
Abstract

Title of Dissertation: Fast Evaluation and Dynamic Control of

Integrated Services Networks

Ibrahim Matta, Doctor of Philosophy, 1995

Dissertation directed by: Associate Professor Udaya Shankar

Department of Computer Science

Integrated services networks, such as ATM (Asynchronous Transfer Mode) networks, are ex-

pected to operate at gigabit per second rates and provide various virtual-circuit and datagram

services. For this purpose, new control algorithms (e.g. scheduling, admission, routing) have been

proposed. The algorithms are often adaptive, resulting in complex time-dependent interactions.

This renders traditional evaluation tools ine�ective; analytical approaches are typically too coarse,

and simulation approaches are often too expensive. The goal of our research is to develop accurate

analytical models that account for the interaction and time-dependent nature of the control algo-

rithms, while at the same time being inexpensive or easy to solve. This would allow the rapid and

tractable evaluation of di�erent design alternatives.

In this dissertation, we develop both dynamic models and quasi-static models of integrated

networks. Dynamic models can be used to evaluate both virtual-circuit and datagram services. We

solve dynamic models using a new iterative method, referred to as the Z-iteration. Our method is

both accurate and fast. It permits the joint evaluation of various scheduling, admission, and routing

schemes used in integrated networks. We show results comparing dynamic routing schemes on a

network with NSFNET-backbone topology. We also illustrate the applicability of the Z-iteration

to other high-performance systems.

Quasi-static models are suitable for evaluating datagram services for which the quasi-static

assumption is reasonable. We analyze a quasi-static model of a datagram network o�ering di�erent

classes of service. We apply the Liapunov function method to derive stability conditions for the

routes of the di�erent tra�c classes. We show how with scheduling support for routing, the routes

of the tra�c classes can be isolated, thereby improving the overall network performance.

Fast Evaluation and Dynamic Control of

Integrated Services Networks

by

Ibrahim Matta

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial ful�llment

of the requirements for the degree of
Doctor of Philosophy

1995

Advisory Committee:

Associate Professor Udaya Shankar, Chairman/Advisor
Professor Ashok Agrawala
Assistant Professor Richard Gerber
Professor Armand Makowski
Professor Satish Tripathi

c Copyright by

Ibrahim Matta

1995

Dedication

To my parents, and my wife

ii

Acknowledgements

I would like to express my sincere appreciation to my advisor, Dr. Udaya Shankar, for his experi-

enced guidance, endless encouragement, and tireless enthusiasm throughout the course of my study

and research at the University of Maryland. I feel lucky to have had such a great mentor. He always

believed in my abilities, which made me think much harder and challenge myself much more. I am

very grateful to him for teaching me many skills to be a successful and productive researcher, and

especially for having the patience to teach me how to give a good talk and write a good paper.

I wish to express my deep gratitude to Dr. Ashok Agrawala for serving on my proposal and

dissertation committees, for helping me in many ways, and for his �nancial support during my

studies. I thank Dr. Rich Gerber, who was on my proposal and dissertation committees, for his

insightful feedback and support. I also thank the other members of my dissertation committee,

Dr. Satish Tripathi and Dr. Armand Makowski, for their interest in this dissertation and for their

feedback. Thanks are also due to Dr. Jim Anderson for serving on my proposal committee, and

Dr. Nagi Wakim for the wonderful teaching experience I had in the Computer Science department

at Bowie State University.

I especially acknowledge the help and support accorded to me by the sta� of my department

and by many friends and colleagues. Special thanks are due to Cengiz Alaettino�glu, Jean Bolot,

Klaudia Dussa-Zieger, Debanjan Saha, Pravin Bhagwat, Ibrahim Kamel, Sedat Akyurek, Sarit

Mukherjee, Partho Mishra, Daniel Moss�e, �Olafur Gudmundsson, Dheeraj Sanghi, Sanjeev Setia,

and James da Silva, and also to Dr. Nancy Lindley and Janet Doherty, who have helped me in

numerous administrative a�airs.

I would like to thank all my professors at Alexandria University in the department of Computer

Science for their teaching and support during my undergraduate and the initial years of my graduate

studies.

Finally, I must acknowledge the endless support of my family. I especially thank my wonderful

wife Dalia, my parents, and my brother, for their love and encouragement. Their sacri�ce and

patience made this dissertation possible.

iii

Table of Contents

Section Page

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Contributions : 2

1.2 Organization of the Dissertation : 3

1.3 Publications : 4

2 Z-Iteration: An Evaluation Method for Dynamic Models 5

2.1 Introduction : 5

2.2 The Method : 7

2.3 Error and Convergence : 11

2.4 Related Work : 13

3 Simple Applications of the Z-Iteration 15

3.1 Integrated Network Example : 15

3.2 Parallel Database Server Example : 17

3.3 Distributed Batch System Example : 18

4 Validation of the Z-Iteration 20

4.1 Validation of Systems with Self-Service Resources : 20

4.2 Validation of Systems with Single-Server Resources : : : : : : : : : : : : : : : : : : : 23

5 Application of the Z-Iteration to Detailed Network Models 30

5.1 Network Model : 30

5.2 Scheduling and Admission : 33

5.3 Routing : 35

5.4 Numerical Results for NSFNET : 37

iv

6 Quasi-Static Evaluation of a Type-of-Service Datagram Network 40

6.1 Introduction : 40

6.2 Discrete-Event Simulations : 42

6.2.1 Model : 42

6.2.2 Observations : 44

6.3 Quasi-Static Model : 46

7 Analysis of Quasi-Static Model 49

7.1 Stability Analysis : 49

7.1.1 E�ect of �k on system behavior : 53

7.1.2 Su�cient conditions independent of the starting state : : : : : : : : : : : : : 55

7.2 Comments and Extensions : 56

8 Conclusions and Future Research Directions 61

A Simulation Details for Type-of-Service Datagram Network 64

B Computation of E�ective Capacities for Quasi-Static Model 70

C Proofs for Quasi-Static Model 71

v

List of Tables

Number Page

4.1 Parameters of 10 classes using r1 with r1.max = 200. : : : : : : : : : : : : : : : : : : 21

4.2 Parameters of 20 classes using 3 resources r1, r2, and r3 with r1.max = 150, r2.max

= 200, and r3.max = 250. : 25

4.3 Parameters of 4 classes using 3 resources r1, r2, and r3 with r1.max = 50, r2.max

= 100, and r3.max = 150. : 25

4.4 Parameters of 4 classes using 3 resources with r:max = 5 each. : : : : : : : : : : : : 27

5.1 Parameters of the 52 services using the NSFNET backbone. : : : : : : : : : : : : : : 38

vi

List of Figures

Number Page

2.1 Evaluation method. : 8

2.2 Accuracy of the approximation for the M=M=2=2 system. : : : : : : : : : : : : : : : 12

2.3 Convergence of the iteration for the M=M=2=2 system starting from Bss = 0:9 for

Nss = 1. : 13

3.1 A 3-link integrated network. : 15

3.2 A 3-disk parallel database server. : 17

4.1 Total number of in-service customers versus time. MCSR self-service system. : : : : 22

4.2 Fraction of resource units allocated versus time. MCSR self-service system. : : : : : 23

4.3 Total throughput versus time. MCSR self-service system. : : : : : : : : : : : : : : : 24

4.4 Multi-link network. : 24

4.5 Total throughput versus time. MCMR system with self-service resources. : : : : : : 26

4.6 Total throughput versus time. MCMR system with self-service resources. Time-

varying arrivals. : 26

4.7 Blocking probability versus time. MCMR system with self-service resources. Time-

varying arrivals. : 27

4.8 Total throughput versus time. MCMR system with single-server resources. : : : : : : 28

4.9 Total throughput versus time. MCMR system with single-server resources. Time-

varying arrivals. : 28

4.10 Blocking probability versus time. MCMR system with single-server resources. Time-

varying arrivals. : 29

5.1 A network example. : 32

5.2 NSFNET backbone: 14 nodes, 21 bidirectional links, average degree 3. : : : : : : : : 37

5.3 Total throughput versus time for the NSFNET backbone. : : : : : : : : : : : : : : : 38

5.4 Blocking probability versus time for the NSFNET backbone. : : : : : : : : : : : : : 39

6.1 The \East coast" subset of the NSFNET-T1-Backbone (7 nodes, 9 bidirectional links). 43

vii

6.2 A generic plot. Delay versus U(T) for a �xed U(D). : : : : : : : : : : : : : : : : : : 45

7.1 Domain of attraction for TOS1. : 50

7.2 Domain of attraction for TOS2. : 53

7.3 Numerical example: Domain of attraction for TOS1. : : : : : : : : : : : : : : : : : : 55

7.4 Numerical example: Domain of attraction for TOS2. : : : : : : : : : : : : : : : : : : 56

7.5 Load region for isolation for low enough �k for both TOS1 and TOS2. : : : : : : : : 57

7.6 Numerical example: Load region for isolation at low to moderate �k for both TOS1

and TOS2. : 58

7.7 Numerical example: Average delays versus time k for TOS1 (�k � [0.4, 0.6]). : : : : 59

7.8 Numerical example: Average delays versus time k for TOS2 (�k � [0.4, 0.6]). : : : : 59

7.9 Load regions satisfying su�cient conditions for isolation independent of starting state. 60

A.1 Low-speed. Equal packet sizes. Delay(D) and delay vs U(T) for U(D) = 8. : : : : : 67

A.2 Low-speed. Equal packet sizes. Data load and throughput vs U(T) for U(D) = 8. : 67

A.3 High-speed. Equal packet sizes. Delay(D) and delay vs U(T) for U(D) = 4. : : : : : 68

A.4 High-speed. Equal packet sizes. Data load and throughput vs U(T) for U(D) = 4. : 68

A.5 Low-speed. Unequal packet sizes. Delay(D) and delay vs U(T) for U(D) = 16. : : : 68

A.6 Low-speed. Unequal packet sizes. Data load vs U(T) for U(D) = 16. : : : : : : : : : 69

viii

Chapter 1

Introduction

Integrated services packet-switched networks, such as ATM (Asynchronous Transfer Mode) net-

works [91], are expected to support a wide variety of applications (e.g., multimedia, voice, mail)

with heterogeneous quality-of-service (QoS) requirements. To meet these requirements, new algo-

rithms have been proposed for controlling routing, admission, and scheduling. Routing provides a

selection of routes, based on cost functions associated with the transmission links. Routing can be

on a virtual-circuit basis (needed for guaranteed service) or on a datagram basis (suited for best-

e�ort service). Admission de�nes the criteria used to accept or reject a new incoming application,

based on the service requested and the resources available. Scheduling de�nes how link resources

(bandwidth, bu�ers, etc.) are allocated among the di�erent services.

The overall end-to-end performance of the network hinges on the algorithms used in the routing,

admission, and scheduling components. The algorithms are often adaptive, with parameters being

varied dynamically according to service class and current or delayed system state information.

Arrival and service statistics are often time-dependent. As a result, there is signi�cant interaction

among the three components.

The accurate and fast evaluation of such time-dependent systems is critical to their cost-e�ective

design. Existing evaluation methods for these systems are inadequate. Analytical methods are

typically too coarse. They usually assume steady-state conditions and do not account for adaptive

policies and the e�ect of delayed feedback. Incorporating adaptive time-dependent behavior makes

them analytically intractable and computationally expensive to solve numerically due to the large

state space. Simulation approaches are often too expensive. They can handle realistic detail and

dynamic situations, but they are invariably computationally prohibitive, especially for evaluating

high-speed networks where the number of scheduled events (packets, connections, etc.) is usually

enormous.

The goal of our research is to develop accurate analytical models that exhibit the essential

features of integrated networks, while at the same time being inexpensive or easy to solve.

1

1.1 Contributions

Time-Dependent Evaluation

In this dissertation, we present a numerical-analytical method, referred to as the Z-iteration, to

evaluate integrated networks rapidly and accurately, taking into account the interaction and time-

dependent nature of the control algorithms. The method is applicable to a general time-dependent

multiple-class multiple-resource (MCMR) system, where each class of customers requires a partic-

ular set of resources. Customers can be packets, connections, etc., and resources can be bu�ers,

transmission capacity, etc. Because the class of a customer can be assigned when the customer ar-

rives, it is straightforward to model state-dependent control policies such as assigning connections

to routes with the least load. The numerical foundation of the Z-iteration provides a modeling

power close to that of simulation at a fraction of the computation expense, typically less expensive

by many orders.

The Z-iteration solves for instantaneous performance measures. It approximates the MCMR

system as a collection of multiple-class single-resource (MCSR) systems. It computes Br
c (t), the

instantaneous blocking probability of class c at resource r, together with N r
c (t), the instantaneous

average number of class-c customers waiting or in service at r, and U r
c (t), the instantaneous average

number of class-c customers in service at r.

The Z-iteration depends upon the availability of two steady-state results about each MCSR

system r assuming that the arrival and service rates �rc(t) and �
r
c(t) are constants: (1) an expression

for the steady-state Br
c in terms of the steady-state �rc=�

r
c ; and (2) an expression for the steady-state

U r
c in terms of the steady-state N r

c , from which we readily obtain an expression for the �rc=�
r
c in

terms of the N r
c and Br

c . These two steady-state results are available in the literature for a variety

of MCSR systems.

The method obtains an approximation to the relationship between the Br
c (t) and the N r

c (t)

by replacing in the above expressions Br
c by Br

c(t), N
r
c by N r

c (t), and �rc=�
r
c by an instantaneous

quantity zrc (t) that we introduce. This yields for every r two \instantaneous" expressions, one for

the Br
c(t) in terms of the zrc (t), and one for the zrc (t) in terms of the N r

c (t) and Br
c (t). Given the

N r
c (t), we iterate over these two expressions until the B

r
c(t) and z

r
c (t) converge. To obtain the time

evolution of these measures, we iterate over a third expression de�ning the N r
c (t+�) in terms of the

N r
c (t), �

r
c(t), �

r
c(t), and B

r
c (t), where � is the time step for computing the instantaneous measures.

We use the Z-iteration to study the performance of an integrated network with NSFNET back-

bone topology, weighted fair-queueing link scheduling [89], admission control based on \e�ective

bandwidth" [44], and various virtual-circuit routing schemes that adapt to delayed state information

expressed in terms of link utilizations.

2

Quasi-Static Evaluation

The Z-iteration can be used to solve dynamic models that capture the general time-varying behav-

ior of integrated networks o�ering both virtual-circuit and datagram services. More tractable but

somewhat restrictive models, referred to as quasi-static models, are sometimes appropriate to eval-

uate datagram (best-e�ort) services. These models assume that steady-state is reached between

two successive routing updates. This is justi�able because packet transmission times are small

compared to the routing update interval, assuming static loading and network topology during

each update interval. The link costs are iteratively computed from steady-state queueing results,

and routes (and hence the system state) are updated accordingly. Because quasi-static models

capture less detail, they generally allow faster and more tractable evaluation over dynamic models.

However quasi-static models do not seem appropriate to evaluate virtual-circuit services because

the lifetimes of connections are typically larger than the routing update interval.

In the last part of the dissertation, we formulate a quasi-static datagram model to evaluate a

new approach to providing di�erent type-of-service (TOS) classes of best-e�ort service. Instead of

the traditional �rst-in-�rst-out (FIFO) link scheduling, our approach uses a class-based round-robin

discipline and exploits this structure when calculating link costs.

Our quasi-static assumption makes the model analytically tractable while capturing the impor-

tant dynamics and interactions between routing and scheduling. We apply the control-theoretic

Liapunov function method to obtain the set of system states that lead to the optimal state, and

demonstrate that this set is larger with our approach than with the traditional FIFO-based ap-

proach.

1.2 Organization of the Dissertation

Chapter 2 presents the Z-iteration method for a general dynamic MCMR model. In Chapter 3,

we apply the Z-iteration to three speci�c systems with time-varying inputs and dynamic control,

namely, an integrated network, a parallel database server, and a distributed batch system. Valida-

tions against discrete-event simulations are given in Chapter 4. Chapter 5 applies the Z-iteration

to a detailed network model, and investigates three routing schemes on the NSFNET backbone

topology. Chapter 6 describes approaches to providing classes of best-e�ort service in a datagram

TOS network, and presents a quasi-static model. Analysis of this quasi-static model to compare

the various approaches is given in Chapter 7. Chapter 8 concludes and identi�es future research

directions.

3

1.3 Publications

Most of the work presented in Chapters 2, 3 and 4 appears in [77]. The work presented in Chapter 5

appears in [74]. The work presented in Chapters 6 and 7 appears in [75, 76].

4

Chapter 2

Z-Iteration: An Evaluation Method for Dynamic

Models

2.1 Introduction

We consider a general multiple-class multiple-resource (MCMR) system. We have a set R of

resources and a set C of customer classes. The nature of a resource depends on the system being

modeled; for example, it may be computer memory, oor space, transmission capacity, etc. Each

resource r has an attribute, denoted by r.max, which is a constant that indicates the maximum

number of units in terms of which r is quanti�ed.

Each class in C represents a class of customers that requires a particular set of resources.

Depending on the system being modeled, customers can be user programs, manufactured products,

network connections (calls), etc. Speci�cally, each class-c customer requires some subset Rc of

resources, Rc � R. Furthermore, the class-c customer requires some number of units, denoted by

c.r.req, of each resource r 2 Rc (e.g. bandwidth, storage space, etc.). For example, a network

connection would require some transmission and bu�er capacity on each of the links of the path

connecting its source to its destination.

Let �c(t) denote the instantaneous arrival rate of class-c requests, and 1=�rc(t) denote the

instantaneous service (or processing) time of a class-c request at r. Thus we are interested not

only in the steady-state behavior of the MCMR system, but also in its transient or non-stationary

behavior. Transient conditions arise when the statistics of the customer arrival processes or the

service rates of the resources vary with time, due to externally time-varying factors or dynamic

control decisions based on current or delayed system state information.

An arriving class-c customer is blocked at a resource r 2 Rc i� c.r.req exceeds the amount of the

resource that is currently available (additional constraints can be incorporated too). An arriving

class-c customer is blocked i� it is blocked at any r 2 Rc. A blocked customer is lost or retried later.

Among the main performance measures of interest are the instantaneous blocking probabilities (or

equivalently the throughputs) of the di�erent classes, instantaneous average number of customers

5

at resources, etc.

The generality of our model allows us to consider a variety of systems, including those with

delayed feedback between changes in system state information and changes in control decisions.

Examples of such systems include database locking systems, inventory systems, distributed batch

systems, manufacturing systems, and communication networks. Because the class of a customer

can be assigned when the customer arrives, it is straightforward to model state-dependent control

policies such as assigning jobs to processors with the least workload.

MCMR systems have often been analyzed under steady-state conditions (e.g. [53, 57, 70, 29,

92, 21, 80, 43]). In this chapter, we formulate a dynamic ow model [35] to account for transient

conditions as well. We solve our model by an iteration that di�ers from iterations commonly used

in steady-state analysis, which only solve for steady-state measures and ignore the e�ect of delayed

feedback.

Our solution method

The generality and time-dependency of our model seem to preclude analytical closed-form solutions.

Our solution method, referred to as Z-iteration is, however, numerical. This has signi�cant compu-

tational advantages over the (straightforward) discrete-event simulation approach, which requires

the averaging of a large number of independent simulation runs to obtain meaningful performance

estimates.

The instantaneous blocking probability of a class c, denoted by Bc(t), is de�ned as the instan-

taneous probability that a class-c request is blocked at any of the required Rc resources. For this,

we decompose our MCMR system into a set of multiple-class single-resource (MCSR) systems by

invoking the resource independence assumption. Denoting by Br
c(t) the instantaneous blocking

probability of class c at resource r, we have Bc(t) = 1�Qr2Rc
(1� Br

c(t)).

The Z-iteration computes Br
c (t) together with N

r
c (t), the instantaneous average number of class-

c requests waiting or in service at resource r, and U r
c (t), the instantaneous average number of class-c

requests in service at resource r.

