system, such that the perfor-
mance of a smart algorithm and that of a naive algorithm seem to be close. However,
the improvement of performance comes at a cost of added communication overhead.
This is an important factor in system design. It implies that, in dense systems where
nodes are not power-limited, a smart caching algorithm is not the only option to con-
sider. However, in sparse systems, or in systems where nodes are power-constrained,
applying a smart caching algorithm makes a noticeable difference in performance.
Effect of Number of Nodes: Figure 4 shows the effect of varying the number of nodes,
n, on the MSE of CBT and random caching for a non-Gaussian phenomenon. Increas-
ing the number of nodes increases the amount of cooperation between nodes, and the
storage capacity of the entire system. This improves the estimation by all nodes. Ran-
dom caching has noticeable improvement as we increase the number of nodes. This
trend matches the expectation that when storage is abundant, the caching algorithms
make a minor difference. However, for all the parameter ranges we experimented with,
CBT, even with noisy versions, performs better than random caching.

7 Related Work

The main goal of data placement in sensor networks is to minimize the access cost [16,
20], where cost is quantified in terms of communication energy.

In order to save energy in the context of caching, Kotidis [10] tries to optimize
energy consumption by trying to put some sensor nodes to sleep mode, without affecting



the query ability of the network. This is done by building a correlation model for the
samples of sleeping nodes in neighboring active nodes. However, the built model is
only local and can not be used to answer general queries about the entire network.
It also involves packet exchange and fitting neighbors’ data to a linear model. In this
paper, given knowledge of the spatio-temporal correlation model, we use it to locally
(with no packet exchange) answer queries about the entire network.

In all of the above efforts, the entire network is assumed to be static, while our work
considers mobility, which is a harder problem.

Spatio-temporal queries have been studied in static networks with both static [4]
and mobile [12] sinks. Our model is different in that, queries are handled only locally.
Moreover, the temporal dimension to the problem is manifested in the correlation struc-
ture of the phenomenon.

Caching and replication have been considered in ad hoc networks [24, 11, 19]. Nodes
are assumed to be interested in a fixed set of objects such that each object has a well-
defined source. In our case, queries may target field locations that may not have been
sampled by any node.

Leveraging mobile sensor networks to perform field monitoring has been studied
[2, 3, 25]. While these efforts assume control over the mobility pattern and optimize it
in order to maximize the utility of the system, our work maximizes the utility of the
cache given the uncontrolled mobility model of the hosts.

Finally, we utilized information theory to assign a measure of merit to any set of
samples. Information theory has been used in similar problems [14].

8 Conclusion

In this paper we focused on the problem of field monitoring using autonomously mobile
sensor nodes. Nodes make local decisions about whether or not to sample their current
location and how to manage their limited storage. We proposed a distributed entropic
based technique (DEBT) to solve this problem. DEBT assumes knowledge of the entire
distribution of the target phenomenon, and leverages this knowledge to make decisions
about the cache management. DEBT has two major limitations: 1) high computational
complexity, and 2) knowledge of the entire distribution of the target phenomenon is
not always feasible. We then proposed CBT, a more practical approach, which assumes
knowledge of only second-order statistics of the target phenomenon. CBT has a much
lower computational complexity, and very competitive performance. We evaluated both
techniques and showed that the resulting gains in MSE are substantial for both Gaussian
and random phenomena. Furthermore, CBT still delivers very good estimation of the
field, even when its knowledge about the correlation structure is not perfect.

We intend to extend the model we presented here to incorporate node cooperation on
the caching (e.g., decision making) plan, such that nodes can benefit from the knowl-
edge attained by their neighbors in sample management. We also intend to study the
effect of different mobility models on the performance of different cache management
techniques.
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