
Principles of Safe Policy Routing Dynamics

SAMUEL EPSTEIN KARIM MATTAR IBRAHIM MATTA

Computer Science Department, Boston University

{samepst, kmattar, matta}@cs.bu.edu

Abstract—We introduce the Dynamic Policy Routing (DPR)
model that captures the propagation of route updates under
arbitrary changes in topology or path preferences. DPR intro-
duces the notion of causation chains where the route flap at
one node causes a flap at the next node along the chain.

Using DPR, we model the Gao-Rexford (economic) guidelines
that guarantee the safety (i.e., convergence) of policy routing.
We establish three principles of safe policy routing dynamics.
The non-interference principle provides insight into which ASes
can directly induce route changes in one another. The single
cycle principle and the multi-tiered cycle principle provide
insight into how cycles of routing updates can manifest in any
network.

We develop INTERFERENCEBEAT, a distributed algorithm
that propagates a small token along causation chains to
check adherence to these principles. To enhance the diagnosis
power of INTERFERENCEBEAT, we model four violations of the
Gao-Rexford guidelines (e.g., transiting between peers) and
characterize the resulting dynamics.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is currently the de-

facto inter-domain routing protocol employed in the In-

ternet. BGP allows Autonomous Systems (ASes), operated

by different administrative domains (e.g., Internet Service

Providers, companies, universities) to independently apply

local policies for selecting routes and propagating routing

information. Given the critical role and global scope of BGP,

both its transient and steady-state performance have received

significant attention, and problems related to delayed con-

vergence [1] and potential instability [2], [3] (i.e., route

oscillations/flaps) have been identified and studied.

Route flaps in particular can be highly disruptive given

the associated cost of communication and processing over-

heads. Route flaps can be transient (i.e., short-term) due to

temporary changes in topology or route/path preferences.

Route flaps can also be persistent due to conflicting routing

policies across ASes (i.e., policies can not be simultaneously

satisfied) [4].

Economic constraints that are typical of commercial rela-

tionships between ASes in the Internet—henceforth referred

to as the Gao-Rexford guidelines [5]—have been shown to

make BGP free from policy conflicts (i.e., convergent). We

refer to routing policy instances that adhere to the Gao-

Rexford guidelines as safe and ones that do not as potentially

unsafe. The Gao-Rexford guidelines are:

1) An AS classifies its neighboring ASes as either cus-

tomer, peer or provider.

2) The path preferences are restricted in a hierarchical

fashion. Every AS prefers a path through a customer

AS over a path through a peer/provider AS.

3) All advertised paths are “valley-free”. They consist

of zero or more customer-to-provider links followed

by an optional peering link followed by zero or more

provider-to-customer links.

Our Contribution:

We extend the Stable Paths Problem [4] (a static model of

BGP) to capture the propagation dynamics of route updates

under arbitrary changes in topology (e.g., link failures) or

path preferences (e.g., policy configuration updates). We call

this extended model the Dynamic Policy Routing (DPR)

model. DPR introduces the notion of a causation chain

which is informally defined as a sequence of nodes where

the route flap at one node causes a flap at the next node

along the chain.

We model a strict version of the Gao-Rexford guidelines

which we call the economic DPR model. We prove the

existence of several invariant properties of causation chains

irrespective of arbitrary changes in topology or path prefer-

ences. For example, we prove that all causation chains in the

economic DPR model are valley-free, thus generalizing the

result in [6] to dynamic networks. Violations of the economic

DPR model result in potentially unsafe routing behavior

where the causation chains are not necessarily valley-free.

We develop INTERFERENCEBEAT, a distributed algorithm

that checks if the routing dynamics adhere to the ones pre-

dicted by the economic DPR model. If not, then the presence

of policy violations can be inferred. INTERFERENCEBEAT

appends a token to each routing update message. Tokens are

propagated along causation chains.