Let the index c0 range over the set of classes requiring resource r. The Z-iteration depends upon

the availability of two steady-state results about each MCSR system r 2 R assuming that the �c0(t)

and �rc0(t) are constants: (1) an expression for the steady-state blocking probability Br
c in terms of

the steady-state actual o�ered loads �c0=�
r
c0 ; and (2) an expression for the steady-state utilization

U r
c in terms of the steady-state average numbers of customers N r

c0 , from which we readily obtain

an expression for �c=�
r
c in terms of the N r

c0 and B
r
c .

These two steady-state results are available for a variety of MCSR systems, including self-service

systems where the customer is also the server, and single- or multiple-server queueing systems

[63, 35]. We point out that the expressions do not have to be closed form and can be implicit.

We make use of the concept of instantaneous �ctitious o�ered load, originally introduced in [37],

6

to obtain instantaneous versions of the above expressions. Speci�cally, we replace Br
c by B

r
c (t), the

N r
c0 by N

r
c0(t), and the �c0=�

r
c0 by instantaneous �ctitious o�ered loads zrc0(t). (Note that �c=�

r
c is

not replaced by �c(t)=�
r
c(t).)

This yields for every r 2 R two \instantaneous" expressions, one for Br
c (t) in terms of the zrc0(t),

and one for zrc (t) in terms of the N r
c0(t) and Br

c (t). A third instantaneous expression is obtained

from standard ow balance, de�ning N r
c (t + �) in terms of the N r

c0(t), �c(t), �
r
c(t), and Br0

c (t) for

r0 2 Rc, where � is the time step for computing the instantaneous measures. With these three

instantaneous expressions we compute the Br
c0(t), z

r
c0(t), and N

r
c0(t+�) in terms of the N r

c0(t), �c0(t)

and �rc0(t) for t = 0; �; 2�; � � �. Speci�cally, given the N r
c0(t), we iterate over the �rst two expressions

until the Br
c0(t) and z

r
c0(t) converge. Then we use the third expression to compute the N r

c0(t + �).

Section 2.2 presents the Z-iteration method for the general MCMR model. Section 2.3 discusses

its convergence. Section 2.4 discusses related work.

2.2 The Method

Figure 2.1 outlines our solution method to the general MCMR model introduced in Section 2.1.

Recall that the following measures have been introduced:

� Br
c(t), instantaneous blocking probability of class c at resource r 2 Rc.

� N r
c (t), instantaneous average number of class-c requests waiting or in service at resource r.

� U r
c (t), instantaneous utilization of resource r by class-c requests (average number of class-c

requests in service at resource r).

� zrc (t), instantaneous �ctitious o�ered load of class-c requests at resource r.

Let Cr denote the set of classes requesting units of resource r. In the outermost iteration, we

obtain fN r
c (t+ �); Br

c (t) : r 2 R; c 2 Crg for t = 0; �; 2�; � � �. The computation for each time t

consists of two parts. The �rst part (steps 3-9) computes, for every r 2 R, fBr
c(t): c 2 Crg in terms

of fN r
c (t): c 2 Crg. The second part (step 10) computes, for every r 2 R and c 2 Cr, N r

c (t+ �) in

terms of fN r
c0(t): c

0 2 Crg, �c(t), �rc(t), and fBr0
c (t): r

0 2 Rcg. The �rst part involves an iterative

procedure (steps 5-9) on instantaneous versions of two steady-state formulas (steps 7 and 8). We

describe these in detail below. The idea here is that the instantaneous relationship between fBr
c(t):

c 2 Crg and fN r
c (t): c 2 Crg is very well approximated by their relationship at steady-state.

We de�ne a feasible state of resource r by the number of requests from each class c 2 Cr that
r can simultaneously support, i.e. for which the total number of units requested does not exceed

r.max. Let F r denote the set of all feasible states of r.

7

1. Initialize fN r
c (0) : r 2 R; c 2 Crg /* 0 for initially empty system */

2. For t = 0; �; 2�; � � �
begin

3. For every r 2 R /* Obtain fBr
c (t) : c 2 Crg in terms of fN r

c (t) : c 2 Crg */

begin

4. Initialize fẑrc (t) : r 2 R; c 2 Crg /* arbitrary value if t = 0 */

/* ẑrc (t � �) if t > 0 */

5. repeat

6. zrc (t) ẑrc (t), for every c 2 Cr
7. Obtain fBr

c (t) : c 2 Crg in terms of fzrc (t) : c 2 Crg
using an instantaneous version of a steady-state formula (see (2.2))

8. Obtain fẑrc (t) : c 2 Crg in terms of fBr
c (t); N

r
c (t) : c 2 Crg

using an instantaneous version of a steady-state formula (see (2.4))

9. until j ẑrc (t)� zrc (t) j< �, for every c 2 Cr
end

10. For every r 2 R and c 2 Cr,
obtain N r

c (t + �) in terms of fN r
c0(t) : c

0 2 Crg, �c(t), �rc(t), and fBr0
c (t) : r

0 2 Rcg
using a di�erence equation relating arrivals and departures (see (2.5))

end

Figure 2.1: Evaluation method.

Details of step 7

The �rst steady-state formula expresses the steady-state blocking probability Br
c of class c at

resource r in terms of the steady-state actual o�ered loads f�c0=�rc0 : c0 2 Crg. That is, assuming

the �c0(t) and �rc0(t) are constants for all t, the steady-state transition rate between two states

belonging to F r is given by some function of �c0 and �
r
c0 . A class-c request is blocked in a state of

F r if its admittance would lead to a state outside F r. Refer to such states of F r as class-c blocking

states. We solve analytically for the probability of being in a class-c blocking state, yielding a

formula Src in terms of the
�c0
�r
c0
:

Br
c = Src (f

�c0

�rc0
: c0 2 Crg) for c 2 Cr (2.1)

8

To illustrate, consider anM=G=m=m resource used by one class of customers arriving according

to a Poisson process of rate �c. Let each admitted customer be served by one of the m servers for an

average duration of 1=�rc . Then Src is the Erlang-B formula, i.e. Src = E(�c�rc
; m) =

(�c
�rc

)m=m!Pm

j=0
(�c
�rc

)j=j!
[63]:

The instantaneous version of (2.1) is obtained by replacing Br
c by Br

c (t) and
�c0
�r
c0

by zrc0(t),

yielding

Br
c(t) = Src (fzrc0(t) : c0 2 Crg) for c 2 Cr (2.2)

Details of step 8

The second steady-state formula, which we refer to as T rc , expresses U r
c , the steady-state utilization

of resource r by class-c customers, in terms of fN r
c0 : c

0 2 Crg, the steady-state average numbers of
customers at resource r:

U r
c = T r

c (fN r
c0 : c

0 2 Crg)

From this and �rc U
r
c = �c [1� Br

c], obtained by equating the departure rate to the admission

rate, we have

�c
�rc

=
T rc (fN r

c0 : c
0 2 Crg)

[1�Br
c]

for c 2 Cr (2.3)

T rc is a function that reects the load and service discipline of r. The exact form of T rc is

application dependent. One approximation to obtain T r
c is to assume no blocking and then use

steady-state queueing formulas expressing N r
c in terms of the �c0

�r
c0
. Inverting these formulas, we

obtain �c
�rc

in terms of the N r
c0 . Since we are assuming no blocking, from equation (2.3), we have

T rc = �c
�rc
. Thus, we get T rc in terms of the N r

c0 . For example, consider a self-service facility where

the customer is also the server, as in an M=G=m=m queueing system. Assuming no blocking, we

know that for the M=G=1 system N r
c =

�c
�rc

[63]. From this and T r
c = �c

�rc
, which holds assuming no

blocking, we have T rc = N r
c . Note that the approximation (due to the assumption of no blocking)

is correct here for the self-service system where there is no waiting and by de�nition we directly

have T rc = N r
c . (See Sections 2.3 and 3.2.)

The instantaneous version of (2.3) yields

zrc (t) =
T rc (fN r

c0(t) : c
0 2 Crg)

[1� Br
c (t)]

for c 2 Cr (2.4)

Knowing fN r
c (t): c 2 Crg at some �xed t, we can solve equations (2.2) and (2.4) iteratively

for fBr
c(t): c 2 Crg. In particular, starting from an initial estimate fẑrc (t): c 2 Crg, we compute

fBr
c(t): c 2 Crg from equations (2.2). Then, we use equations (2.4) to compute new values for

fzrc (t): c 2 Crg. We repeat this process until the values of fzrc (t): c 2 Crg stabilize as illustrated in

steps 5-9 of Figure 2.1.

9

Details of step 10

At a �xed time t, once we obtain fBr
c(t) : r 2 R; c 2 Crg, we obtain fN r

c (t + �) : r 2 R; c 2 Crg,
where � is the discrete-time step, using the following di�erence equation:

N r
c (t + �) = N r

c (t)� �rc(t) U r
c (t) � + �c(t) �

Y
r0 2Rc

[1� Br0

c (t)] (2.5)

The second term in the right-hand side of equation (2.5) represents the average number of

class-c requests which �nish using (and depart from) resource r during [t; t + �); the quantity

U r
c (t) is computed from T rc (fN r

c0(t) : c0 2 Crg). The third term represents the average number of

new class-c requests that are admitted to resource r during [t; t + �). Note that the product termQ
reects the assumption made in Section 2.1 that a new class-c request is admitted i� it is not

blocked at any of the required Rc resources (this invokes the resource independence assumption).

Comments

Assuming that K iterations are needed for convergence of the iterative procedure in steps 5-9 of

Figure 2.1, the computational complexity for each time step is O(jRj jCrj ((jBr
c j+ jzrc j)K + jN r

c j)),
where jBr

c j is the cost of evaluating Br
c (:) via (2.2), jzrc j that of evaluating zrc (:) via (2.4), and jN r

c j
that of evaluating N r

c (:) via (2.5). The Z-iteration requires storage of O(V jRj jCrj), where V is the

number of instantaneous measures. From Figure 2.1, we have V = 5 since we have 5 instantaneous

measures de�ned, namely, Br
c (:), z

r
c (:), N

r
c (:), �c(:) and �

r
c(:).

We note that it might be required to make assumptions about the arrival or service distributions

in order to obtain the Src (:) and T rc (:) formulas.
Above we de�ned the feasible state of resource r by a multi-dimension vector representing the

number of requests from each class c 2 Cr that r can simultaneously support. In fact, we can de�ne

a feasible state di�erently as long as in this state, the total number of units requested does not

exceed r.max. For example, we can de�ne it by a single number representing the total number of

units of r currently used by customers. Also, other criteria can used to further limit admission of

requests.

The Z-iteration can also be used to directly solve for steady-state, if the �c(t) and �rc(t) are

constants and a solution exists. We simply set Nr
c (t+�)�N

r
c (t)

� = 0 in equations (2.5) and use them in

conjunction with equations (2.2) and (2.4) to iteratively solve for steady-state. There is no simple

way to determine whether there exists a solution to such a nonlinear system. Even though the

physical nature of the system usually suggests that a solution exists, the iteration may oscillate

between di�erent solutions, which can alert one to the instability of the system [21]. Obviously, such

oscillations can also occur under transient conditions arising, for example, from dynamic control.

Observe that it is easy to realize parallel implementations of our method by mapping the

computations for di�erent resources onto di�erent processors, and we would expect almost linear

speedup.

10

2.3 Error and Convergence

The accuracy of our method depends on the approximation of the relationship between the Br
c (t)

and the N r
c (t) by its steady-state counterpart, which is the �xed point of the iteration in steps 5-9 of

Figure 2.1. Our experience indicates that our method yields accurate performance measures when

compared to discrete-event simulation and that the iteration converges quickly (see Chapter 4).

Analyzing the errors and convergence of this iteration is hard in general. However, it can

be shown in simple situations that the approximation is accurate when compared to the exact

instantaneous solution, and that the iteration is a contractive mapping of [0; 1) into [0; 1) and

hence it converges to a unique �xed point [61]. We show this for theM=M=2=2 system with constant

arrival and service rates.

Accuracy of the approximation for the M=M=2=2 system

From [98], we have the following exact instantaneous solution. Consider the M=M=2=2 system

initially empty with customer arrival rate �(t) = � and service rate �(t) = � for all t. The Laplace

transform Pn(s) of the state probability Pn(t), where n denotes the number of customers in the

system (n = 0; 1; 2), is given by

Pn(s) =
Z 1

0
e�stPn(t)dt

=
2X

i=n

(�1)i�n

i

n

!
�i(s)

where

�i(s) =

1
(s+i�)

P2
j=i

2

j

!
(s+i�) ��� (s+j�)

�j+1�i

P2
j=0

2

j

!
s(s+�) ��� (s+j�)

�j+1

From the above result, we can directly obtain the exact instantaneous expressions for the block-

ing probability P2(t), henceforth denoted by Bexact(t), and for the average number of customers in

the system, henceforth denoted by Nexact(t). In particular, we use Mathematica [105] to obtain the

inverse Laplace transforms of the following:

Bexact(s) = P2(s) = �2(s) =
�2

�2s + 2�s(s+ �) + s(s+ �)(s+ 2�)

Nexact(s) = P1(s) + 2P2(s) = �2(s)

�
s + 2�+ 2�

�

�

The steady-state relationship between the blocking probability P2, henceforth denoted by Bss,

and the average number of customers in the system, henceforth denoted by Nss, is given by:

Bss =
�2=2

1 + �+ �2=2
; where � = �=� (2.6)

11

Nss =
�+ �2

1 + �+ �2=2
(2.7)

Inverting equation (2.7), we get

� =
Nss � 1 +

p
1 + 2Nss �N2

ss

2�Nss
(2.8)

Substituting (2.8) in (2.6), we get Bss in terms of Nss.

To illustrate the accuracy of approximating the relationship between Bexact(t) and Nexact(t)

by the relationship between Bss and Nss, we plot in Figure 2.2 Bexact(t) and Bss jNss=Nexact(t) for

� = � = 1 and t 2 [0; 6]. Clearly, this shows that the approximation is quite good.

1 2 3 4 5 6
t

Exact and Approximate Blocking Probability

0.05

0.1

0.15

0.2

Figure 2.2: Accuracy of the approximation for the M=M=2=2 system.

Convergence of the iteration for the M=M=2=2 system

The iteration in steps 5-9 of Figure 2.1 implicitly de�nes the relationship between Bss and Nss.

Actually for the M=M=2=2 system we do not need to iterate since we have (2.8), and consequently

we have an explicit relationship between Bss and Nss. But for blocking systems in general, equation

(2.7), from which (2.8) was obtained, is not invertible. So instead of equation (2.8) our method uses

equation (2.3), where we obtain the steady-state utilization in terms of Nss assuming a nonblocking

system (this approximation turns out to be very good in general; see Chapter 4). Thus here we

illustrate the convergence of the iteration de�ned by:

Bss =
�2=2

1 + �+ �2=2

� =
Nss

[1�Bss]

12

These two formulas de�ne an equation of the form Bss = F (Bss). Figure 2.3 shows a graphical

example of the mapping F . It illustrates that F is a contractive mapping of [0; 1) into [0; 1) and

hence it converges to a unique �xed point [61].

0.2 0.4 0.6 0.8 1
B

Output Trajectory

0

0.2

0.4

0.6

0.8

1

F(B)

Figure 2.3: Convergence of the iteration for the M=M=2=2 system starting from Bss = 0:9 for

Nss = 1.

2.4 Related Work

MCMR systems have often been analyzed under steady-state conditions (e.g. [53, 57, 70, 29, 92,

21, 80, 43]). In this chapter, we formulated a dynamic ow model [35] to account for transient

conditions as well. We solved our model by an iteration that di�ers from iterations commonly used

in steady-state analysis, which only solve for steady-state measures and ignore the e�ect of delayed

feedback.

Our model yields the time-varying behavior of a general MCMR system. We use the well-known

decomposition technique [62, 57] to approximate the system as a collection of MCSR systems. For

each MCSR system, we describe the evolution of the instantaneous average number of customers

of each class by relating its instantaneous admission rate to its instantaneous departure rate. The

computation of these instantaneous rates uses a basic concept, that of approximating instantaneous

relationships by their steady-state counterparts.

To obtain the instantaneous admission rates, we adapt steady-state queueing formulas to yield

the instantaneous blocking probability of each class in terms of the instantaneous average numbers

of customers waiting and in service. This uses the technique of �ctitious o�ered load. The technique

was originally introduced in [37], where it was used to obtain steady-state blocking probability and

carried load for a speci�c call routing and network topology.

Reference [37] considered a network of source nodes, destination nodes, and intermediate nodes,

13

with a link from every source node to every intermediate node, and a link from every intermediate

node to every destination node. Each link can carry a �xed total number of calls. The call arrival

process from a source to a destination is Poisson with �xed rate. The call routing is not dynamic;

a �xed fraction of the call arrivals is routed through every intermediate node. In addition, overow

tra�c (due to blocking links) is routed through alternate available routes. Each call, once admitted,

has an exponential holding time of �xed mean that is the same for all calls. The blocking probability

of a link is given by the Erlang-B formula expressed in terms of �ctitious combined o�ered load.

The system is solved for steady-state average number of calls on each link by equating the call

departure rate to the call admission rate.

Our model extends this �ctitious o�ered load technique to general multi-class systems, where, for

example, each class has di�erent resource and service needs, and resources have di�erent scheduling

disciplines. Also, our model can be applied to describe general dynamic routing schemes with the

arrival rate of a class changing as a function of the instantaneous system state.

To obtain the instantaneous departure rates, we again adapt steady-state queueing formulas

to yield the instantaneous utilization of each class in terms of the instantaneous average numbers

of customers waiting and in service. The same technique was used in [100], where feedforward

queueing networks were considered. Each service center is an M=M=1 in�nite FCFS queue with

the same average service time for all classes. The routing of each class is a time-dependent Bernoulli

process. Compared to our model, this does not model blocking resources, or service centers with

complicated structure (e.g. service centers consisting of multiple resources with di�erent scheduling

disciplines serving customers with di�erent needs). Though we do not consider here sequential

resource needs by one customer (a customer requests all needed resources simultaneously), our

model is easily extended to capture this situation.

Our dynamic ow model is quite general, and can be used to study both transient and steady-

state performances of various MCMR blocking and non-blocking systems. Our method has advan-

tages over other methods that might be used to analyze transient behaviors. One such method is

that of time-dependent queueing models, which involve probability distributions for all events. How-

ever, such models are extremely di�cult to solve analytically [101], and computationally expensive

to solve numerically [100]; A second method is that of di�usion models, which utilize averages and

variances [19, 84]. Such models involve partial di�erential equations and are usually intractable. A

third method is that of uid models, which utilize average quantities only [15]. Such models involve

ordinary di�erential equations and are usually tractable. However, dynamic ow models appear

more accurate since they include detailed probabilistic descriptions manifested in our model in the

computation of both the instantaneous blocking probabilities and the instantaneous utilizations.

14

Chapter 3

Simple Applications of the Z-Iteration

In Chapter 2, we described the Z-iteration for a general MCMR model. As we pointed out, the

exact form of Src (:) and T rc (:) and the values of �rc(:) and �c(:) depend on the particular application.

In this chapter, we consider di�erent applications, and show how they �t into the general model and

solution procedure. We consider an integrated network, a parallel database server, and a distributed

batch system. The �rst and third systems are modeled as systems with self-service resources, for

which validations against discrete-event simulations are given in Section 4.1. The second system is

modeled as a system with single-server resources, for which validations are given in Section 4.2.

3.1 Integrated Network Example

Consider an integrated network carrying various classes of connections. (See Figure 3.1.) A class

represents connections with the same tra�c and QoS parameters and routed on the same path from

a source node to a destination node. The connections of a class c arrive according to a Poisson

process of rate �c(t). Each connection, once it is successfully setup, has a lifetime of average

duration 1
�c(t)

.

c1

c2 c3 c4

r1 r2 r3

Figure 3.1: A 3-link integrated network.

15

Resources in a network include link bandwidths, bu�er spaces, etc. For this example, we

assume link bandwidths are the main resources; thus R consists of link ids (where each id denotes

the bandwidth component of the link). We assume a connection requires the reservation of a

certain amount of bandwidth on each link along its route that are enough to satisfy its QoS. This

reservation amount can be thought of as either the peak transmission rate of the connection or its

\e�ective bandwidth" [44] varying between its peak and average transmission rates.

The set Rc of a class-c connection would thus contain the links along the route of class c. An

arriving class-c connection that �nds insu�cient bandwidth on any r 2 Rc is blocked and lost.

Otherwise, the connection is admitted and bandwidths are allocated to it on each r 2 Rc for an

average duration of 1
�rc(t)

= 1
�c(t)

. Note that this is a self-service system.

Thus, r.max is the total link bandwidth of r, and c.r.req is the amount of link bandwidth that

must be allocated (reserved) for a class-c connection on r 2 Rc. Let's assume that the c.r.req

and r.max are integers. Let the state of r indicate the amount of bandwidth allocated. Thus,

F r = f0; 1; � � � ; r.maxg. Let Qr(j) denote the steady-state probability of r being in state j. Then

the Qr(:) satisfy the following recurrence relation [92]:

j Qr(j) =
X
c02Cr

�c0

�rc0
c0:r:req Qr(j � c0:r:req)

j = 1; : : : ; r.max

where
Pr.max

j=0 Qr(j) = 1.

The steady-state blocking probability for class-c connections at r, Br
c , is given by

Br
c =

r.maxX
j=r.max�c.r.req+1

Qr(j)

This steady-state solution, which de�nes Src (:) for this system, is valid for Poisson arrivals and

general service times. It can be used in equations (2.2) after replacing the �c0
�r
c0
by �ctitious o�ered

loads zrc0(t).

Regarding the function T rc (:) used in equations (2.4), since r is self-service, we have

T r
c (:) = N r

c (t)

In Chapter 5, we consider a detailed integrated network model and illustrate how the Z-iteration

can capture the e�ects of various dynamic control schemes.

Systems with self-service resources are validated (against discrete-event simulations) in Sec-

tion 4.1. There we consider systems equivalent to single-link network, and multi-link network. The

multi-link network is used by several multi-hop connections representing main tra�c, and several

one-hop connections representing cross-tra�c.

16

3.2 Parallel Database Server Example

Consider a system of multiple disks on which data is partitioned according to some scheme, e.g.

round-robin, range partitioning, etc. [27]. Each disk has a �nite �rst-come-�rst-served (FCFS)

queue where queries of di�erent classes wait to be served. A query requests data retrieval from one

or more disks in parallel. (See Figure 3.2.) This parallelism typically leads to reduction in data

access time [27, 54]. The collection of disks needed by a query is de�ned by the query's class. We

assume an arriving query requires one unit of space in the queue of each disk it needs to access.

c2 c3 c4

c1

r1 r2 r3

Figure 3.2: A 3-disk parallel database server.

Thus the resource set Rc of a class-c query contains the queues of disks that are needed by class

c, and this is a function of the data partitioning scheme. r.max is the total number of requests that

r can accommodate, and c.r.req = 1 for r 2 R and c 2 Cr. An arriving class-c query that �nds no

space in any r 2 Rc is blocked and lost.

Assume class-c queries arrive according to a Poisson process of rate �c(t). Also, assume that

the service time of any query in r is exponentially distributed with mean 1
�r ; thus

1
�rc(t)

= 1
�r for all

c 2 Cr.
Let the state of r denote the total number of queries waiting or in service in r. Thus, F r =

f0; 1; : : : ; r.maxg. The steady-state blocking probability for class-c queries at r is the steady-state

probability of r being in state r.max. This steady-state solution is well-known for theM=M=1=r.max

queueing system, in particular, for c 2 Cr:

Br
c =

(

P
c02Cr �c0
�r)r.max

Pr.max
j=0 (

P
c02Cr �c0
�r)j

[63]

This steady-state solution can be used in equations (2.2) after replacing

P
c02Cr �c0
�r by

P
c02Cr zrc0(t).

17

We employ the technique introduced in Section 2.2 to derive the function T r
c (:) used in equa-

tions (2.4). Assuming steady-state and no blocking, we can treat the M=M=1=r.max system of r

as an M=M=1=1 system. At steady-state, we know that [63]

N r
c =

�c
�r �Pc02Cr �c0

(3.1)

From this and T r
c (:) =

�c
�r , which holds assuming no blocking, we have1

T r
c (:) =

N r
c

1 +
P

c02Cr N r
c0

Therefore, in the transient regime, we have

T rc (:) =
N r
c (t)

1 +
P

c02Cr N r
c0(t)

The above model can be used to study various data partitioning schemes for high-performance

indexing [27]. Systems with single-server resources are validated (against discrete-event simulations)

in Section 4.2.

3.3 Distributed Batch System Example

Consider a distributed batch system such as Condor [69]. Batch jobs (user programs) are submitted

to a central manager (CM). Assume batch jobs of type i arrive to the CM according to a Poisson

process of rate �i. The CM uses its information about the load on the various workstations to

choose for the arriving batch job a potential workstation for its execution. The class of the batch

job is de�ned by the workstation it is routed to by the CM and the job type.

Each batch job would typically require resources such as memory, disk space, and CPU process-

ing power to execute on a workstation. For this example, we assume all required resources other

than the CPU are always available. The set Rc of a class-c batch job would thus contain the CPU

of the workstation to which the job is routed.

We assume only one job can be running on each workstation at a time. Thus, if the owner of

the workstation executes a job of his/her own, then the batch job currently executing on his/her

workstation, if any, is suspended and its execution resumed later when the owner job �nishes

execution. An arriving class-c batch job that �nds another batch job running or suspended on

r 2 Rc is blocked and returned to the CM. Otherwise, it is admitted for processing with mean

1 From (3.1), we have (i) Nr
c = �c=�

r

1�
P

c
02Cr

�
c
0 =�r

, and thus (ii)
P

c02Cr N
r
c0 =

P
c
02Cr

�
c
0 =�

r

1�
P

c
02Cr

�
c
0 =�r

. Rearranging the

last equation, we have (iii)
P

c02Cr �c0=�
r =

P
c
02Cr

Nr

c
0

1+
P

c
02Cr

Nr

c
0

. Substituting (iii) in (i), we get an expression for �c
�r

,

which together with T r
c (:) =

�c
�r yields the desired result.

18

processing time of 1=�rc(t). This processing time includes the time during which the batch job

is suspended due to owner processes [68]. Note that in this application, we do not assume that

blocked jobs are lost, rather they are returned to the CM for retry.

The instantaneous arrival rate of class-c batch jobs of type i, �c(t), is a function of �i, the load

balancing algorithm used by the CM, and the rate of retrials of type i batch jobs. Assume the load

balancing algorithm regularly assigns to the candidate workstations probabilities according to their

measured loads. Arriving batch jobs are routed independently according to these probabilities. Let

�c(t) denote the load-dependent probability that the type i batch job belongs to class c, i.e. is

routed to r 2 Rc. Then,

�c(t) = [�i +
X

classes c0 of type i

r02Rc0

�c0(t� �) Br0

c0 (t� �)] �c(t) (3.2)

The
P

term in equation (3.2) represents the total rate of retrials of type i batch jobs, which is

a function of their blocking probabilities. In this model, r.max is the maximum number of batch

jobs that r handles. r.max = 1 and c.r.req = 1 for r 2 R and c 2 Cr. Let the state of r denote the
total number of batch jobs running or suspended on r. Then, F r = f0; 1g. This system is similar

to the self-service integrated network discussed in Section 3.1, and hence we can use the Src (:) and
T rc (:) formulas presented there.

Indeed, we are assuming here the arrival processes are Poisson. This is not, in general, true

since the composite tra�c contains blocked batch jobs returned immediately at the next time step

to the system for retry. This assumption is less restrictive if blocked batch jobs are returned to

the system after waiting an independent random period [80, 39]. This waiting e�ect can be easily

incorporated into the above model. This model can be used to study the interactions between

owner jobs and batch jobs, and examine various load balancing schemes through the 1=�rc(t) and

�c(t).

19

Chapter 4

Validation of the Z-Iteration

In this chapter, we present numerical results to validate the Z-iteration. Section 4.1 contains

validations against discrete-event simulations for systems with self-service resources. Section 4.2

contains validations for systems with single-server resources.

4.1 Validation of Systems with Self-Service Resources

In this section, we compare the results obtained using our method with those obtained using

discrete-event simulation for systems with self-service resources. In our method, we obtain in-

stantaneous performance measures through equations (2.2), (2.4), and (2.5), substituting with the

appropriate application-dependent parameters and formulas. We take the discrete-time step � to

be 0.1.

The simulation model di�ers from our analytical model in that the actual events of arrival and

processing of requests are simulated according to the speci�ed probability distributions and sys-

tem characteristics (i.e. service disciplines, admission policy, etc.). To obtain reliable performance

estimates, a number of independent replications (i.e. simulation runs) must be carried out and av-

eraged. In particular, let X(i)(t) denote a generic measure computed at time instant t in replication

i, where t takes on the successive values t1; t2; � � � ; tk; � � �. Then, the mean value of this measure at

particular time instant tk is estimated as
PN

i=1X
(i)(tk)=N , where N is the total number of repli-

cations. The larger N is, the more accurate the simulation estimates are [71]. In our simulations,

the performance measures are computed for t = 1; 2; 3; � � �.
The measures considered are precisely de�ned as they are introduced below. In all experiments,

we start with empty systems. For the cases with N = 50, the observed mean of the simulation

measures at various time instants typically show 95% con�dence interval for a + 10% range. For

the cases with higher N , 95% con�dence interval is obtained for a + 3% range.

We �rst consider a MCSR system with a single resource r1 used by 10 customer classes whose

parameters are shown in Table 4.1.

Class-c customers arrive at r1 according to a Poisson process of rate �c. The system is self-

20

Class c Rc c.r.req �c 1=�c

c1 fr1g 30 0.125 5

c2 fr1g 15 0.5 1

c3 fr1g 50 0.2 2

c4 fr1g 10 0.1 2

c5 fr1g 40 0.125 1

c6 fr1g 25 0.5 0.5

c7 fr1g 30 1.0 0.5

c8 fr1g 10 0.0625 10

c9 fr1g 5 1.0 0.2

c10 fr1g 50 0.25 2

Table 4.1: Parameters of 10 classes using r1 with r1.max = 200.

service. In particular, an admitted class-c customer holds the acquired c.r1.req resource units for

an exponential duration with mean 1=�c before releasing them. This system is similar to a single-

link integrated network modeled as in Section 3.1, and hence we use the T rc (:) and Src (:) formulas
presented there to obtain the performance measures by our method.

Figures 4.1, 4.2, and 4.3 show the time behavior of the total number of in-service customers,

the fraction of resource units allocated, and the total throughput, respectively. The �rst mea-

sure denotes the total number of customers currently holding resource units, which is equal toP
c02Cr1 N

r1
c0 (t) in our method. The second measure denotes the fraction of r1.max currently being

held by customers, which is equal to (
P

c02Cr1 N
r1
c0 (t)� c0:r1:req)=r1:max in our method. The third

measure denotes the total current admission rate, which is equal to
P

c02Cr1 �c0(1 � Br1
c0 (t)) in our

method. Generally, it is equal to
P

c02C �c0
Q
r02Rc0

[1� Br0
c0 (t)] for MCMR systems.

In our simulations, the �rst two measures displayed at time instant t (t = 1; 2; 3; � � �) are simply

the values of these measures as observed at t. The last measure, namely the total throughput,

displayed at time instant t is de�ned to be the total number of customers admitted in the interval

[t� 1; t).

Our method yields results very close to the exact values. In addition, we found our method much

less time-consuming than simulation. This is especially because the latter requires the averaging of a

large number of independent simulation runs. To give an idea of the computational savings, for this

experiment, on a DECstation 5000/133, our method required around 6 seconds of execution time

while the 50-run and 1000-run simulations required around 25 seconds and 8 minutes, respectively.

The number of iterations required at each time step for convergence of the iterative procedure in

steps 5-9 of Figure 2.1 is less than 6 iterations for � = 10�5 and ẑrc (0) = �c=�
r
c .

21

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40 45 50

N
o

of
 in

-s
er

vi
ce

 c
us

to
m

er
s

Time

NO OF IN-SERVICE CUSTOMERS vs Time

Simulation (50 runs)
Simulation (1000 runs)

Z-Iteration

Figure 4.1: Total number of in-service customers versus time. MCSR self-service system.

We next validate our resource independence assumption manifested in equation (2.5) by the

product term
Q
. We consider a similar self-service system but with 3 resources and 20 customer

classes. Out of the 20 classes, 10 classes require all 3 resources. A class-c customer requires the same

number of units of each r 2 Rc. Table 4.2 shows the system parameters. Note that this system can

be regarded as a multi-link integrated network modeled as in Section 3.1. See Figure 4.4. Here,

classes 1 to 10 represent multi-hop connections modeling main tra�c, while other classes represent

one-hop connections modeling cross-tra�c.

Figure 4.5 shows the instantaneous total throughput. Simulation results, denoted by Exp, are

for Poisson arrivals and exponential holding times. Simulation results, denoted by Det, are for

Poisson arrivals and deterministic holding times. The results show the accuracy of our method in

both cases as they satisfy the assumptions required to obtain the T rc (:) and Src (:) formulas used
here. (Our experiments with deterministic arrivals show large errors as expected.)

Next, we consider a similar self-service systemwhose parameters are given in Table 4.3. Here, �c1

varies with time. This mimics the e�ect of tra�c control policies such as ow control and routing.

We assume �c1 alternates every 20 time units between zero and 0.125, starting with zero. Figures 4.6

and 4.7 show the instantaneous total throughput and blocking probability, respectively. Our method

accurately reproduces the behavior obtained by simulation. We compute the instantaneous blocking

probability B(t) from the throughput (t) using the relation B(t) = 1�(t)=�(t), where �(t) is the
instantaneous total arrival rate of requests. We do this rather than compute B(t) directly from the

simulations because doing that would require averaging over a very large number of replications,

because B(t) typically has a very low value and thus a high sample variance.

22

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

5 10 15 20 25 30 35 40 45 50

Fr
ac

tio
n

of
 u

ni
ts

 a
llo

ca
te

d

Time

FRACTION OF UNITS ALLOCATED vs Time

Simulation (50 runs)
Simulation (1000 runs)

Z-Iteration

Figure 4.2: Fraction of resource units allocated versus time. MCSR self-service system.

4.2 Validation of Systems with Single-Server Resources

In this section, we compare the results obtained using our method with those obtained using

discrete-event simulation for systems with single-server resources. The performance measures are

computed as described in Section 4.1. Similar con�dence intervals are also observed for the measures

obtained by simulation.

We consider a MCMR system with 3 resources and 4 customer classes. Out of the 4 classes,

class c1 requires all 3 resources. A class-c1 customer requires one unit of each resource. Table 4.4

shows the system parameters.

Class-c customers arrive according to a Poisson process of rate �c. Each resource consists of

a single-server with a �nite waiting room and a FCFS scheduling discipline. An admitted class-c

customer occupies one unit of space, and requires an exponential service time with unit mean. This

system is similar to the parallel database server discussed in Section 3.2, and hence we use the T rc (:)
and Src (:) formulas presented there to obtain the performance measures by our method. Figure 4.8

shows the instantaneous total throughput. The results obtained by our method agree with those

obtained by simulation.

We next consider the same system but with �c1 varying with time. We assume �c1 alternates

every 20 time units between zero and 0.2, starting with zero. Figures 4.9 and 4.10 show the

instantaneous total throughput and blocking probability, respectively. Our method accurately

reproduces the behavior obtained by simulation.

23

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

Time

THROUGHPUT vs Time

Simulation (50 runs)
Simulation (1000 runs)

Z-Iteration

Figure 4.3: Total throughput versus time. MCSR self-service system.

c1 ... c10

c11 ... c13 c14 ... c16 c17 ... c20

r1 r2 r3

Figure 4.4: Multi-link network.

24

Class c Rc c.r.req �c 1=�c

c1 fr1, r2, r3g 30 0.125 5

c2 fr1, r2, r3g 15 0.5 1

c3 fr1, r2, r3g 50 0.2 2

c4 fr1, r2, r3g 10 0.1 2

c5 fr1, r2, r3g 40 0.125 1

c6 fr1, r2, r3g 25 0.5 0.5

c7 fr1, r2, r3g 30 1.0 0.5

c8 fr1, r2, r3g 10 0.0625 10

c9 fr1, r2, r3g 5 1.0 0.2

c10 fr1, r2, r3g 50 0.25 2

c11 fr1g 30 0.125 5

c12 fr1g 15 0.5 1

c13 fr1g 50 0.2 2

c14 fr2g 10 0.1 2

c15 fr2g 40 0.125 1

c16 fr2g 25 0.5 0.5

c17 fr3g 30 1.0 0.5

c18 fr3g 10 0.0625 10

c19 fr3g 5 1.0 0.2

c20 fr3g 50 0.25 2

Table 4.2: Parameters of 20 classes using 3 resources r1, r2, and r3 with r1.max = 150, r2.max =

200, and r3.max = 250.

Class c Rc c.r.req �c 1=�c

c1 fr1, r2, r3g 30 0 $ 0.125 5

c2 fr1g 30 0.125 5

c3 fr2g 10 0.1 2

c4 fr3g 50 0.25 2

Table 4.3: Parameters of 4 classes using 3 resources r1, r2, and r3 with r1.max = 50, r2.max =

100, and r3.max = 150.

25

5.5

6

6.5

7

7.5

8

5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

Time

THROUGHPUT vs Time

Simulation (1000 runs; Exp)
Simulation (1000 runs; Det)

Z-Iteration

Figure 4.5: Total throughput versus time. MCMR system with self-service resources.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

10 20 30 40 50 60

T
hr

ou
gh

pu
t

Time

THROUGHPUT vs Time

Simulation (20000 runs)
Z-Iteration

Figure 4.6: Total throughput versus time. MCMR system with self-service resources. Time-varying

arrivals.

26

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60

B
lo

ck
in

g
pr

ob
ab

ili
ty

Time

BLOCKING PROBABILITY vs Time

Simulation (20000 runs)
Z-Iteration

Figure 4.7: Blocking probability versus time. MCMR system with self-service resources. Time-

varying arrivals.

Class c Rc c.r.req �c 1=�c

c1 fr1, r2, r3g 1 0.2 1

c2 fr1g 1 0.5 1

c3 fr2g 1 0.8 1

c4 fr3g 1 0.4 1

Table 4.4: Parameters of 4 classes using 3 resources with r:max = 5 each.

27

1.2

1.4

1.6

1.8

2

2.2

2.4

5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

Time

THROUGHPUT vs Time

Simulation (1000 runs)
Z-Iteration

Figure 4.8: Total throughput versus time. MCMR system with single-server resources.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

10 20 30 40 50 60

T
hr

ou
gh

pu
t

Time

THROUGHPUT vs Time

Simulation (20000 runs)
Z-Iteration

Figure 4.9: Total throughput versus time. MCMR system with single-server resources. Time-

varying arrivals.

28

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10 20 30 40 50 60

B
lo

ck
in

g
pr

ob
ab

ili
ty

Time

BLOCKING PROBABILITY vs Time

Simulation (20000 runs)
Z-Iteration

Figure 4.10: Blocking probability versus time. MCMR system with single-server resources. Time-

varying arrivals.

29

Chapter 5

Application of the Z-Iteration to Detailed Network

Models

In this chapter, we apply the Z-iteration to a detailed network model. We formulate the model

in Section 5.1. Sections 5.2 and 5.3 illustrate how our method can capture the e�ects of various

control schemes. Section 5.2 discusses scheduling and admission. Section 5.3 discusses routing.

Section 5.4 investigates three routing schemes on the NSFNET backbone topology.

5.1 Network Model

We consider networks of arbitrary topology supporting real-time communication using a connection-

oriented reservation scheme. That is, before a real-time application (e.g., voice, video) can start

transmitting its packets at the requested end-to-end QoS (e.g., delay), a connection has to be �rst

established along a �xed physical route from the source node to the destination node. For this, the

source node uses its routing information to choose a potential route to the destination node.