We model four common policy violations (e.g., transiting

between peers). For each violation, we prove the invariant

properties of the resulting causation chains. Using these

inferred properties, we extend the diagnosis power of IN-

TERFERENCEBEAT. The novelty of this work is that:

1) We identify key principles (i.e., invariant properties)

of safe policy routing dynamics regardless of changes

to the underlying topology or path preferences.

2) We identify and model four common violations of safe

policy routing and characterize the resulting dynamics.

3) We introduce INTERFERENCEBEAT, a distributed al-

gorithm to detect and diagnose policy violations.

II. PRINCIPLES OF SAFE POLICY ROUTING DYNAMICS

In this section, we distill the key results of our DPR

model into three principles. These principles capture several

useful invariant properties of the routing dynamics under safe

policy routing (i.e., where the policies of all nodes adhere

to the Gao-Rexford guidelines). We discuss reasons why

ASes violate these guidelines leading to potentially unsafe

dynamics where these principles no longer hold.

We also show that routing dynamics need to be explicitly

considered when detecting policy violations. We postpone

formal definitions to later sections and focus here on pre-

senting the main intuitions behind our results.

A. What are the principles?

Non-Interference Principle: If an AS y is not at a higher

tier-level than (provider to) any two of its neighbors x and

z, then x and z cannot directly induce path changes in each

other through y. This principle holds regardless of changes

in the underlying topology or path preferences.

The notion of “inducing path changes” is synonymous

with a continuous propagation of path changes across nodes,

which we model in DPR as a causation chain. The basic

premise of the non-interference principle comes from a result

in DPR (Theorem 1 in Section IV) where we proved that

any causation chain must not contain sequences such as a

provider-to-customer-to-provider.

Figure 1 outlines all the Internet configurations where

AS x cannot directly affect AS z through AS y. More

specifically, non-interference holds if:

1) AS y is multi-homed with providers AS x and AS z.

2) AS y is a customer of AS x and a peer of AS z.

3) AS y is a peer of AS x and a customer of AS z.

4) AS y is a peer of both AS x and AS z

Fig. 1. All Internet configurations where AS x cannot directly affect AS
z. Horizontal edges represent peering links and diagonal edges represent
customer-to-provider links.

Single Cycle Principle: In any cycle of routing update

messages between ASes, every AS x affects its neighbor y
at most once. This principle holds regardless of changes in

the underlying topology or path preferences.

The notion of “cycle” is synonymous with a continuous

propagation of path changes across nodes where at least

one node is affected twice. We model such a cycle of

path changes in DPR as a causation cycle. The single

cycle principle comes from a result in DPR (Theorem 2

in Section IV) where we proved that any causation cycle in

safe policy routing occurs only once.

Multi-Tiered Cycle Principle: Every cycle of routing up-

date messages between ASes must have at least two ASes

in different tier-levels. This principle holds regardless of

changes in the underlying topology or path preferences.

The multi-tiered cycle principle comes from a result in

DPR (Theorem 2 in Section IV) where we proved that no

causation cycle in safe policy routing can occur exclusively

between peering ASes.

B. Why do the principles not always hold?

Violations of safe policy routing (i.e., the Gao-Rexford

guidelines) result in unpredictable, black-box dynamics that

are potentially unsafe. When policy violations occur, the

principles no longer hold (Table III in Section VI). The

reasons for such violations are:

1) Intentional: representing legitimate policy configura-

tions for backup links or complex agreements [7].

2) Unintentional: representing misconfigurations or

complex real-time interactions between routers that do

not reflect the intentions of the administrators.

C. How do we check the principles?

Network administrators can locally check whether they are

conforming to the Gao-Rexford guidelines where the dynam-

ics are guaranteed to conform to the principles. This can be

done by inspecting their local preferences and ensuring that

all adopted paths are valley-free.

Local checks are inadequate since not all nodes are

necessarily compliant with the guidelines. Figure 2 illustrates

“interference” between nodes 1 and 3. The interference is

due to policy violations by node 2 which cannot be locally

checked by node 3. Instead, node 3 will need to discover

the interference by somehow detecting the causation chain

propagating through nodes 1, 2 and 3.