A connection setup message is then sent over this route, requesting a local QoS from each of its

links such that the aggregate of these local QoS satis�es the connection's end-to-end QoS. If the

request fails at any link due to lack of resources (or any other admission constraints), the connection

is blocked and lost; it is assumed that it is not attempted on another (alternate) route. Otherwise,

the connection is established and resources are allocated to it. At the end of transmission, this

connection is torn down and resources are released. We assume that a connection setup (and

teardown) request on a multi-link route reaches all links of the route simultaneously.

Routing can be static or dynamic. For dynamic routing, we assume routing information is up-

dated by periodic broadcasts by nodes of the status of their outgoing links during the last period.

This periodic collection of status information is often used in routing algorithms proposed for inte-

grated services networks (e.g., [1, 8, 24]). We assume that broadcasts of all nodes are synchronized;

we can easily model unsynchronized broadcasts. We also assume that these broadcasts reach other

nodes instantaneously; this is justi�able because the time to propagate routing information is small

30

compared to the routing update period.

After each update, a node uses its new routing information to compute new routes to be used

for incoming connections until the next broadcast. The routes are thus updated at discrete time

instants nT; n = 1; 2; � � �, where T is the routing update period.

Services

We think of the network as providing real-time services. A service represents connections with the

same source-destination node pair and the same tra�c and QoS parameters. The parameters of a

service s include the following:

� Arrival rate of requests for a connection setup, �s(t).

� Average lifetime of a connection from the time it is successfully established until it ends,

1=�s(t).

� QoS requirements of a connection, for example, the end-to-end statistical delay bound (Ds; "s)

denoting that probability[end-to-end packet delay > Ds] < "s.

� Packet (or cell) generation characteristics of a connection, such as its mean transmission rate

ms and peak transmission rate Ms.

Classes

A connection of a service can potentially be established along any of the possible routes between

the service's source node and the service's destination node. The class of a connection is de�ned

by its service and the route it takes.

Figure 5.1 shows a network o�ering two services: service s1 from node 0 to node 4, and service

s2 from node 1 to node 3. Each service has two possible routes for connection setup. Hence the

network has four classes: classes c1 and c2 for s1 connections using route h 0, 1, 2, 3, 4 i and
h 0, 5, 4 i respectively, and classes c3 and c4 for s2 connections using h 1, 0, 5, 4, 3 i and h 1, 2, 3 i
respectively.

The instantaneous arrival rate of class-c connections of service s, denoted by �c(t), is a function

of �s(t) and the routing algorithm. Note that with dynamic routing, class arrivals have time-varying

statistics irrespective of whether the service arrivals have time-varying statistics.

Because a class is de�ned by the pair h service, route i, we can have a large number of classes,

which may cause a computational bottleneck. To avoid this, we can restrict the set of possible

routes, for example, to the shortest (in number of hops) and close to shortest paths.1 This is

1 Experiences with circuit-switched networks show that this restriction results in simple and e�cient routing
schemes [7, 79].

31

0

1

2

4

5

3

s1

s1

s2

s2

c1

c2

c3

c4
SRC

DEST

SRC

DEST

Figure 5.1: A network example.

acceptable because using a longer path for a connection ties up resources at more intermediate

nodes, thereby decreasing network throughput. Furthermore, it also ties up more resources at each

intermediate node because satisfying the end-to-end QoS requirement would require more stringent

local QoS requirements. Section 5.3 addresses the selection of routes in more detail.

Obtaining class parameters at a link

Each link in the network is used by a subset of the classes. For example, in Figure 5.1, link h5, 4i is
used by two classes, namely c2 and c3. The parameters of a class at a link on its route are obtained

from the parameters of its service. To do this, we make the following assumptions; some of these

assumptions can be relaxed, possibly at additional computational cost:

� Connection setup requests arrive according to Poisson processes.

� The routing is probabilistic. That is, probabilities are assigned to the candidate paths and

arriving connections are routed independently according to these path probabilities. With

dynamic routing, the probabilities are periodically updated according to dynamic status in-

formation (e.g. measured load). Note that these probabilities could take the values 0 and 1

for single-path routing.

� For a connection setup request on a multi-link route, the requested end-to-end QoS is divided

equally among the links. This is the so-called \equal allocation" policy. For example, if a

connection of service s requesting an end-to-end QoS (Ds; "s) is to be established on an

h-link route, then we require that each link on the route guarantees a local requirement of

(Ds
h ;

"s
h) [85, 87].

� The packet generation characteristics of a connection established on a multi-link route do not

change from link to link, i.e. remain the same as the given external characteristics.

32

The �rst assumption is often made and is reasonable in practice [41, 40, 90]. The second

assumption uses a type of routing proposed in many studies (e.g., [8, 35]). The third assumption

uses an end-to-end QoS allocation policy studied in [85, 45, 87].

The last assumption is valid in practice if the network admission control makes the same as-

sumption, as for example, in the e�ective bandwidth approach by Gu�erin et al: [44]. It is also valid

if the network uses a tightly-controlled approach that uses a non-work-conserving link scheduling

discipline to reconstruct the tra�c pattern at each link. An example of such approach is the Rate-

Controlled-Static-Priority approach by Zhang and Ferrari [106]. Otherwise, the tra�c pattern has

to be characterized at each link as in [89, 25].

Given the above assumptions, it is straightforward to obtain the parameters of a class at a link.

Consider, for example, the parameters of class c2 at link r 2 Rc2 = fh0; 5i; h5; 4ig. Connection
setup requests arrive according to a Poisson process with rate �c2(t) = �s1;c2(t) �s1(t), where

�s1;c2(t) is the (possibly dynamic) probability of a connection of service s1 being routed on class-c2

route. The average lifetime of a connection 1
�c2(t)

= 1
�s1(t)

. For an end-to-end QoS (Ds1; "s1), the

local QoS requirement (Dr
c2; "

r
c2) = (Ds1

2 ; "s1
2), because the route of class c2 is two-hop long. The

packet generation characteristics (Mc2, mc2, � � �) = (Ms1, ms1, � � �).
The above model can be solved using the Z-iteration. The end-to-end measures of each service

are easily obtained once the end-to-end measures of each of the service's classes are computed.

5.2 Scheduling and Admission

The Z-iteration accounts for scheduling at a link r through the set of feasible states F r. Recall

that we de�ne a state (�1; �2; � � � ; �jCrj) in F r by the number of connections �c of each class c 2 Cr
that can be established simultaneously on link r, i.e. for which the local QoS is satis�ed for every

connection.

F r can be determined using a packet-level analysis [44, 23] knowing the parameters of each

class at link r (obtained as shown in Section 5.1) and the link scheduling algorithm. Note that

F r would typically be di�erent for every link r because links have di�erent capacities, are used by

di�erent sets of classes, etc. It is also di�erent for di�erent scheduling disciplines because disciplines

resulting in looser performance bounds would typically have a smaller set of feasible states.

In the following, we illustrate the computation of F r for a \per-connection" link scheduling

algorithm of the weighted round-robin type. An example of this type of scheduling algorithms is

weighted fair-queueing [89]. Here, each class-c connection is allocated (and guaranteed) a certain

amount of bandwidth on link r 2 Rc that is enough to satisfy its local QoS requirement. This

required bandwidth depends of course on the local QoS and the packet generation characteristics

of the connection.

Henceforth we assume that a connection of service s requests an end-to-end statistical delay

bound (Ds; "s), where the delay does not include the propagation delay. This QoS requirement is

33

also referred to as packet jitter [33, 103]. This is typically required by applications such as voice

since they can tolerate some packet loss (a packet is considered lost if its delay exceeds Ds) [32, 33].

If the connection is described by a two-state model where it is either in a busy state send-

ing packets back-to-back at peak rate or in an idle state sending no packets at all, the required

bandwidth2, denoted by Rr
c , can be obtained from the following approximation derived in [6, 44, 31]:

Rr
c =Mc

�rc �Xr
c +

p
[�rc �Xr

c]
2 + 4 Xr

c �c �
r
c

2 �rc
(5.1)

where

� Mc is the peak rate of the connection.

� mc is the mean rate of the connection.

� bc is the average duration of the busy period.

� �rc = ln(1
"rc
) bc (1� �c)Mc.

� �c =
mc
Mc

is the probability that the connection is active (in busy state).

� Xr
c = Dr

c � Rr
c is the bu�er space required by the connection.

Rr
c can be computed from equation (5.1) iteratively. For each class c 2 Cr, we can then determine

its requirements Rr
c and X

r
c . From this, we can determine whether a state (�1; �2; � � � ; �jCrj) belongs

to F r; it must satisfy the following two conditions:

� Pc2Cr �c Rr
c is no greater than the total capacity of link r, denoted by Capr.

� Pc2Cr �c Xr
c is no greater than the total available bu�er space of the link.

For ease of presentation, we assume that there is enough link bu�er space such that the second

condition is always satis�ed. Then for a state to be feasible it su�ces to only satisfy the �rst

condition. Thus, Capr de�nes r.max, and Rr
c de�nes c.r.req.

We obtain Src (:) by solving the Markov chain over F r. In particular, denoting by P (�) the

probability of being in a state � = (�1; �2; � � � ; �jCrj) 2 F r, we have

P (�) = P (0)
jCrjY
c0=1

(�c0=�c0)
�c0

�c0 !
(5.2)

where P (0) = [
P

�2F r
QjCrj
c0=1

(�c0=�c0)
�c0

�c0 !
]�1 is the normalization constant. This solution is valid

not only for exponentially distributed connection lifetimes [53], but also for generally-distributed

lifetimes [55].

2 Often referred to as e�ective or equivalent capacity [31, 59, 6, 44, 1].

34

Assuming a simple admission control where the arrival of a new class-c connection is blocked if

its admission would lead to a nonfeasible state, we have

Br
c =

X
�2F r

If(�1; � � � ; �c + 1; � � � ; �jCrj) 62 F rg P (�) (5.3)

where

If(�1; � � � ; �c + 1; � � � ; �jCrj) 62 F rg =
8<
: 1 if (�1; � � � ; �c + 1; � � � ; �jCrj) 62 F r

0 otherwise

This is often referred to as \complete-sharing" admission control [50]. Note that If:g de�nes the
set of blocking states. Other admission control schemes can be modeled by alternative de�nitions

of If:g.
The computation of F r is typically expensive as it requires determining the j Cr j-dimension

feasible states [74, 70]. In addition, given the admission control policy, we need to determine for

each class which of the feasible states are blocking. This computational complexity is reduced if

we assume fRr
c : c 2 Crg and Capr are integers and view the link state as belonging to the set

f0; 1; 2; : : : ; Capr � 1; Caprg, where the state indicates the amount of bandwidth reserved. This

one-dimensional link model has a simple steady-state solution in the multi-rate circuit switching

literature [92], and was given in Section 3.1.3 Note that here F r is implicitly de�ned by the

constraint on state j satisfying 0 � j � Capr. This link model is usually referred to as the

stochastic Knapsack model [20, 21]. The function T rc (:) is de�ned by N r
c as in Section 3.1.

5.3 Routing

The Z-iteration accounts for routing through the time-dependent class arrival rates �c(t). These

are a�ected in our model by the route selection probabilities �s;c(t). We assume the �s;c(t) are

periodically computed based on the network topology and load averaged over the last period. The

load information consists of link/path measurements, which may include quantities such as reserved

link capacity and path blocking probability. Obviously these quantities should be measurable in

practice; indeed a node can measure the reserved capacity for each of its outgoing links from the

connection setup/teardown procedure. Also, a source node can measure the blocking probability

of a path if we assume that when a setup fails at an intermediate node, this node sends a \reject"

message back to the source.

These quantities should also be obtainable from our model. We can obtain the average reserved

link capacity from the average number of established connections and the e�ective capacity of each

3 In a multi-rate circuit-switched network, each call may request a di�erent number of channels. This number
is however the same on every link along any route the call might take. This is not the case in the networks we are
considering where the bandwidth required by a connection on a link depends on the number of links along the route
taken by the connection.

35

of the link's classes, which we compute in our model. We can also obtain a path blocking probability

from the classes' blocking probabilities, which we also compute in our model.

We are interested in route selection algorithms for networks of arbitrary topologies and o�er-

ing heterogeneous services. We want algorithms that result in low blocking probabilities (a high

successful setup rate) and hence high network throughput. Our model can capture several design

choices when developing such algorithm. One design choice is related to the set of candidate paths

the source node would consider for connection routing. This determines the number of classes

de�ned for each service. We do not want the source node to consider paths that are too long since

this would result in increased utilization and hence reduced throughput. So the set of candidate

paths could consist of only minimum-hop paths, or it could consist of both minimum-hop paths

and next-to-minimum-hop paths. (By a next-to-minimum-hop path, we mean a minimum-hop + i

path for the smallest i 2 f1; 2; � � �g such that a path exists.)

Routing schemes designed for circuit-switched networks [40] and recently proposed for ATM

networks [45, 48, 46, 47] consider one-hop and two-hop paths only. Routing schemes that consider

paths of arbitrary hop length are often proposed for the Internet [96, 17]. Our model can evaluate

both types of schemes.

From the set of candidate paths, we should determine which path to use for routing the setup

request message for a new incoming connection. A path p could be selected probabilistically at

random or using path weights Wp where
4

Wp / Fp
Hp � Lp (5.4)

where Hp is the number of hops of path p (this gives preference to shortest paths), Lp is a measure

of the load on path p averaged over the last update period (discussed below), and Fp is either 1 or

0 depending on whether the path p is feasible or not; a path p is said to be feasible if the source

\expects" a successful setup on p [1].5 The �s;c(t) can then be computed according to (5.4).

Another design issue is related to how Lp is de�ned. For example, Lp could be (i) the blocking

probability of path p, (ii) the sum of the utilizations of the links on path p, where the utilization

of a link is the fraction of the link capacity reserved, (iii) the maximum link utilization of the links

on path p, or (iv) the sum of the delays of the links on path p, where the delay of a link r can

be estimated as 1
Capr�CapResr where CapResr is the average reserved link capacity (note that this

delay estimation uses the M=M=1 delay formula [63]).

4 Wp may depend on other factors. We use here the ones that were considered in previous works (e.g., [8, 1, 17])
when selecting routes for connections.

5 The source would take into account the requirements of the new connection in addition to the current load on
the path (assuming it is accurate) to test the feasibility of the path. This is in fact an admission control function.

36

5.4 Numerical Results for NSFNET

In this section, we use our model to compare three route selection algorithms. We assume the use of

the \per-connection" link scheduling and complete-sharing admission described in Section 5.2. The

required bandwidths Rr
c are computed using equation (5.1); if the computed value is not integer,

it is rounded to the smallest integer greater than this value. We assume adequate bu�er space.

We consider the performance of the routing algorithms on the topology of the NSFNET back-

bone shown in Figure 5.2. All links have capacities of 600. The time step � equals 0.1. The routing

update period T equals 5. We consider 52 services using the NSFNET backbone, with parameters

as shown in Figure 5.1. Services with the same tra�c and end-to-end QoS parameters, but with

di�erent source/destination pairs, are grouped in the same row.

0

1

2

3

4

5

6
7

89

10

11

12

13

Figure 5.2: NSFNET backbone: 14 nodes, 21 bidirectional links, average degree 3.

We assume a source node considers only the set of minimum-hop and minimum-hop + 1 paths

for connection routing. A path from the set is selected probabilistically according to path weights

as explained in Section 5.3. The �rst selection algorithm, referred to as SEL.HOP, de�nes the path

weight as 1=Hp. The second selection algorithm, referred to as SEL.UTIL, de�nes the path weight

as (1� Up), where Up is the maximum link utilization of the links on path p. The third selection

algorithm, referred to as SEL.UTIL HOP, de�nes the path weight as (1� Up)=Hp.

Figure 5.3 shows the instantaneous network throughput for the three routing algorithms. Fig-

ure 5.4 shows their instantaneous blocking probabilities. We observe that SEL.UTIL HOP performs

the best, closely followed by SEL.UTIL, and then by SEL.HOP, which is much worse. Clearly, for

this network con�guration, choosing paths which are both under-utilized and short for routing new

incoming connections is the best strategy. We note that this is consistent with results in [8] where a

route selection algorithm similar to SEL.UTIL HOP was shown to outperform other algorithms on

a 5-node connection-oriented reservationless network using discrete-event simulations. To obtain a

curve here, the Z-iteration required around 45 minutes of execution time rather than the tens of

hours that simulation would have required.

37

(SRCs; DESTs) (Ms; ms; bs; Ds; "s) (�s; �s)

(0, 13),(1, 13),(2, 13),(3, 13),(4, 13),(5, 13) (30, 20, 0.1, 0.05, 10�4) (2, 1)

(0, 13),(1, 13),(2, 13),(3, 13),(4, 13),(5, 13) (30, 20, 0.1, 0.05, 10�4) (2, 1)

(6, 13) (30, 10, 0.1, 0.05, 10�4) (2, 2)

(6, 13) (30, 10, 0.1, 0.05, 10�4) (2, 2)

(7, 13),(8, 13),(9, 13),(10, 13),(11, 13) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)

(7, 13),(8, 13),(9, 13),(10, 13),(11, 13) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)

(12, 13) (60, 20, 0.1, 0.05, 10�4) (0.3, 0.2)

(12, 13) (60, 20, 0.1, 0.05, 10�4) (0.3, 0.2)

(0, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)

(2, 1),(3, 1),(4, 1),(5, 1),(6, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)

(7, 1),(8, 1),(9, 1),(10, 1),(11, 1),(12, 1),(13, 1) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)

(0, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)

(2, 1),(3, 1),(4, 1),(5, 1),(6, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)

(7, 1),(8, 1),(9, 1),(10, 1),(11, 1),(12, 1),(13, 1) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)

Table 5.1: Parameters of the 52 services using the NSFNET backbone.

82

82.2

82.4

82.6

82.8

83

83.2

83.4

83.6

83.8

84

5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

Time

THROUGHPUT vs Time

SEL.HOP
SEL.UTIL

SEL.UTIL_HOP

Figure 5.3: Total throughput versus time for the NSFNET backbone.

38

0.095

0.1

0.105

0.11

0.115

0.12

5 10 15 20 25 30 35 40 45 50

B
lo

ck
in

g
pr

ob
ab

ili
ty

Time

BLOCKING PROBABILITY vs Time

SEL.HOP
SEL.UTIL

SEL.UTIL_HOP

Figure 5.4: Blocking probability versus time for the NSFNET backbone.

39

Chapter 6

Quasi-Static Evaluation of a Type-of-Service

Datagram Network

6.1 Introduction

With the increasing diversity of network applications, it has become crucial for networks, such as

the Internet, to o�er various services, including best-e�ort services and guaranteed services. A

guaranteed service provides bounds on performance. A best-e�ort service can provide qualitatively

better service, but without the quantitative bounds of a guaranteed service [93]. The Internet

Protocol (IP) currently provides only best-e�ort services. Extensive e�ort is underway to extend

IP to support other services [16, 22, 93].

The focus of this and the next chapter is the provision of di�erent type-of-service (TOS) classes

of best-e�ort service. To o�er various TOS requirements, e.g. low delay or high throughput, a

network's routing protocol should be able to determine appropriate routes for each TOS class. We

are concerned here with next-hop (or datagram) routing, because it has proved to be a simple and

robust way to do adaptive routing of best-e�ort tra�c [78, 60]. Source (or virtual-circuit) routing

on the other hand is often used for guaranteed services.

Next-hop TOS routing is done as follows. Each node maintains for each destination node and

TOS class, a neighboring node id, referred to as the next-hop. Every data packet header contains

its destination id and the TOS class of the application. When a node receives a data packet, it

forwards the packet to the next-hop for the packet's destination and TOS class. The objective of

the routing protocol is to choose next-hops so that the resulting routes satisfy the requested type

of service. The quality of service o�ered by a route depends on the tra�c through its links, which

depends on the time-varying external load. Consequently, a routing protocol must monitor link

tra�c changes and adapt its next-hops. To do this, each node maintains for each outgoing link and

TOS class, a dynamic link cost, which is updated regularly according to the tra�c owing through

the link. This link cost information is regularly disseminated to nodes of the network. Based on

received link cost information, each node maintains and regularly updates its next-hop for each

40

destination and TOS class.

The IP layer of the Internet Protocol suite speci�es di�erent TOS classes [5]. Among them

are the minimum delay service required for example by interactive tra�c or real-time tra�c, and

the maximum throughput service required for example by bulk transfers such as network mail or

FTP. Routing protocols such as the Internet OSPF [83] and the OSI IS-IS [18] provide separate

next-hops for each TOS class. However, the TOS mechanism has been so far of little use, and little

is known on how well it would work in practice. In addition, many current routing protocols use

static link costs, typically con�gured by the network administrator and responding only to failures

and recoveries.

To our knowledge, only one approach to adaptive TOS routing has been proposed [38]. This

approach, henceforth called TOS1, considers two TOS classes: low delay and high throughput. We

refer to tra�c of the former class as delay-sensitive tra�c, and of the latter class as throughput-

sensitive tra�c. TOS1 uses measured link delays as the link costs for the delay-sensitive tra�c

(delay-based routing). It uses link utilizations, or equivalently available link capacities, as the link

costs for the throughput-sensitive tra�c (utilization-based routing). In TOS1, each node maintains

for each outgoing link, a single FCFS queue of data packets; that is, packets of every TOS class

share this queue. Reference [38] refers to simulation studies but does not present any quantitative

results.

Traditionally, link queueing has been the FCFS discipline. It appears desirable to use a more

structured queueing discipline that helps \isolate" the di�erent TOS classes, for example, by using

a separate queue for each TOS class. This concept of isolating tra�c classes using structured

queueing disciplines has been used recently in ow control studies, e.g. [26, 58, 14, 89, 34]. Here,

we investigate the use of a structured queueing discipline with adaptive next-hop TOS routing.

Our approach

We consider the following simple link scheduling discipline, henceforth referred to as TOS queue-

ing. We consider two TOS classes: low delay and high throughput. Each node maintains two

FCFS queues for each outgoing link, one for each TOS class. The link bandwidth is allocated

equally between the two queues in a round-robin fashion. (This is similar to the fair-queueing

discipline [26], except that the link bandwidth is divided equally amongst the TOS classes rather

than the connections using the link.)

For any link, the link cost for delay-sensitive tra�c is obtained by exponentially averaging the

measured delay that is experienced by delay-sensitive packets only. The link cost for throughput-

sensitive tra�c is obtained by exponentially averaging the measured utilization of the link, i.e.

accounting for both delay-sensitive and throughput-sensitive packets. Henceforth, we refer to our

approach as TOS2.

Our discrete-event simulations on a subset of the NSFNET-T1-Backbone topology show that

41

TOS2 performs signi�cantly better than TOS1 in a typical situation [52] where the proportion of

delay-sensitive tra�c is small compared to the throughput-sensitive tra�c. As expected, TOS2

achieves a lower end-to-end delay for delay-sensitive packets since it e�ectively gives them higher

priority. Unexpectedly, TOS2 also yields a lower overall end-to-end delay.

We argue that this is because TOS2 achieves signi�cantly improved routing by exploiting the

scheduling structure of TOS queueing when calculating link costs. In particular, the routes of the

two tra�c classes can be isolated with the delay-sensitive tra�c taking the low delay routes, and

the throughput-sensitive tra�c taking the under-utilized routes. This results in a better overall

network performance.

In fact, we �nd that a non-TOS scheme, which does not distinguish between the two types of

tra�c and applies utilization link cost to both, referred to as UTIL, performs signi�cantly better

than TOS1 at high load.

To gain more insight into the system behaviors of TOS1 and TOS2, we analyze a simple quasi-

static model of a single source-destination node pair connected by two parallel paths, the �rst path

representing low delay routes and the second path representing high capacity routes. We view this

system as a dynamical system [10]. We represent isolation by a stable state where all delay-sensitive

tra�c stays on the �rst path and all throughput-sensitive tra�c stays on the second path. We apply

the Liapunov function method to derive stability theorems. We show that for certain parameter

values, the isolation state provides the best delay performance for both tra�c classes. We also

show that TOS2 has a larger stability region corresponding to isolation than TOS1. Starting at

a state outside this stability region would lead to simultaneous route oscillations for both tra�c

classes resulting in a bad delay performance.

Section 6.2 describes our discrete-event simulation model and results. Section 6.3 gives our

quasi-static model. The stability analysis of this model is presented in Chapter 7. Appendix A

describes details of the simulations, including performance measures, scenarios, and plots. Ap-

pendix B contains details of a derivation.

6.2 Discrete-Event Simulations

Our simulation studies were done with a discrete-event simulator, MaRS [3], which has been used

for other studies of routing algorithms [95, 94]. Subsection 6.2.1 describes the simulation model.

Subsection 6.2.2 presents general observations about the results.

6.2.1 Model

Regarding the physical network, we consider the \East coast" subset of the NSFNET-T1-Backbone.

Figure 6.1 illustrates the topology. Link propagation delays in milliseconds are indicated.

We have two versions: a low-speed version (with NSFNET-T1 parameters) and a high-speed

42

9

8

5

4

14

5

8

7

5

Figure 6.1: The \East coast" subset of the NSFNET-T1-Backbone (7 nodes, 9 bidirectional links).

version. There are no link or node failures. All nodes have adequate bu�er space for bu�ering

packets awaiting processing and forwarding.

Regarding link scheduling, we consider two disciplines for the scheduling of data packets over

the links: FCFS and TOS queueing. Both TOS1 and UTIL use FCFS queueing. TOS2 uses TOS

queueing. In all schemes, routing packets have priority over data packets; i.e. data packets can be

scheduled for transmission only if there are no routing packets present.

Regarding routing, we consider a link-state algorithm like SPF (Shortest Path First) used in

the ARPANET [78] and OSPF (Open SPF) used in the Internet [83]. Each node maintains a time-

varying cost (explained below) for each outgoing link and TOS class. Each node also maintains

a view of the network topology, with a cost for each TOS class and link in the network. To

keep these views up-to-date, each node regularly broadcasts the link costs of its outgoing links

to all other nodes using ooding. As a node receives this information, it updates its view of the

network topology and applies Dijkstra's shortest path algorithm [28] to choose its next-hop for each

destination and TOS class. (Using a more scalable mechanism to disseminate link costs would not

a�ect our conclusions.)

The method used to compute link costs for each TOS class depends on the link scheduling

discipline. In all cases, each node's outgoing link costs are updated regularly. A link cost is always

a simple moving average of a \raw cost", which is some measure of current link tra�c.

In TOS1 and TOS2, each node maintains the following two raw-costs for each outgoing link:

� RawUtilization: percentage of time the communication channel is busy transmitting a

packet; and

� RawDelay: In TOS1, this is the average packet delay (queueing, transmission, and propaga-

tion) in milliseconds as experienced by all data packets. In TOS2, this is the average delay

43

in milliseconds as experienced by delay-sensitive packets only.

Let LinkCost(D) and LinkCost(T) denote the link cost for delay-sensitive and throughput-

sensitive tra�c, respectively. Then at the end of each update interval, they are updated as follows:

LinkCost(D) := b�RawDelay + (1� b)� LinkCost(D)

LinkCost(T) := b�RawUtilization+ (1� b)� LinkCost(T)

where the constant b satis�es 0 < b < 1.

Recall that UTIL does not use any TOS facility. The utilization metric is used to compute one

next-hop for both TOS classes, i.e. LinkCost(T) is used for all tra�c.

With a utilization-based link cost metric, it seems natural to de�ne the cost of a path as the

minimum available link bandwidth (or equivalently, highest link utilization) of the links along the

path. However, we found that such a path-cost metric leads to large routing oscillations and

instability even at low workload. Therefore, we set the path-cost metric to the sum of the link

costs along the path from the source node to the destination node and use Dijkstra's shortest path

algorithm as in [42]. (For each of these two path-cost metrics, it is easy to come up with static

scenarios where it outperforms the other.)

Regarding workload, this is de�ned in terms of hsource node, destination nodei pairs. In each

pair, the source produces data packets to be delivered to the destination. A source produces data

packets according to a packet-train model [51]. The workload consists of two parts, a delay-sensitive

workload and a throughput-sensitive workload. For both parts, we use a uniform distribution of

source-destination pairs over the nodes of the network. Let parameter U(D) (U(T)) denote the

average number of source-destination pairs between every two nodes for delay-sensitive (throughput-

sensitive) tra�c. We have also investigated skewed distribution of source-destination pairs and

obtained similar results.

6.2.2 Observations

In this subsection, we present general observations about the simulation results. Detailed de-

scriptions of scenarios simulated and plots of the observed performance measures are given in

Appendix A.

In every scenario, the system behaves in a manner typical of open queueing networks [63]. That

is, the throughput equals the workload as long as the workload is less than the system capacity; for

workload higher than the system capacity the system is unstable. With increasing workload, the

delay increases at �rst slowly until a point where the system starts becoming saturated; we refer to

this point as the saturation point. Further increase in the workload beyond this point causes the

delay to increase dramatically (with increasing rate) until the system becomes unstable.

44

Fixing U(D) and varying U(T) in a range where the delay-sensitive tra�c constitutes almost

25%-30% of the total tra�c, we found that TOS2 performs signi�cantly better than TOS1 with

respect to delays; TOS1 reaches saturation sooner. See Figure 6.2.

Delay

U (T)

TOS1

UTIL

TOS2

Figure 6.2: A generic plot. Delay versus U(T) for a �xed U(D).

Our explanation is as follows: It is well known that delay-based routing does not perform

well at high load when queueing delay is a signi�cant part of measured link delay, which consists

of queueing, transmission, and propagation delays [60, 42, 13]. This is mainly because from the

classical delay-utilization curve, around saturation, a small increase in utilization corresponds to

a large increase in link delay. This dramatic change can result in the link becoming unattractive

and thus being avoided by all delay-sensitive sources. Consequently, at the next routing update

the link reports a very low cost and becomes attractive again. This leads to oscillatory behavior,

which in turn degrades performance [60]. This is the case with TOS1 due to the use of the FCFS

link scheduling discipline.

In TOS2, because delay-sensitive packets have a lower queueing delay under type-of-service

queueing [26], the measured link delay becomes dominated by transmission and propagation delays.

Thus, the reported delay link costs do not change dramatically and the delay metric remains a good

indicator of expected link delay after updating the routes [60]. This improves the performance of

delay-based routing of delay-sensitive packets and results in more stable routes for that tra�c class.

Meanwhile, the link utilization metric makes the throughput-sensitive tra�c move away from the

delay-sensitive tra�c, taking the under-utilized routes. This has the e�ect of isolating the two

tra�c classes, resulting in a better overall network performance.

Intuitively, isolation is desirable since otherwise it becomes more likely that both tra�c classes

will move away from a highly loaded link (i.e. with high delay and utilization) at the same routing

update. Such simultaneous tra�c shifts degrade the overall performance, and in particular result

45

in a higher delay and network under-utilization.

Ignoring low values of U(T), UTIL also provides lower delays than TOS1. However, UTIL

performs worse than TOS2 over the whole range of U(T). This is expected, since the utilization-

based metric does not necessarily result in minimum delay routes, especially at light load [60].

6.3 Quasi-Static Model

In this section, we consider a simple network model to gain more insight into the complicated

behaviors of TOS1 and TOS2. We analyze the model in Chapter 7.

We model a network by a source node sending tra�c to a destination node along two paths.

Path 1 represents low delay routes, and path 2 represents high capacity routes. Path i (i = 1; 2)

has propagation delay Pi time units and average transmission capacity Ci packets/time unit. There

are N delay-sensitive connections, and M throughput-sensitive connections from the source node

to the destination node. For every connection, packets originate at the source node according to

a Poisson process, and without loss of generality we assume an arrival rate of 1 packet/time unit

(alternatively we could think of the x's and y's below as the total arrival rates).

At any instant, we describe the state of the network by the tuple (x; y), where x is the number

of delay-sensitive connections on path 1, and y is the number of throughput-sensitive connections

on path 1. To model routing updates, we use a discrete-time ow approach as in [12]. We assume

that (some or all) connections periodically update their routes to the destination node every 4
time units, where 4 is long enough for the network to reach steady-state after a routing update.

Routes, and hence the network state, are updated at discrete time instants (k+1)4, k = 0; 1; 2; � � �.
Let (xk; yk) be the network state immediately after time k4. At an update instant (k + 1)4, we
use steady-stateM=M=1 results [63] to estimate link costs based on (xk; yk). Using these link costs,

routes are updated and consequently the new network state (xk+1; yk+1) is obtained.

We denote by Ti;k+1 and �i;k+1 the delay and utilization cost of path i, respectively, at time

(k+ 1)4. Recall that for an M=M=1 queue with o�ered ow f and service rate � (> f), the delay

(queueing + service) equals 1=(�� f) and the utilization equals f=�.

For TOS1, with a FCFS discipline at the source node, we can write the delay link costs as

follows:

T1;k+1 =
1

C1 � (xk + yk)
+ P1

T2;k+1 =
1

C2 � (�xk + �yk)
+ P2

(6.1)

where �xk = N � xk and �yk = M � yk denote the number of delay-sensitive connections and the

number of throughput-sensitive connections, respectively, on path 2.

46

The utilization link costs are

�1;k+1 =
xk + yk
C1

�2;k+1 =
�xk + �yk
C2

(6.2)

The network state is updated using the costs of the two paths as follows:

xk+1 =

(
(1� �k) xk if T2;k+1 < T1;k+1

xk + �k �xk otherwise

yk+1 =

(
(1� �k) yk if �2;k+1 � �1;k+1

yk + �k �yk otherwise

(6.3)

The parameter �k (0 < �k � 1) reects the amount of tra�c rerouted. It can also be thought

of as the degree of routing update synchronization at di�erent nodes. Unless otherwise indicated,

we assume that �k is uniformly distributed over [�MIN ; �MAX], where �MAX � �MIN = 0:2, and

0:1 < �MAX+�MIN
2 � 0:9.

For TOS2, with TOS queueing at the source node, the two queues at an output link are

correlated, which makes the analysis di�cult. A number of approximate solutions for such systems,

referred to as 1-limited polling systems, have been proposed. (See [99] for a good survey.) One

common approach is to approximate the system by two loosely-coupled M=M=1 queues [81, 108].

The service rate of each queue depends on the utilization of the other queue.

De�ne Ce�
i;k as the e�ective capacity available for the delay-sensitive tra�c on path i after time

k4. We have

C
e�

i;k � 0:5Ci (6.4)

with the worst case occurring when the other queue is always not empty. Assuming each queue is

M=M=1, we obtain the following (details in Appendix B):

C
e�

1;k =
(C1 � 0:5(yk � xk)) +

p
(C1 � 0:5(yk � xk))2 � 2C1xk
2

Ce�
2;k =

(C2 � 0:5(�yk � �xk)) +
p
(C2 � 0:5(�yk � �xk))2 � 2C2�xk
2

(6.5)

Thus we have the following delay link costs with type-of-service queueing:

T1;k+1 =
1

Ce�
1;k � xk

+ P1

T2;k+1 =
1

Ce�
2;k � �xk

+ P2

(6.6)

47

The utilization link costs are as de�ned in (6.2). The network state is updated as in (6.3).

We refer to the iteration de�ned in (6.3) as I , i.e. (xk+1; yk+1) = I(xk; yk). I is a mapping

from a set G into itself, where G = f(x; y) : 0 � x � N ^ 0 � y � Mg. The sequence of points

(x1; y1); (x2; y2); : : : is called the trajectory of the system [65, 86]. The trajectory may or may

not converge to a �xed point (x�; y�), i.e. (x�; y�) = I(x�; y�). The convergence to a �xed point

indicates that the system stabilizes into a particular routing pattern, i.e. a particular amount of

tra�c routed for each class on each path. On the other hand, non-convergence indicates that the

system oscillates between di�erent routing patterns (or has chaotic behavior). Note that I is not a

continuous mapping, and well-known theorems for convergence requiring this property cannot be

directly applied [61].

We represent isolation by a stable state where every delay-sensitive connection stays on path 1,

and every throughput-sensitive connection stays on path 2. This is equivalent to say that our

iterative method converges to the �xed point (N; 0). In the next chapter, we �rst derive su�cient

conditions for the system to reach isolation as a function of the starting state. (In a real network,

the starting state would be the result of arrivals of new connections, departures of old connec-

tions, failure/recovery of links, etc.) We then obtain less re�ned su�cient conditions for isolation,

independent of the starting state.

48

Chapter 7

Analysis of Quasi-Static Model

In this chapter, we analyze the quasi-static analytical model presented in Section 6.3. In Section 7.1,

we apply the Liapunov function method to derive stability conditions for the routes of the two tra�c

classes under both TOS1 and TOS2. We conclude with some remarks in Section 7.2. Appendix C

contains details of proofs.

7.1 Stability Analysis

We use the Liapunov function method [86] to obtain su�cient conditions for stability and conver-

gence to a �xed point without actually solving the system equations. The basic idea is to �nd a

positive-de�nite scalar function V (S), where S is the system state, such that its forward di�erence

4V (S) taken along a trajectory is always negative. V (S) is said to be a Liapunov function, and is

regarded as a measure of the distance of the state S from the �xed point. As time increases, V (S)

decreases and �nally shrinks to zero, i.e. the �xed point is approached.

It is more convenient to deal with the �xed point (0; 0) rather than (N; 0). Thus, we de�ne the

network state by (�x; y) instead of (x; y). Then, the iteration I de�ned in (6.3) becomes:

�xk+1 =

(
(1� �k) �xk if T1;k+1 � T2;k+1

�xk + �k xk otherwise

yk+1 =

(
(1� �k) yk if �2;k+1 � �1;k+1

yk + �k �yk otherwise

(7.1)

Combining (6.1), (6.2), and (7.1), the system behavior with TOS1 is described by the following:

�xk+1 = (1� �k) �xk + �k N �k

yk+1 = (1� �k) yk + �k M �k

(7.2)

49

where

�k =

8<
: 0 1

C1�N+(�xk�yk)
+ P1 � 1

C2�M�(�xk�yk)
+ P2

1 otherwise

�k =

(
0 M+(�xk�yk)

C2
� N�(�xk�yk)

C1

1 otherwise

(7.3)

At the �xed point (which is now the origin), �xk ! 0; �xk+1 ! 0; yk ! 0; and yk+1 ! 0.

Consequently, for the equations (7.2) to be satis�ed, �k ! 0 and �k ! 0, which imply the following

necessary (but not su�cient) conditions for convergence to the origin:

1

C1 �N + P1 � 1

C2 �M + P2

M

C2
� N

C1

(7.4)

De�ne D1 = f(�x; y) : 1
C1�N+(�x�y) + P1 � 1

C2�M�(�x�y) + P2 ^ M+(�x�y)
C2

� N�(�x�y)
C1

^ 0 � �x �
N ^ 0 � y �Mg. See Figure 7.1.1

N
x

y

M

1

C1 (x + y)
+ P1

1

C2
+ P2

C2

x + y

C1

x + y

x + y()

=

=

Domain of attraction D1Area A

Area B

T1T2
T2T1

ρ ρ

ρ ρ

2 1

1 2

(and)

ρ ρ
2 1and)

(

T1
T2(and)

Figure 7.1: Domain of attraction for TOS1.

De�ne the scalar function V (�x; y):

V (�x; y) = �x2 + y2 (7.5)

1Although the equation of the left boundary of the domain D1 is quadratic in x and y, the resulting solution turns

out to be a straight line because one of the roots is infeasible. This is con�rmed by monte-carlo simulations. See

numerical example in Subsection 7.1.1.

50

We show that V (�x; y) is a Liapunov function in D1, which implies that starting from any point in

D1, the trajectory stays inside D1, and converges to the origin.

Lemma 7.1.1 V (�x; y) is a Liapunov function in D1. That is: V (�x; y) is positive de�nite; and for

all (�xk; yk) � D1 � f(0; 0)g, 4V (�xk; yk) < 0 and (�xk+1; yk+1) � D1: 2

Proof. Since V (�x; y) > 0 for all (�x; y) 6= (0; 0) and V (0; 0) = 0, then V (�x; y) is positive de�nite.