Fig. 2. Sample dynamics where interference occurs. The list of path
preferences for nodes 2 and 3 are organized such that the most preferred
path is at the top. Paths not explicitly listed are forbidden. All nodes are
trying to reach destination node 0.

Node 3 is abiding by the Gao-Rexford guidelines and

initially uses the customer path 〈30〉 which is valley-free.

Node 2, however, violates the guidelines by preferring a path

through its provider 〈210〉 over a path through its customer

〈20〉. At time t, the link connecting node 1 to node 0 is lost,

causing node 1 to have an empty path to node 0 at time

t + 1. At time t + 2, node 2 switches from path 〈210〉 to

〈20〉. This action in turn causes node 3 to switch from path

〈30〉 to 〈320〉 at time t+3. Even though node 3 abides by the

Gao-Rexford guidelines, the forbidden interference occurs.

The causation chain consists of a provider (node 1), followed

by its customer (node 2), followed by another provider (node

3).

If node 2 does not violate the guidelines, the dynamics

would manifest differently. Suppose the path 〈20〉 is for-

bidden, forcing node 2 to use its provider path 〈210〉. The

loss of link connectivity between nodes 1 and 0 at time t
causes node 2 to lose connectivity at time t + 2. Node 3 is

unaffected. The causation chain solely consists of a provider

(node 1) followed by its customer (node 2). Since this chain

is valley-free, the dynamics conform to the principles.

III. DYNAMIC POLICY ROUTING MODEL

The Dynamic Policy Routing (DPR) model is used to

capture the dynamics of BGP. Each AS is represented by

a node in a graph. AS path preferences are represented by a

ranking relation. DPR extends SPP [4] to model time-varying

topologies and path preferences. The central notions in DPR

are that of action and causation. An action corresponds to

a routing decision made upon the reception of a routing

update message. A causing node corresponds to the node

sending that update message. DPR models these two events

to construct a causation chain over time where each node

causes its successor along the chain to take an action.

A. Basics of DPR

Definition 1 (Time). Time is represented by a non-negative,

discrete index t such that: t ∈ [0,∞).

Definition 2 (Network). The network is represented by a

graph G = (V, E):

• Each vertex u ∈ V represents an AS.

• Each edge in E is time dependent: (u, v)t ∈ E if

u is connected to v at time t. Conversely, a lack of

connectivity between u and v at time t (i.e., link failure)

is represented by (u, v)t /∈ E.

There exists a distinguished destination node, represented

as root, where root ∈ V . In other words, DPR considers a

single destination prefix.

Definition 3 (Paths). Paths are sequences of nodes of the

form: 〈u1 u2 . . . uk〉 where the destination node root is

uk. The empty path is denoted by 〈〉. A concatenation of a

node u with a path Q is represented as: P = 〈u Q〉. A path

originating from u is represented by Pu. The set of paths

originating from u is represented by Pu.

Definition 4 (Path Preferences). At each time t, each node

u has a unique preference over paths originating at u. This

dynamic ranking is represented by the �t operator. If u
prefers Pu over Qu at time t then: Pu �t Qu. If u prefers

Pu over Qu for all t then: Pu � Qu. Strict preference is

defined by:

Pu ≻t Qu iff Pu �t Qu and Qu 6�t Pu

For all times t, for each node u ∈ V , �t is a total order

over Pu ∪ 〈〉. Thus each node u has an ordered preference

over all its paths to root. If two paths start with different

nodes, then they have no preference relation. Forbidden paths

P are those ranked below the empty path for all times: 〈〉 ≻
P . All paths with repeating nodes are forbidden.

Definition 5 (DPR Instance). A Dynamic Policy Routing

(DPR) instance consists of a graph and a path preference

D = (�t, G).