The forward di�erence 4V (�xk; yk) is computed as follows.

4V (�xk; yk) = V (�xk+1; yk+1)� V (�xk; yk)

= ((1� �k) �xk + �k N �k)
2 +

((1� �k) yk + �k M �k)
2 �

(�x2k + y2k)

= �[1� (1� �k)2] �x2k �
[1� (1� �k)

2] y2k +

(�k N �k)
2 + (�k M �k)

2 +

2(1� �k) �k N �xk �k +

2(1� �k) �k M yk �k (7.6)

Consider a point (�xk; yk) � D1 � f(0; 0)g. Then �k = �k = 0. From equation (7.6), since 0 <

[1 � (1 � �k)
2] � 1, we have 4V (�xk; yk) < 0. (This is true regardless of the randomness of �k .)

Substituting �k = �k = 0 in equations (7.2), we get �xk+1 � yk+1 = (1� �k)(�xk � yk).
Consider the case where �xk � yk < 0. Since 0 � (1��k) < 1, we have 1

C1�N+(�xk+1�yk+1)
+P1 <

1
C1�N+(�xk�yk)

+P1, and
1

C2�M�(�xk�yk)
+P2 <

1
C2�M�(�xk+1�yk+1)

+P2. Hence, since
1

C1�N+(�xk�yk)
+

P1 � 1
C2�M�(�xk�yk)

+ P2, we see that
1

C1�N+(�xk+1�yk+1)
+ P1 � 1

C2�M�(�xk+1�yk+1)
+ P2.

Now, consider the case where �xk � yk > 0. We have 1
C1�N+(�xk�yk)

+ P1 < 1
C1�N

+ P1, and
1

C2�M
+ P2 <

1
C2�M�(�xk�yk)

+ P2. Since 0 � (1 � �k) < 1, and 1
C1�N

+ P1 � 1
C2�M

+ P2 from

equation (7.4), we see that 1
C1�N+(�xk+1�yk+1)

+ P1 � 1
C2�M�(�xk+1�yk+1)

+ P2.

Similarly, we see that M+(�xk+1�yk+1)
C2

� N�(�xk+1�yk+1)
C1

. Therefore, (�xk+1; yk+1) � D1, and �k+1 =

�k+1 = 0. Consequently, starting at any point in D1, the trajectory stays inside D1 approaching

the origin (as shown in Figure 7.1). 2

From lemma 7.1.1 and the Liapunov stability theory [86], we have the following theorem:

Theorem 7.1.1 For TOS1, any starting state in D1 (the shaded area in Figure 7.1) leads to the

origin, regardless of the values of �k : 2

The region D1 is called domain of attraction corresponding to the origin [10, 61] because it

constitutes a set of starting states for which the iteration converges to the origin. In D1, the

iteration is said to be a contraction, since V (�xk+1; yk+1) < V (�xk; yk) for all (�xk; yk) 6= (0; 0) along

51

the trajectory. It is important to observe that the domain of attraction contains all the system

states for which T1 � T2 and �2 � �1. Also, note that starting at any point in D1, �k = �k = 0 for

all (�xk; yk) along the trajectory.

With TOS2, the system behavior is described by the same di�erence equations (7.2) except that

�k is de�ned as

�k =

8<
:

0 if 1

C
e�
1;k

�N+�xk
+ P1 � 1

C
e�
2;k

��xk
+ P2

1 otherwise

At the �xed point, xk ! N; �xk ! 0, yk ! 0; �yk ! M . Then, from equations (6.5), we have

Ce�
2;k ! C2 � 0:5M , and Ce�

1;k ! C1. For equations (7.2) to be satis�ed at the �xed point, �k ! 0

and �k ! 0. Then necessary conditions for convergence to the origin are:

1

C1 �N
+ P1 � 1

C2 � 0:5M
+ P2

M

C2
� N

C1

(7.7)

As we have done with TOS1, we want to show that V (�x; y), de�ned in (7.5), is a Liapunov

function in some region around the origin. Call this region D2. The goal is to show that starting

at any point in D2, �k = �k = 0 for all (�xk; yk) along the trajectory.
1

C
e�
1;k

�N+�xk
+ P1 � 1

C
e�
2;k

��xk
+ P2 implies �k = 0. M+(�xk�yk)

C2
� N�(�xk�yk)

C1
implies �k = 0.

Because the expressions for Ce�
i;k are hard to work with, we try to �nd simpler expressions, say

Csimp
i;k , such that 1

C
e�
1;k

�N+�xk
+ P1 � 1

C
simp
1;k

�N+�xk
+ P1, and

1

C
simp
2;k

��xk
+ P2 � 1

C
e�
2;k

��xk
+ P2 (then

1

C
simp
1;k

�N+�xk
+P1 � 1

C
simp
2;k

��xk
+P2 implies �k = 0). We would then de�ne D2 = f(�x; y) : 1

C
simp
1

�N+�x
+

P1 � 1

C
simp
2 ��x

+ P2 ^ M+(�x�y)
C2

� N�(�x�y)
C1

^ 0 � �x � N ^ 0 � y � Mg, and attempt to show

that V (�x; y), de�ned in (7.5), is a Liapunov function in D2.

To do this, we need an upper bound on Ce�

2;k , and a lower bound on Ce�

1;k . From equations (6.5),

we see that Ce�
2;k � C2 � 0:5(�yk � �xk). We could not �nd an appropriate lower bound on Ce�

1;k . So

we made the approximation Ce�
1;k � C1 � 0:5yk (the accuracy of this is discussed below).

We thus have D2 = f(�x; y) : 1
(C1�0:5y)�N+�x+P1 � 1

(C2�0:5(�y��x))��x+P2 ^ M+(�x�y)
C2

� N�(�x�y)
C1

^
0 � �x � N ^ 0 � y �Mg. Figure 7.2 depicts this region.
Lemma 7.1.2 Assuming Ce�

1;k � C1 � 0:5yk, V (�x; y) is a Liapunov function in D2: 2

The proof of the above lemma is similar to the proof of Lemma 7.1.1, and is given in Appendix C.

From lemma 7.1.2 and the Liapunov stability theory [86], we have the following theorem:

Theorem 7.1.2 For TOS2, assuming Ce�
1;k � C1�0:5yk, any starting state in D2 (the shaded area

in Figure 7.2) leads to the origin, regardless of the values of �k: 2

52

N

M

x

y

C2

x + y

C
1

1

0.5 C1 x
+ P1

1

C2

+ P2
()

_
+ 0.5 x _ x

_

x + y

1
+ P1

1
+ P2=

(C
1

0.5 y) x

C2(_ _0.5 (y x)) _ x

=

=

Domain of attraction D2

_ _

_

Figure 7.2: Domain of attraction for TOS2.

7.1.1 E�ect of �k on system behavior

The domains of attraction we have just found (cf. Theorems 7.1.1 and 7.1.2) are not the largest,

i.e. there may be points outside the domains which lead to the origin. This depends on the values

of �k . In particular, the domains are indeed largest for high enough values of �k. On the other

hand, they are not for small values of �k . The following theorem shows this for TOS1. The proof

is given in Appendix C.

Theorem 7.1.3 For TOS1, starting at any point in area A or area B (Figure 7.1), the following

hold:

(i) If �MIN > max(N�L1

M+N ;
M+L2

M+N) then the iteration does not converge to the origin and locks

into a limit cycle oscillating between states in areas A and B.

(ii) If �MAX � min(L2

N ; �L1

M) then the iteration converges to the origin.

where

L1 =
H S � 2 +

p
(H S � 2)2 + 4 H [H (C1 �N) (C2 �M) + S]

2H
H = P1 � P2

S = C2 �M � C1 +N

L2 =
C2N � C1M

C1 + C2

2

Theorem 7.1.3 indicates that for high enough values of �k , the system may not converge to

isolation, and rather oscillates with both tra�c classes shifting simultaneously at each routing

53

update. Such simultaneous tra�c shifts result in a bad performance, i.e. higher delay and network

under-utilization. This e�ect increases as �k increases. (In practice, �k depend on several factors,

and can be quite high [36].)

Consider the simple case where �k = 1, for all k. It can be seen that isolation, whenever

possible2 , provides the optimal performance for both tra�c classes [30]. In this case, we are

constrained to use a single path for each tra�c class. Thus, in order to maximize the throughput

of the throughput-sensitive tra�c, we should send its packets over the maximum capacity link, i.e.

path 2. Then, in order to minimize the packet delay of the delay-sensitive tra�c, we should send

its packets over the minimum packet delay link, i.e. path 1. Note that routing the delay-sensitive

tra�c (also) on path 2 would result in a higher delay compared to the delay of (the unused) path 1.

Note that the above result agrees with our argument about the bene�ts of isolation, which was

made in Section 6.2.2.

Referring to Figures 7.1 and 7.2, we can conclude that for high enough �k, TOS2 has a larger

domain of attraction corresponding to isolation than TOS1. This conclusion is not a�ected by our

approximation Ce�
1;k � C1 � 0:5yk, which was made in Theorem 7.1.2 for TOS2. In fact, it can be

shown that Ce�
1;k � C1� 0:5yk. Regardless of that, we found that our approximation is only slightly

optimistic. In particular, our monte-carlo simulations [75, 73] show that starting at any point in

D2 satisfying 1
0:5C1�N+�x + P1 � 1

(C2+0:5�x)��x + P2, the iteration indeed leads to the origin. Those

points also satisfy 1
(C1�0:5y)�N+�x +P1 � 1

(C2�0:5(�y��x))��x +P2. This is because
1

(C1�0:5y)�N+�x +P1 �
1

0:5C1�N+�x+P1 (with equality occurring when y = C1), and
1

(C2+0:5�x)��x+P2 � 1
(C2�0:5(�y��x))��x+P2.

Some points in D2 not satisfying
1

0:5C1�N+�x + P1 � 1
(C2+0:5�x)��x + P2 may not, however, lead to the

origin. Such points constitute a small part of D2, and hence the approximation does not a�ect our

conclusion that TOS2 has a larger domain of attraction corresponding to isolation. In particular,

isolation occurs for higher values of y0 with TOS2 than with TOS1.

Figures 7.3 and 7.4 show the domains of attraction corresponding to isolation for TOS1 and

TOS2, respectively, obtained by monte-carlo simulations for C1 = 30; C2 = 50; P1 = 0:5; P2 =

1; N = 20;M = 30; and �k � [0:8; 1].

Theorem 7.1.3 also indicates that for small enough values of �k , the system reaches isolation for

all starting states and for all system con�gurations satisfying the necessary conditions for isolation.

Figure 7.5 depicts the load region, i.e. values of (N;M), de�ned by f(N;M) : 1
C1�N

+ P1 �
1
C2

+ P2 ^ M
C2
� N

C1
g. In this region, the necessary conditions for isolation, de�ned in (7.4)

and (7.7), for both TOS1 and TOS2 are satis�ed. This region thus de�nes su�cient conditions to

reach isolation for low enough �k for both TOS1 and TOS2. This is in agreement with our monte-

carlo simulations obtained in [75, 73] which also show that in this region, TOS2 gives much better

2Which means that the necessary conditions to reach isolation are satis�ed, i.e. the delay of path 1 carrying all

delay-sensitive tra�c is less than or equal the delay of path 2 carrying all throughput-sensitive tra�c, with path 2's

utilization being less than or equal path 1's utilization.

54

2.5 5 7.5 10 12.5 15 17.5 20
N - x0

5

10

15

20

25

30

y

Figure 7.3: Numerical example: Domain of attraction for TOS1.

transient performance than TOS1, i.e. less oscillations and much faster convergence to isolation

(future work remains to obtain transient measures analytically).

For C1 = 30; C2 = 50; P1 = 0:5; P2 = 1, and for low to moderate values of �k (�MAX � 0:6),

Figure 7.6 shows the values of N and M leading to isolation starting from any state (we consider

only values of N and M such that N +M < C1+C2). Figures 7.7 and 7.8 show the average delays

for TOS1 and TOS2, respectively, for N = 20;M = 25; x0 = 5; y0 = 10 and �k � [0:4; 0:6].

7.1.2 Su�cient conditions independent of the starting state

In Theorems 7.1.1 and 7.1.2, we derived su�cient conditions for the system to reach isolation

as a function of the starting state. Now, using these theorems, we derive su�cient conditions for

isolation independent of the starting state and the values of �k .3 Figure 7.9 depicts the load regions

de�ned by these su�cient conditions.

Theorem 7.1.4

(i) For TOS1, the conditions N + M � C1 � 1
(1
C2

+P2�P1)
and M

C2
� N

C1
(regions B and C in

Figure 7.9) are su�cient for isolation (regardless of the starting state and the values of �k).

3These conditions were obtained in [75, 73] in a di�erent way using a worst-case analysis.

55

2.5 5 7.5 10 12.5 15 17.5 20
N - x0

5

10

15

20

25

30

y

Figure 7.4: Numerical example: Domain of attraction for TOS2.

(ii) For TOS2, the corresponding conditions are N � 0:5C1� 1
(1
C2

+P2�P1)
and M

C2
� N

C1
(regions A

and C in Figure 7.9). 2

The proof of Theorem 7.1.4 is given in Appendix C. Referring to Figure 7.9, we observe that

for N less than 0:5C1 � 1
(1
C2

+P2�P1)
, TOS2 provides isolation (regardless of the starting state and

the values of �k) for higher values of M than TOS1. This e�ect becomes more pronounced as C2

increases.

Note that the conditions of Theorem 7.1.4 capture less information than the ones given by

Theorems 7.1.1 and 7.1.2; i.e. there can be a system con�guration that does not satisfy the su�cient

conditions of Theorem 7.1.4, but still reaches isolation for some starting states or values of �k.

7.2 Comments and Extensions

We found our proposed scheme, TOS2, very e�ective in providing lower end-to-end delays in a

typical situation where the proportion of delay-sensitive tra�c is small compared to the throughput-

sensitive tra�c. This is because our scheme, by using structured link queueing, reduces queueing

delays for the delay-sensitive tra�c, hence improving the performance of delay-based routing and

providing more stable routes for this tra�c. At the same time, the link utilization metric isolates

the throughput-sensitive tra�c which takes the under-utilized routes, resulting in a better overall

56

N

M

M

C2

N

C
1

N =

=

C1
_ 1

1

C2

+ P
2

_ P1

Figure 7.5: Load region for isolation for low enough �k for both TOS1 and TOS2.

network performance. In general, we have shown how in an integrated services environment, routing

with some form of non-FCFS scheduling support can provide signi�cant performance improvement.

We assumed unbounded bu�er space at the links. In practice, the bu�er space would have to

be allocated to the di�erent TOS classes. We would expect the same conclusions to hold. We also

assumed a datagram (best-e�ort) service model of the sort currently used in the Internet. Extensive

e�ort is currently underway to extend this Internet service model to support other services, including

guaranteed service [16, 22, 93]. In such an extended service environment, our �ndings would still

apply to tra�c classes requiring best-e�ort service. In addition, our approach appears scalable as

each router needs to maintain information only about each TOS class rather than each connection.

This also makes the implementation of the non-FCFS queueing discipline in the routers simple and

inexpensive.

It is obvious that TOS2 relies upon the delay-sensitive tra�c being a small proportion of the

overall tra�c. When the proportion of delay-sensitive tra�c is not small, TOS2 performs worse

than TOS1 because the delay-sensitive tra�c in TOS2 su�ers from higher queueing delay than in

TOS1 [72]. However, the performance of TOS2 can be restored by simply allowing, for example,

the delay-sensitive queue to get two turns for every turn of the throughput-sensitive queue. The

natural extension of this would be to give delay-sensitive packets absolute priority over throughput-

sensitive packets. However, giving delay-sensitive packets absolute priority may not be desirable

because throughput-sensitive packets may not get transmitted (i.e. blocked) causing queues of this

tra�c class to build up, and consequently providing low throughput for the tra�c class requesting

high throughput service. Future work remains to similarly analyze such situations and propose a

scheduling discipline that dynamically allocates turns to the TOS queues based on tra�c estimates.

There might be other possible approaches to adaptive next-hop TOS routing. One approach [109]

is to maintain for delay-sensitive tra�c two minimum propagation delay routes and use the sec-

ondary route when the primary route becomes congested. This approach attempts to avoid the bad

e�ect that queueing delay may have when it dominates measured link delay in delay-based routing.

57

10 20 30 40 50 60 70 80
N0

10

20

30

40

50

60

70

80
M

Figure 7.6: Numerical example: Load region for isolation at low to moderate �k for both TOS1

and TOS2.

However, it is not clear how to split the delay-sensitive tra�c between the two available routes

without causing severe oscillations while at the same time reducing queueing delays to provide a

low delay service. Further research is needed to explore this area.

It is interesting to observe the relationship between our work here and work in the virtual-circuit

literature. We took the concept of isolating link resources, often used in virtual-circuit models, and

applied it to a datagram model. This induced isolation of routes for the TOS classes, resulting in

an improved overall network performance. It would be interesting to see if the concept of route

isolation is also applicable in virtual-circuit models. A related idea in virtual-circuit models is the

packing of low-bandwidth connections over a subset of the routes leaving the remaining routes free

for high-bandwidth connections, thus in e�ect isolating both types of connections [45].

58

10 20 30 40 50

 Ave delay for delay traffic

0

1

2

3

4

5

6

10 20 30 40 50

 Ave delay for throughput traffic

0

1

2

3

4

5

6

Figure 7.7: Numerical example: Average delays versus time k for TOS1 (�k � [0.4, 0.6]).

10 20 30 40 50

 Ave delay for delay traffic

0

1

2

3

4

5

6

10 20 30 40 50

 Ave delay for throughput traffic

0

1

2

3

4

5

6

Figure 7.8: Numerical example: Average delays versus time k for TOS2 (�k � [0.4, 0.6]).

59

region A

region B

region C

M

N

M N
C

C
2

1

N + M C1

_ 1

1

C2

+ P _ P
2 1

N 0.5 C1

_ 1

1

C2

+ P _ P
2 1

=

=

= (TOS2)

(TOS1)

(TOS1, TOS2)

Figure 7.9: Load regions satisfying su�cient conditions for isolation independent of starting state.

60

Chapter 8

Conclusions and Future Research Directions

Integrated services networks have often been analyzed under steady-state conditions. In this dis-

sertation, we presented a numerical-analytical method, the Z-iteration, to rapidly evaluate detailed

and dynamic models of integrated services networks as well as other MCMR systems. Our results

indicate that the method gives approximate, yet accurate, instantaneous performance measures and

provides signi�cant computational savings over discrete-event simulation. We applied our method

to compare di�erent adaptive routing algorithms.

There are several areas for future work. One area is to examine routing schemes that distinguish

between di�erent types of tra�c (e.g., low-throughput voice and high-throughput video), computing

a di�erent set of routes for each type. For example, for a particular tra�c type with very stringent

QoS requirements, we could restrict the set of candidate paths to only minimum-hop paths, while

for other tra�c types the set could also include next-to-minimum-hop paths. One would examine

the capability of the routing scheme to distribute connections of each type in a way that increases

the network throughput, and also the responsiveness of the routing scheme to failures and repairs.

Another area is to examine admission controls, other than the complete-sharing policy, that

block some connection setup requests even if their admission is feasible, possibly in order to reduce

the chance of future blocking of connections of other types. In this case, blocking would occur at

more feasible states [104, 50].

Another area is to investigate policies other than the equal allocation policy for dividing the

end-to-end QoS requirement among the links of a route. These policies would take into account

the current link loads as measured in the last routing update period. Other QoS requirements such

as packet loss can be considered.

We plan to extend the numerical-analytical techniques embodied in the Z-iteration. Such tech-

niques are much needed in system design phase where a good compromise between accuracy and

speed is crucial. We intend to build evaluation tools for integrated networks and other complex

adaptive systems such as distributed operating systems.

In the last part of the dissertation, we presented a quasi-static model to analyze the behavior of

TOS schemes in datagram delivery systems. We obtained stability conditions using the Liapunov

61

function method. We showed how in an integrated services environment, routing with some form

of non-FCFS scheduling support can provide signi�cant performance improvement. We intend to

extend our analysis to obtain transient characteristics such as convergence time. Our analysis

demonstrates the interaction between adaptive routing and link scheduling. Future work is also

needed to explore the interaction between all components of the congestion control problem, namely,

scheduling, ow control, and routing, on more detailed network models with arbitrary topologies.

We intend to integrate quasi-static evaluation techniques into our Z-iteration based tools when-

ever appropriate. This would further reduce computation times while retaining accuracy.

We hope to use our tools to investigate issues in integrated networks that are not yet well

understood. We explain some of these issues below.

Internet-style versus virtual-path routing: There are two styles of virtual-circuit (VC) routing.

In Internet-style routing, VCs are routed over paths in the physical network topology. Admission

control is done on every physical link along the path provided by the routing component. In virtual-

path based routing, a virtual-path (VP) is typically speci�ed between every two end-systems and

set up over a sequence of physical links. Enough bandwidth is statically allocated to each VP so

that queueing occurs only at the �rst physical link of the VP. Several VPs can share the same

physical link. Thus, the physical network is transformed to a (logically) fully-connected network

of non-interacting VPs. VCs are then routed over one-hop and two-hop VPs, and thus admission

control is done on at most two physical links.

Obviously, admission control is much faster with VP based routing than with Internet-style

routing. However, the network may be under-utilized because of the potential loss of statistical

multiplexing due to the static allocation of resources to VPs [49]. This has led to attempts to

dynamically allocate resources to VPs [88]. However, depending on the rate at which the VP

resource allocations are varied compared to tra�c demands, this approach may not be e�ective or

may give rise to massive instability because of the strong interaction between VP resource allocation

and routing/admission control.

It is important to examine both routing styles, evaluating the tradeo�s between admission

control delay and network utilization. Large integrated networks (or internetworks) with non-

trivial connectivity introduce scalability issues to the problem. Scalable solutions exist with both

styles of routing (e.g. [11, 4, 2, 102, 64]). Future work is needed to examine such solutions and

determine conditions under which each solution is e�ective.

Multicast algorithms: Another issue to investigate is multicast algorithms, where the interaction

among the control components is much stronger than in unicast. Many algorithms have been

proposed to construct multicast paths, e.g. core-based algorithms [9]. It is not clear, however, how

they compare under conditions of dynamic workload and topology. Comparisons have often been

made only in terms of worst-case bounds or under static conditions. Clearly, we also do not know

how these various algorithms would compare when resource reservations are performed along the

multicast path to provide guaranteed services. What policies should we use to allocate resources on

62

the di�erent links, etc.? For example, how do these algorithms interact with reservation protocols

like RSVP [82].

Integration of wireless and wired networks: Another issue to investigate is the integration of

wireless and wired networks. In particular, it is interesting to investigate ways to extend qualities

of service over wireless segments. This is a challenging and open problem. Wireless networks have

unique characteristics related to loss, bandwidth, mobility, etc., which adds new dimensions to the

problem of QoS support [56, 66].

63

Appendix A

Simulation Details for Type-of-Service Datagram

Network

In this appendix, we describe the simulation parameters, and the performance measures. We also

give details of simulated scenarios and plots.

Parameters

All links have bandwidths of 1.5 Mbit/sec for the low-speed version, and 100 Mbit/sec for the

high-speed version. Each node's outgoing link costs are updated regularly, with inter-update time

uniformly distributed with mean 10 seconds [78] and standard deviation 1 second.1 The factor b,

used in the link cost calculation, is 0.8.2 A data source is represented as a Markov chain with

two states: a busy state and an idle state. In the busy state, the source produces a (geometrically

distributed) number of data packets with some constant inter-packet generation time. The source

then stays idle for an exponentially distributed duration before starting the transmission of the

next train (burst) of packets. (This tra�c model has been used in many studies, e.g. [107].) Unless

otherwise indicated, all sources have the following parameters: for the low-speed case, the data

packet length equals 128 bytes, the inter{packet generation time is 150 msec, the average train size

is 100 packets, and the average idle duration is 2 seconds (this corresponds to an average packet

rate of about 0.006 packet/msec.); for the high-speed case, the data packet length is 5000 bytes,

the inter{packet generation time is 50 msec, the average train size is 1000 packets, and the average

idle duration is 2 seconds (this corresponds to an average packet rate of about 0.02 packet/msec.).

1Update intervals at di�erent nodes are independent.

2We chose the factor 0.8 after experimenting with other values. A small value such as 0.5 makes the routing

algorithm adapt slowly. Whereas a high value such as 1.0 may result in an unstable behavior.

64

Performance Measures

We consider average measures of throughput, delay and load. An average measure is based on

statistics collected over a large measurement interval, which is the duration of the simulation

except for an initial \startup interval" (to eliminate transient e�ects due to empty initial network).

Thus:

� Throughput. Total number of data bytes received at destinations during the measurement

interval divided by the length of the measurement interval.

� Delay. Total delay of all data packets received at destinations during the measurement interval

divided by the number of those data packets, where delay of a data packet is de�ned to be the

time di�erence between sending a packet and receiving it at the corresponding destination.

� Data Load. Fraction of the network capacity, i.e. sum of all link capacities, used by data

packets during the measurement interval.

� Throughput(T). Total number of data bytes received at destinations for the throughput-

sensitive tra�c during the measurement interval divided by the length of the measurement

interval.

� Delay(D). Total delay of all delay-sensitive data packets received at destinations during the

measurement interval divided by the number of those data packets.

Results

Here, we present details of scenarios simulated along with plots of the observed (steady{state)

performance measures, namely throughput, delay, throughput(T), delay(D), and data load. In

our simulations, 95% con�dence intervals were computed using the method of independent replica-

tions [67, 97]. In particular, a measure, say x, is obtained as x1+x2+���+xn
n , where the x1; x2; : : : ; xn

are the measures obtained using the di�erent independent simulation runs. In all cases, the size of

the con�dence intervals is less than 2% of the mean.

We now present our simulation results. Although we show results only for uniform workload, we

obtained similar results for the skewed workload we investigated. We also obtained similar results

for workload that has di�erent parameters for each tra�c type. In case (C) below, we consider a

smaller packet size for the delay-sensitive sources, namely 64 bytes rather than 128 bytes. We have

scaled the delay plots for clarity, so delay values higher than 100 milliseconds are not shown.

65

(A) Low-speed, varying U(T), �xed U(D), equal packet sizes.

Figure A.1 shows delay(D) and delay versus U(T) in the range 20 to 26, for a �xed U(D) = 8.

The delay-sensitive tra�c constitutes almost 25% of the total tra�c. Ignoring di�erences at low

values of U(T), TOS1 performs the worst, becoming saturated around U(T) = 22 (corresponding

to almost 60% data load). Interestingly, UTIL which does not use any TOS facility performs better

than TOS1. TOS2 performs the best. At U(T) = 24, UTIL's delay is 53% higher than TOS2's,

and TOS1's delay is 1322% higher than TOS2's. Note that UTIL performs worse than TOS2 over

the whole range of U(T). At low values of U(T), UTIL performs the worst. At U(T) = 20, UTIL

has about 32% higher delay than both TOS2 and TOS1.

Figure A.2 shows data load, throughput(T), and throughput versus U(T). Observe that the

data load for TOS1 increases as TOS1 becomes saturated. This indicates the use of longer routes,

and consequently higher delay. Both throughput(T) and throughput increase linearly with the

workload, and they are the same for all schemes. This shows that the system is stable for all

schemes.

(B) High-speed, varying U(T), �xed U(D), equal packet sizes.

Figure A.3 shows delay(D) and delay versus U(T) in the range 8 to 18, for a �xed U(D) = 4.

The delay-sensitive tra�c constitutes almost 25% of the total tra�c. As observed in the low-speed

case (A), ignoring di�erences at low values of U(T), TOS2 performs the best, followed by UTIL,

and then TOS1. TOS1 reaches saturation sooner, around U(T) = 16 (corresponding to a data load

of almost 61%). TOS1 has about 758% higher delay than TOS2 at U(T) = 18. Note that for the

same data load, the di�erence in delay is less signi�cant than in case (A). This is due to the fact

that in a high-speed network, queueing delay is less signi�cant due to small transmission times.

For example, in the high-speed network, transmission time of the 5000-byte data packet on the

100Mbit/s link is 0.0004 sec. Whereas in the low-speed network, transmission time of the 128-byte

data packet on the 1.5Mbit/s link is 0.7 sec. This fact reduces the e�ect of bad oscillations inherent

in delay-based routing when queueing delays are signi�cant.

Figure A.4 shows data load, throughput(T) and throughput versus U(T). Again, as in case (A),

throughput(T) and throughput increase linearly with the workload for all schemes. Henceforth, we

do not show plots for throughput. We also do not show plots for UTIL since the utilization-based

metric, as we have observed, does not necessarily result in minimum delay routes.3

3We have also studied a non-TOS scheme similar to UTIL except that it uses the delay metric rather than the

utilization metric (i.e. LinkCost(D) is used for all tra�c); however we do not show plots for it since it performed

badly at heavy load, as expected.

66

(C) Low-speed, varying U(T), �xed U(D), unequal packet sizes.

Figure A.5 shows delay(D) and delay versus U(T) in the range 16 to 24, for a �xed U(D) = 16.

The delay-sensitive tra�c constitutes almost 28% of the total tra�c. As observed in (A), TOS2

performs better than TOS1. TOS1 reaches saturation sooner, around U(T) = 18 (corresponding

to a data load of almost 55%). TOS1 has about 1800% higher delay than TOS2 at U(T) = 20.

Figure A.6 shows data load versus U(T). Observe that TOS1 reaches saturation at a data load

which is smaller than in (A). This is because here delay-sensitive tra�c has smaller packet sizes,

thus su�ering higher delays with TOS1.

0

20

40

60

80

100

20 21 22 23 24 25 26

D
el

ay
(D

)
(m

se
c)

No of Source-Destination Pairs U(T)

DELAY(D) vs No of SOURCE-DESTINATION PAIRS U(T)

UTIL
TOS2
TOS1

0

20

40

60

80

100

20 21 22 23 24 25 26

D
el

ay
 (

m
se

c)

No of Source-Destination Pairs U(T)

DELAY vs No of SOURCE-DESTINATION PAIRS U(T)

UTIL
TOS2
TOS1

Figure A.1: Low-speed. Equal packet sizes. Delay(D) and delay vs U(T) for U(D) = 8.

54

56

58

60

62

64

66

68

70

72

74

20 21 22 23 24 25 26

D
at

a
L

oa
d

%

No of Source-Destination Pairs U(T)

DATA LOAD vs No of SOURCE-DESTINATION PAIRS U(T)

UTIL
TOS2
TOS1

600

650

700

750

800

850

900

950

1000

1050

1100

20 21 22 23 24 25 26

T
hr

ou
gh

pu
t (

by
te

s/
m

se
c)

No of Source-Destination Pairs U(T)

THROUGHPUT vs No of SOURCE-DESTINATION PAIRS U(T)

Throughput

Throughput(T)

UTIL
TOS2
TOS1

Figure A.2: Low-speed. Equal packet sizes. Data load and throughput vs U(T) for U(D) = 8.

67

0

20

40

60

80

100

8 10 12 14 16 18

D
el

ay
(D

)
(m

se
c)

No of Source-Destination Pairs U(T)

DELAY(D) vs No of SOURCE-DESTINATION PAIRS U(T)

UTIL
TOS2
TOS1

0

20

40

60

80

100

8 10 12 14 16 18

D
el

ay
 (

m
se

c)

No of Source-Destination Pairs U(T)

DELAY vs No of SOURCE-DESTINATION PAIRS U(T)

UTIL
TOS2
TOS1

Figure A.3: High-speed. Equal packet sizes. Delay(D) and delay vs U(T) for U(D) = 4.

35

40

45

50

55

60

65

70

8 10 12 14 16 18

D
at

a
L

oa
d

%

No of Source-Destination Pairs U(T)

DATA LOAD vs No of SOURCE-DESTINATION PAIRS U(T)

UTIL
TOS2
TOS1

30000

40000

50000

60000

70000

80000

90000

8 10 12 14 16 18

T
hr

ou
gh

pu
t (

by
te

s/
m

se
c)

No of Source-Destination Pairs U(T)

THROUGHPUT vs No of SOURCE-DESTINATION PAIRS U(T)

Throughput

Throughput(T)

UTIL
TOS2
TOS1

Figure A.4: High-speed. Equal packet sizes. Data load and throughput vs U(T) for U(D) = 4.

0

20

40

60

80

100

16 17 18 19 20 21 22 23 24

D
el

ay
(D

)
(m

se
c)

No of Source-Destination Pairs U(T)

DELAY(D) vs No of SOURCE-DESTINATION PAIRS U(T)

TOS2
TOS1

0

20

40

60

80

100

16 17 18 19 20 21 22 23 24

D
el

ay
 (

m
se

c)

No of Source-Destination Pairs U(T)

DELAY vs No of SOURCE-DESTINATION PAIRS U(T)

TOS2
TOS1

Figure A.5: Low-speed. Unequal packet sizes. Delay(D) and delay vs U(T) for U(D) = 16.

68

50

55

60

65

70

75

16 17 18 19 20 21 22 23 24

D
at

a
L

oa
d

%

No of Source-Destination Pairs U(T)

DATA LOAD vs No of SOURCE-DESTINATION PAIRS U(T)

TOS2
TOS1

Figure A.6: Low-speed. Unequal packet sizes. Data load vs U(T) for U(D) = 16.

69

Appendix B

Computation of E�ective Capacities for Quasi-Static

Model

Let's consider two queues QX and QY with arrival rates X and Y , respectively, equally sharing a

link with capacity C. De�ne Ce�
X and Ce�

Y as the e�ective link capacity available for tra�c X and

Y , respectively. Also, let nX and nY be the number of packets in QX and QY , respectively. Thus,

Ce�
X = C � Prob[nY = 0] + 0:5C � Prob[nY > 0]

Ce�
Y = C � Prob[nX = 0] + 0:5C � Prob[nX > 0]

Note that Ce�
X � 0:5C (Ce�

Y � 0:5C), with the worst-case occurring when QY (QX) is always

not empty.

Assuming each queue is M=M=1, and substituting

Prob[nX = 0] = 1� Prob[nX > 0] = 1�X=Ce�
X ;

Prob[nY = 0] = 1� Prob[nY > 0] = 1� Y=Ce�
Y

we obtain two equations in the two unknowns Ce�
X and Ce�

Y . Solving them, we get

Ce�
X =

(C�0:5(Y�X))+
p

(C�0:5(Y�X))2�2CX
2

C
e�
Y = C

e�
X + 0:5(Y �X)

70

Appendix C

Proofs for Quasi-Static Model

Proof of Lemma 7.1.2

Consider a point (�xk; yk) � D2 � f(0; 0)g. 1
(C1�0:5yk)�N+�xk

+ P1 � 1
(C2�0:5(�yk��xk))��xk

+ P2 im-

plies 1

C
e�
1;k�N+�xk

+ P1 � 1

C
e�
2;k ��xk

+ P2, and hence �k = 0. Let's rewrite 1
(C1�0:5yk)�N+�xk

+ P1 �
1

(C2�0:5(�yk��xk))��xk
+ P2 as 1

C1�N+(�xk�0:5yk)
+ P1 � 1

C2�0:5M�0:5(�xk�yk)
+ P2. Since �k = �k = 0

then �xk+1 � 0:5yk+1 = (1� �k)(�xk � 0:5yk), and �xk+1 � yk+1 = (1� �k)(�xk � yk).

Consider the case where �xk � 0:5yk < 0. This implies that �xk � yk < 0. Since 0 � (1 �
�k) < 1, we have 1

C1�N+(�xk+1�0:5yk+1)
+ P1 <

1
C1�N+(�xk�0:5yk)

+ P1, and
1

C2�0:5M�0:5(�xk�yk)
+ P2 <

1
C2�0:5M�0:5(�xk+1�yk+1)

+ P2. Hence, since
1

C1�N+(�xk�0:5yk)
+ P1 � 1

C2�0:5M�0:5(�xk�yk)
+ P2, we see

that 1
C1�N+(�xk+1�0:5yk+1)

+ P1 � 1
C2�0:5M�0:5(�xk+1�yk+1)

+ P2.

Now, consider the case where �xk�0:5yk > 0. In this case, either �xk�yk > 0 or �xk�yk < 0. First,

consider the case where �xk�0:5yk > 0 and �xk�yk > 0. We have 1
C1�N+(�xk�0:5yk)

+P1 <
1

C1�N
+P1,

and 1
C2�0:5M +P2 <

1
C2�0:5M�0:5(�xk�yk)

+P2. Since 0 � (1��k) < 1, and 1
C1�N

+P1 � 1
C2�0:5M +P2

from equation (7.7), we see that 1
C1�N+(�xk+1�0:5yk+1)

+ P1 � 1
C2�0:5M�0:5(�xk+1�yk+1)

+ P2. We also

see that the latter inequality also holds for the case where �xk � 0:5yk > 0 and �xk � yk < 0.

Therefore, since in all cases, 1
(C1�0:5yk+1)�N+�xk+1

+ P1 � 1
(C2�0:5(�yk+1��xk+1))��xk+1

+ P2 then

1

C
e�
1;k+1

�N+�xk+1

+ P1 � 1

C
e�
2;k+1

��xk+1

+ P2. Similarly, we see that
M+(�xk+1�yk+1)

C2
� N�(�xk+1�yk+1)

C1
.

Therefore, (�xk+1; yk+1) � D1, and �k+1 = �k+1 = 0. Thus, we see that the iteration is a contraction

in D2.

Proof of Theorem 7.1.3

First, we note that M+(�xk�yk)
C2

� N�(�xk�yk)
C1

i� �xk � yk � L2. Also, 1
C1�N+(�xk�yk)

+ P1 �
1

C2�M�(�xk�yk)
+ P2 i� �xk � yk � L1. L1 � 0 and L2 � 0 are necessary for the domain of at-

71

traction D1 to surround the �xed point (0; 0) and thus convergence to be possible.1

If �xk � yk < L1 (i.e. �k = 1; �k = 0) then �xk+1 � yk+1 = (1 � �k) (�xk � yk) + �k N �
�(1 � �MIN) M + �MIN N . If �xk � yk > L2 (i.e. �k = 0; �k = 1) then �xk+1 � yk+1 =

(1��k) (�xk� yk)��k M � (1��MIN) N ��MIN M . Thus, the following conditions cause TOS1

to lock into a limit cycle for any (�x0; y0) not in the domain of attraction D1:

�(1� �MIN)M + �MIN N > L2

(1� �MIN) N � �MIN M < L1

This implies �MIN > max(N�L1

M+N ; M+L2

M+N), and part (i) is proved.

If �xk � yk < L1 then �xk+1 � yk+1 = (1 � �k) (�xk � yk) + �k N � �k N � �MAX N . We also

have �xk+1 � yk+1 > �xk � yk .

If �xk � yk > L2 then �xk+1 � yk+1 = (1� �k) (�xk � yk) � �k M � ��k M � ��MAX M . We

also have �xk+1 � yk+1 < �xk � yk .
Thus, the following conditions force the iteration to eventually enter the domain of attraction

D1 and converge to the origin for any (�x0; y0):

�MAX N � L2

��MAX M � L1

This implies �MAX � min(L2

N ; �L1

M), and part (ii) is proved.

Proof of Theorem 7.1.4

Referring to Figure 7.1 for TOS1, if the point (�x; y) = (0;M) is inside the domain of attraction, i.e.

(�x; y) = (0;M) satis�es 1
C1�(x+y) + P1 � 1

C2�(�x+�y) + P2, then we have N +M � C1 � 1
(1
C2

+P2�P1)
.

This implies T1;k � T2;k, for every k. This ensures that path 1 is always attractive to delay-sensitive

tra�c, and eventually all delay-sensitive tra�c will be on path 1.

Given that all delay-sensitive connections remain on path 1, we see from (6.2) and (6.3) that

the condition M
C2
� N

C1
is enough for all throughput-sensitive tra�c to eventually move to path 2.