Definition 6 (Best Paths). At each time index t, every node

u has a path to root, represented by Pu = π(u, t). The

available path choices of a node, via all possible neighbors

v, are represented by Choices(u, t) where:

Choices(u, t) = 〈〉 ∪ {〈u π(v, t)〉; (u, v)t ∈ E}

The Best(u, t) notation represents the current best path for

u:

Best(u, t) = max
�t

Choices(u, t)

The paths assigned to nodes at each time t is their best path

of the previous round. For all nodes u ∈ V :

• π(u, 0) = 〈〉
• π(u, t) = Best(u, t− 1)

The path used by node u at time t, π(u, t), was its best path

at time t− 1, Best(u, t− 1). This best path was determined

using the ranking �t−1.

Definition 7 (Next-Hop Neighbor). The ρ notation is used

to represent the next-hop neighbor of a current path:

ρ(u, t) = NextHop(π(u, t))

Definition 8 (Realized Paths). A path Pu is realized iff there

exists a time t such that π(u, t) = P u.

Proposition 1 (Path Deconstruction). If ρ(u0, t) = u1 then

π(u0, t) = 〈u0 π(u1, t− 1)〉

Proof: By the definition of π, π(u0, t) = Best(u0, t−1)
so π(u0, t) ∈ Choices(u0, t − 1). So by the definition of

Choices, π(u0, t) = 〈u0 π(u1, t− 1)〉, where u1 = ρ(u0, t).

B. Causation in DPR

Definition 9 (Path Rank Changes). The following definitions

describe the relative change in the rankings of selected paths

for a node:

RankDec(u, t) iff π(u, t) ≻t π(u, t + 1)

RankInc(u, t) iff π(u, t) ≺t π(u, t + 1)

RankSame(u, t) iff π(u, t) = π(u, t + 1)

The relative change in rankings are with respect to the

current path ranking �t.

Definition 10 (Causation Function). In DPR, a node u may

change its current path at a given time t. The causation

function represents u’s neighboring node v responsible for

u’s path change. Causation function is the base construct

from which causation chains will be built. A causation

function C maps each node u at a given time t to a

neighboring node v: C(u, t) = v.

The operating conditions for the causation function are

outlined in Table I. There are three cases for the causation

function C(u, t) = v:

1) Node v was the next hop of u’s chosen path at time t.
However, node v changed its path at time t, causing

u to choose a less preferred path at time t + 1.

2) Node v advertised a new path at time t, causing u to

choose a more preferred path through v at time t + 1.

3) v is empty, because u’s path did not change between

times t and t + 1.

TABLE I
CAUSATION FUNCTION

Condition 1: RankDec(u, t) ⇒ C(u, t) = ρ(u, t)
Condition 2: RankInc(u, t) ⇒ C(u, t) = ρ(u, t + 1)
Condition 3: RankSame(u, t) ⇒ C(u, t) is empty

Definition 11 (Causation Chain). A causation chain is a

sequence of nodes where each node yi−1 causes yi to change

its current path. It is represented by Y = 〈y0 y1 . . . yk〉
t,

where C(yi, t + i) = yi−1, for all 0 < i ≤ k. Time t is

defined with respect to y0, and it takes i time steps to build

the causation chain up to node yi. An example of a causation

chain can be seen in Figure 3.

Fig. 3. Causation chain Y = 〈y0 y1 y2〉t. A link failure between y0

and root occurred at time t, causing y0 to have no path to root at time
t+1. This causes y1 to switch to a less preferred path at time t+2, where
C(y1, t+1) = y0 with causation condition 1. This causes y2 to switch to
a more preferred path via y1 at time t + 3, where C(y2, t + 2) = y1 with
causation condition 2.

Definition 12 (Causation Cycle). Given a causation chain

〈y0 y1 . . . yk yk+1〉
t, if y0 = yk then a causation cycle

〈y0 y1 . . . yk〉
t exists. If y1 6= yk+1, then the cycle is simple,

otherwise the cycle is non-simple. The following causation

chains contain simple and non-simple cycles:

Simple: 〈y0 y1 y2 y0 y3〉
t

Non-Simple: 〈y0 y1 y2 y0 y1〉
t

IV. ECONOMIC DPR MODEL

This section will show that if a DPR instance conforms

to a strict version of the Gao-Rexford guidelines [5], then

its dynamic behavior can be characterized, regardless of

changes in topology or path preferences. In particular, we

show that all causation chains have the property known

as “valley-free” and all causation cycles are simple. The

economic constraints we consider are as follows:

1) Every node is customer, peer, or provider to its

neighboring nodes. The commercial agreement (i.e.,

relationship) between any two nodes does not change

over time.