This proves part (i).

Referring to Figure 7.2 for TOS2, if (�x; y) = (0; 0) is inside the domain of attraction, i.e.

(�x; y) = (0; 0) satis�es 1
0:5C1�x

+ P1 � 1
(C2+0:5�x)��x + P2, then we have N � 0:5C1 � 1

(1
C2

+P2�P1)
.

This implies T1;k � T2;k, for every k. Therefore, similar to part (i), we see that the conditions

N � 0:5C1� 1
(1
C2

+P2�P1)
, and M

C2
� N

C1
are su�cient for isolation. This proves part (ii).

1We note that L2 � N since otherwise we get �M > N , which contradicts the fact that N;M � 0. Referring to

Figure 7.1, L1 is assumed to be greater than �M .

72

Bibliography

[1] H. Ahmadi, J. Chen, and R. Guerin. Dynamic routing and call control in high-speed integrated

networks. In Workshop on Systems Engineering and Tra�c Engineering, ITC'13, pages 19{

26, Copenhagen, Denmark, June 1991.

[2] C. Alaettinoglu, I. Matta, and A.U. Shankar. A scalable virtual circuit routing scheme for

ATM networks. Technical Report CS-TR-3360, Department of Computer Science, University

of Maryland, College Park, MD 20742, October 1994. To appear in Fourth International

Conference on Computer Communications and Networks '95, Las Vegas, Nevada.

[3] C. Alaettino�glu, A. U. Shankar K. Dussa-Zieger, and I. Matta. Design and implementation of

MaRS: A routing testbed. Journal of Internetworking: Research and Experience, 5(1):17{41,

March 1994.

[4] C. Alaettino�glu and A. U. Shankar. Viewserver hierarchy: A new inter-domain routing

protocol. In IEEE INFOCOM '94, Toronto, Canada, June 1994.

[5] P. Almquist. Type of service in the Internet Protocol suite. Technical Report RFC-1349,

Network Working Group, July 1992.

[6] D. Anick, D. Mitra, and M. Sondhi. Stochastic theory of a data handling system with multiple

sources. Bell Syst. Tech. J., 61:1871{1894, 1982.

[7] G. Ash, J. Chen, A. Frey, and B. Huang. Real-time network routing in a dynamic class-of-

service network. In 13th ITC, Copenhagen, Denmark, 1991.

[8] S. Bahk and M. El Zarki. Dynamic multi-path routing and how it compares with other

dynamic routing algorithms for high speed wide area networks. In SIGCOMM '92, pages

53{64, Baltimore, Maryland, August 1992.

[9] A. Ballardie, P. Francis, and J. Crowcroft. Core based trees. In SIGCOMM '93, San Francisco,

California, September 1993.

[10] K-H. Becker and M. Dorer. Dynamical Systems and Fractals. Cambridge University Press,

1989.

73

[11] J. Behrens and J.J. Garcia-Luna-Aceves. Distributed, scalable routing based on link-state

vectors. In ACM SIGCOMM '94, pages 136{147, September 1994.

[12] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Inc., 1987.

[13] D.P. Bertsekas. Dynamic behavior of shortest path routing algorithms for communication

networks. IEEE Transactions on Automatic Control, 27(1):60{74, February 1982.

[14] J. Bolot and A.U. Shankar. A discrete-time stochastic approach to ow control dynamics. In

GLOBECOM '92, Orlando, Florida, December 1992.

[15] J-C. Bolot and A.U. Shankar. Analysis of a uid approximation to ow control dynamics. In

IEEE INFOCOM '92, Florence, Italy, May 1992.

[16] B. Braden, D. Clark, and S. Shenker. Integrated services in the Internet architecture: An

overview. Internet Draft, October 1993.

[17] L. Breslau, D. Estrin, and L. Zhang. A simulation study of adaptive source routing in

integrated services networks. Available by anonymous ftp at catarina.usc.edu:pub/breslau,

September 1993.

[18] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual environments. Technical Report

RFC-1195, Digital Equipment Corporation, December 1990.

[19] H. Chen and A. Mandelbaum. Discrete ow networks: Di�usion approximations and bottle-

necks. Annals of Probability, 19(4):1463{1519, October 1991.

[20] S-P. Chung, A. Kashper, and K. Ross. Computing approximate blocking probabilities for

large loss networks with state-dependent routing. IEEE/ACM Transactions on Networking,

1(1):105{115, February 1993.

[21] S-P. Chung and K. Ross. Reduced load approximations for multirate loss networks. IEEE

Transactions on Communications, 41(8):1222{1231, August 1993.

[22] D.D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in an integrated

services packet network: Architecture and mechanism. In SIGCOMM '92, pages 14{26,

Baltimore, Maryland, August 1992.

[23] J. Cobb and M. Gouda. Flow theory: Veri�cation of rate-reservation protocols. In IEEE

International Conference on Network Protocols '93, San Francisco, California, October 1993.

[24] D. Comer and R. Yavatkar. FLOWS: Performance guarantees in best e�ort delivery systems.

In IEEE INFOCOM, Ottawa, Canada, pages 100{109, April 1989.

74

[25] R.L. Cruz. A calculus for network delay, part II: Network analysis. IEEE Transactions on

Information Theory, 37(1):132{141, January 1991.

[26] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm.

In ACM SIGCOMM '89, pages 1{12, Austin, Texas, September 1989.

[27] D. DeWitt and J. Gray. Parallel database systems: The future of high performance database

systems. CACM, 35(6):85{98, June 1992.

[28] E. Dijkstra. A note on two problems in connection with graphs. Numer. Math., 1:269{271,

1959.

[29] Z. Dziong and J. Roberts. Congestion probabilities in a circuit-switched integrated services

network. Performance Evaluation, 7:267{284, 1987.

[30] A. Economides and J. Silvester. Optimal routing in a network with unreliable links. In IEEE

INFOCOM '88, pages 288{297, August 1988.

[31] A. Elwalid and D. Mitra. E�ective bandwidth of general markovian tra�c sources and

admission control of high-speed networks. IEEE/ACMTransactions on Networking, 1(3):329{

343, June 1993.

[32] D. Ferrari. Real{time communication in packet{switching wide{area networks. Technical

Report TR-89-022, International Computer Science Institute, Berkeley, California, May 1989.

[33] D. Ferrari. Client requirements for real{time communication services. IEEE Communications

Magazine, 28(11), November 1990.

[34] D. Ferrari and D.C. Verma. Quality of service and admission control in ATM networks.

Technical Report TR-90-064, International Computer Science Institute, Berkeley, California,

December 1990.

[35] J. Filipiak. Modeling and Control of Dynamic Flows in Communication Networks. New York:

Springer-Verlag, 1988.

[36] S. Floyd and V. Jacobson. The synchronization of periodic routing messages. In ACM

SIGCOMM '93, San Francisco, California, September 1993.

[37] F. Le Gall and J. Bernussou. An analytical formulation for grade of service determination

in telephone networks. IEEE Transactions on Communications, COM-31(3):420{424, March

1983.

[38] M.L. Gardner, I.S. Loobeek, and S.N. Cohn. Type-of-service routing with loadsharing. In

GLOBECOM '87, Tokyo, Japan, November 1987.

75

[39] M.R. Garzia and C.M. Lockhart. Nonhierarchical communications networks: An application

of compartmental modeling. IEEE Transactions on Communications, 37:555{564, June 1989.

[40] A. Girard. Routing and Dimensioning in Circuit-Switched Networks. Addison-Wesley Pub-

lishing Company, 1990.

[41] A. Girard and M. Bell. Blocking evaluation for networks with residual capacity adaptive

routing. IEEE Transactions on Communications, COM-37:1372{1380, 1989.

[42] D. Glazer and C. Tropper. A new metric for dynamic routing algorithms. IEEE Transactions

on Communications, pages 360{367, March 1990.

[43] A. Greenberg and P. Wright. Design and analysis of master/slave multiprocessors. IEEE

Transactions on Computers, 40(8):963{976, August 1991.

[44] R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent capacity and its application to band-

width allocation in high-speed networks. IEEE J. Select. Areas Commun., SAC-9(7):968{981,

September 1991.

[45] S. Gupta. Performance Modeling and Management of High-Speed Networks. PhD thesis,

University of Pennsylvania, Department of Systems, 1993.

[46] S. Gupta, K. Ross, and M. ElZarki. Routing in virtual path based ATM networks. In

GLOBECOM '92, pages 571{575, 1992.

[47] S. Gupta, K. Ross, and M. ElZarki. On routing in ATM networks. In IFIP TC6 Task

Group/WG6.4 Workshop on Modeling and Performance Evaluation of ATM Technology. H.

Perros, G. Pujolle, and Y. Takahashi (Editors). Elsevier Science Publishers B.V., Amsterdam,

The Netherlands, 1993.

[48] R.-H. Hwang. Routing in High-Speed Networks. PhD thesis, University of Massachusetts,

Department of Computer Science, May 1993.

[49] R-H. Hwang, J. Kurose, and D. Towsley. MDP routing in ATM networks using virtual path

concept. In IEEE INFOCOM, pages 1509{1517, Toronto, Ontario, Canada, June 1994.

[50] J. Hyman, A. Lazar, and G. Paci�ci. A separation principle between scheduling and admission

control for broadband switching. IEEE J. Select. Areas Commun., SAC-11(4):605{616, May

1993.

[51] R. Jain and S.A. Routhier. Packet trains - measurements and a new model for computer

network tra�c. IEEE JSAC, 4(6):986{995, September 1986.

76

[52] D. Johnson. NSFnet report. In 19th IETF, pages 377{382, University of Colorado, National

Center for Atmospheric Research, December 1990.

[53] S. Jordan and P. Varaiya. Throughput in multiple service, multiple resource communication

networks. IEEE Transactions on Communications, 39(8):1216{1222, August 1991.

[54] I. Kamel and C. Faloutsos. Parallel R-trees. In ACM SIGMOD, pages 195{204, San Diego,

CA, June 1992.

[55] J. Kaufman. Blocking in a shared resource environment. IEEE Transactions on Communi-

cations, 29(10):1474{1481, October 1981.

[56] K. Keeton, B. Mah, S. Seshan, R. Katz, and D. Ferrari. Providing connection-oriented

network services to mobile hosts. In USENIX Symposium on Mobile and Location-Independent

Computing, Cambridge, Massachusetts, August 1993.

[57] F.P. Kelly. Blocking probabilities in large circuit-switched networks. Adv. Appl. Prob., 18:473{

505, 1986.

[58] S. Keshav, A. Agrawala, and S. Singh. Design and analysis of a ow control algorithm for a

network of rate allocating servers. In IFIP WG 6.1/WG 6.4 Second International Workshop

on Protocols for High-Speed Networks, pages 55{72, Palo Alto, CA, November 1990.

[59] G. Kesidis, J. Walrand, and C.-S. Chang. E�ective bandwidths for multiclass markov uids

and other ATM sources. IEEE/ACM Transactions on Networking, 1(4):424{428, August

1993.

[60] A. Khanna and J. Zinky. A revised ARPANET routing metric. In ACM SIGCOMM '89,

pages 45{56, September 1989.

[61] D. Kincaid and W. Cheney. Numerical Analysis: Mathematics of Scienti�c Computing.

Brooks/Cole Publishing Company, 1991.

[62] L. Kleinrock. Communication Nets: Stochastic Message Flow and Delay. New York: McGraw

Hill, 1964.

[63] L. Kleinrock. Queueing Systems, volume I and II. New York: Wiley, 1976.

[64] L. Kleinrock and F. Kamoun. Hierarchical routing for large networks. Computer Networks,

1:155{174, 1977.

[65] B. Kuo. Automatic Control Systems. Prentice-Hall, Inc., fourth edition, 1983.

[66] R. LaMaire, A. Krishna, and H. Ahmadi. Analysis of a wireless MAC protocol with client-

server tra�c. In IEEE INFOCOM '93, San Francisco, California, 1993.

77

[67] S. S. Lavenberg. Computer Performance Modeling Handbook. Academic Press, 1983.

[68] S. Leutenegger and X-H. Sun. Distributed computing feasibility in a non-dedicated homoge-

neous distributed system. In Supercomputing '93, November 1993.

[69] M. Litzkow, M. Livny, and M. Mutka. Condor { a hunter of idle workstations. In 8th

International Conference on Distributed Computing Systems, San Jose, CA, June 1988.

[70] G. Louth, M. Mitzenmacher, and F.P. Kelly. Computational complexity of loss networks.

Theoretical Computer Science, 125:45{59, 1994.

[71] W. Lovegrove, J. Hammond, and D. Tipper. Simulation methods for studying nonstationary

behavior of computer networks. IEEE J. Select. Areas Commun., 8(9):1696{1708, December

1990.

[72] I. Matta and A.U. Shankar. Type-of-service in adaptive next-hop routing. Technical Report

CS-TR-2963, Department of Computer Science, University of Maryland, College Park, MD

20742, September 1992. Available by anonymous ftp at ftp.cs.umd.edu:pub/MaRS/Papers.

[73] I. Matta and A.U. Shankar. On the interaction between gateway scheduling and

routing. Technical Report CS-TR-3102, Department of Computer Science, University

of Maryland, College Park, MD 20742, July 1993. Available by anonymous ftp at

ftp.cs.umd.edu:pub/MaRS/Papers.

[74] I. Matta and A.U. Shankar. An iterative approach to comprehensive performance evaluation

of integrated services networks. In IEEE International Conference on Network Protocols

'94, Boston, Massachusetts, October 1994. Extended version submitted for possible journal

publication.

[75] I. Matta and A.U. Shankar. On the interaction between gateway scheduling and routing. In

International Workshop on Modeling, Analysis and Simulation of Computer and Telecommu-

nications Systems - MASCOTS '94, pages 84{88, Durham, North Carolina, January 1994.

[76] I. Matta and A.U. Shankar. Type-of-service routing in dynamic datagram networks. In IEEE

INFOCOM, pages 992{999, Toronto, Ontario, Canada, June 1994. Extended version will

appear in the IEEE Journal on Selected Areas in Communications { Special Issue on the

Internet.

[77] I. Matta and A.U. Shankar. Z-iteration: A simple method for throughput estimation in

time-dependent multi-class systems. In ACM SIGMETRICS/PERFORMANCE '95, pages

126{135, Ottawa, Canada, May 1995.

78

[78] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for the ARPANET. IEEE

Transactions on Communications, COM-28(5):711{719, May 1980.

[79] D. Mitra and J. Seery. Comparative evaluations of randomized and dynamic routing strate-

gies for circuit-switched networks. IEEE Transactions on Communications, 39(1):102{116,

January 1991.

[80] D. Mitra and P. Weinberger. Probabilistic models of database locking: Solutions, computa-

tional algorithms, and asymptotics. J. ACM, 31(4):855{878, October 1984.

[81] N. Mitrou and D. Pendarakis. Cell-level statistical multiplexing in ATM networks: Analysis,

dimensioning, and call-acceptance control w.r.t. QOS criteria. In Queueing, Performance

and Control in ATM (ITC-13), pages 7{12. J. Cohen and C. Pack (Editors). Elsevier Science

Publishers B.V. (North-Holland), 1991.

[82] D. Mitzel, D. Estrin, S. Shenker, and L. Zhang. An architectural comparison of ST-II and

RSVP. In IEEE INFOCOM, pages 716{725, Toronto, Ontario, Canada, June 1994.

[83] J. Moy. OSPF version 2. RFC 1247, Network Information Center, SRI International, July

1991.

[84] A. Mukherjee and J.C. Strikwerda. Analysis of dynamic congestion control protocols: A

fokker-plank approach. In ACM SIGCOMM '91, Zurich, Switzerland, September 1991.

[85] R. Nagarajan, J. Kurose, and D. Towsley. Local allocation of end-to-end quality-of-service in

high-speed networks. In IFIP TC6 Workshop on Modelling and Performance Evaluation of

ATM Technology, page 2.2, January 1993.

[86] K. Ogata. Discrete-Time Control Systems. Prentice-Hall, Inc., 1987.

[87] Y. Ohba, M. Murata, and H. Miyahara. Analysis of interdeparture processes for bursty tra�c

in ATM networks. IEEE J. Select. Areas Commun., 9(3):468{476, April 1991.

[88] S. Ohta and K. Sato. Dynamic bandwidth control of the virtual path in an asynchronous

transfer mode network. IEEE Transactions on Communications, 40(7):1239{1247, July 1992.

[89] A. Parekh. A generalized processor sharing approach to ow control in integrated services net-

works. Technical Report LIDS-TR-2089, Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, 1992.

[90] V. Paxson and S. Floyd. Wide-area tra�c: The failure of poisson modeling. In ACM SIG-

COMM '94, University College London, London, UK, September 1994.

79

[91] M. Prycker. Asynchronous Transfer Mode - Solution for Broadband ISDN. Ellis Horwood,

1991.

[92] J. Roberts. A service system with heterogeneous user requirements - application to multi-

services telecommunications systems. In Performance of Data Communications Systems and

Their Applications, pages 423{431. G. Pujolle (Editor). North-Holland Publishing Company,

1981.

[93] H. Schulzrinne, J. Kurose, and D. Towsley. An evaluation of scheduling mechanisms for

providing best-e�ort real-time communication in wide-area networks. In IEEE INFOCOM,

pages 1352{1361, Toronto, Ontario, Canada, June 1994.

[94] A.U. Shankar, C. Alaettino�glu, K. Dussa-Zieger, and I. Matta. Performance comparison

of routing protocols under dynamic and static �le transfer connections. ACM Computer

Communication Review, October 1992.

[95] A.U. Shankar, C. Alaettino�glu, I. Matta, and K. Dussa-Zieger. Performance comparison

of routing protocols using MaRS: Distance-vector versus link-state. In ACM SIGMET-

RICS/PERFORMANCE, volume 20, pages 181{192, Newport, Rhode Island, June 1992.

[96] S. Sibal and A. DeSimone. Controlling alternate routing in general-mesh packet ow networks.

In ACM SIGCOMM '94, pages 168{179, September 1994.

[97] H. A. Taha. Operations Research : An Introduction. Macmillan publishing Co., second

edition, 1976.

[98] L. Tak�acs. Introduction to the Theory of Queues, pages 174{187. Greenwood Press, Westport,

Connecticut, 1961.

[99] H. Takagi. Queueing analysis of polling models: An update. In Stochastic Analysis of

Computer and Communication Systems, pages 267{318. H. Takagi (Editor). Elsevier Science

Publishers B.V. (North-Holland), 1990.

[100] D. Tipper and M.K. Sundareshan. Numerical methods for modeling computer networks under

nonstationary conditions. IEEE J. Select. Areas Commun., 8(9):1682{1695, December 1990.

[101] S. Tripathi and A. Duda. Time-dependent analysis of queueing systems. INFOR, 24(3):199{

219, 1986.

[102] P. Tsuchiya. The landmark hierarchy: A new hierarchy for routing in very large networks.

In Proc. SIGCOMM '88, pages 35{42, Stanford, California, 1988.

80

[103] D.C. Verma, H. Zhang, and D. Ferrari. Delay jitter control for real{time communication in a

packet{switching network. In IEEE TRICOMM, pages 35{43, Chapel Hill, North Carolina,

April 1991.

[104] J. Wieselthier, C. Barnhart, and A. Ephremides. Optimal admission control in circuit-

switched multihop radio networks. In 31st Conference on Decision and Control, Tucson,

Arizona, December 1992.

[105] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-Wesley,

1991.

[106] H. Zhang and D. Ferrari. Rate-controlled static priority queueing. Technical Report TR-92-

003, International Computer Science Institute, Berkeley, California, January 1992.

[107] L. Zhang. VirtualClock: A new tra�c control algorithm for packet switching networks. In

SIGCOMM '90, pages 19{29, Philadelphia, Pennsylvania, September 1990.

[108] W. Zhu and S. Chanson. Adaptive threshold-based scheduling for real-time and non-real-time

tra�c. In IEEE RTSS '92, pages 125{135, Phoenix, Arizona, December 1992.

[109] J. Zinky. Private communication, 1992.

81