2) A node cannot be a provider to itself. There are no

customer-provider cycles. Furthermore, a node cannot

be both a (direct or indirect) provider and a (direct or

indirect) peer to another node.

3) For all times, each node prefers a path through a

customer over a path through a peer/provider and

prefers a path through a peer over a path through a

provider.

4) Each node provides transit service only to its cus-

tomers. Thus, all paths are valley-free.

These economic constraints are a stricter version of the

Gao-Rexford guidelines which are sufficient to guarantee

stability in a static graph. Thus, the economic DPR model

is safe. The restrictions of the economic model enable

equivalence classes of peers, as seen in Figure 4.

Fig. 4. Equivalence classes of peers in economic DPR.

A. Basics of Economic DPR

Definition 13 (Economic Operator). The economic relation-

ship between nodes are described using the operator �$.

This operator is essential for reasoning about the economic

relationships between nodes in both paths and causation

chains. A strict economic relation is defined by:

u ≻$ v iff u �$ v and u �$ v

and an equivalence relation is defined by:

u =$ v iff u �$ v and u �$ v

Economic relationships can be derived from the operator �$:

• If u is a customer of v then u ≺$ v.

• If u is a provider to v then u ≻$ v.

• If u is a peer to v then u =$ v.

The properties of the economic operator �$ can be modelled

using pre-order conditions [8]:

1) (reflexive) x �$ x
2) (transitive) x �$ y and y �$ z implies x �$ z

The following transitive relationships hold:

x ≻$ y and y �$ z implies x ≻$ z

x �$ y and y ≻$ z implies x ≻$ z

Definition 14 (Customer, Peer, and Provider Paths). We

define paths by the economic relationship between a path’s

starting node u and its next-hop. For all paths Pu:

Customer(Pu) iff u ≻$ NextHop(Pu)

Peer(Pu) iff u =$ NextHop(Pu)

Provider(Pu) iff u ≺$ NextHop(Pu)

Definition 15 (Valley). We define a valley to be a sequence

of three distinct nodes 〈a b c〉 satisfying the condition:

a �$ b �$ c

The four types of valleys can be seen in Figure 5. Every

valley-free sequence is a series of zero or more ascending

customer-to-provider relationships, followed by an optional

peer relationship, followed by a series of zero or more

descending provider-to-customer relationships.

Fig. 5. Valleys

Definition 16 (Economic DPR Instances). An economic

DPR instance (�$,�
t, G) satisfies the following conditions:

1) All paths which have a valley are forbidden.

2) Customer paths are always preferred over

peer/provider paths and peer paths are always

preferred over provider paths. Thus given paths Pu
1

and Pu
2 :

Customer(Pu
1) and not Customer(Pu

2) ⇒ Pu
1 ≻ Pu

2

Peer(Pu
1) and Provider(Pu

2) ⇒ Pu
1 ≻ Pu

2

B. Causation in Economic DPR

This section characterizes causation chains and cycles for

economic DPR instances.

root

t

y
0

root

t+1
root

t+2
root

t+3
root

t+4

y
1

y
2
y
1

y
2
y
1

y
2
y
1

y
2
y
1

y
2

y
0

y
0

y
0

y
0

Fig. 6. Causation cycle Y = 〈y0 y1 y2 y0〉t. A link failure between
y0 and root occurred at time t, causing y0 to have no path to root at time
t + 1. This causes y1 to switch to a less preferred path at time t + 2,
where C(y1, t + 1) = y0 with causation condition 1. This causes y2 to
switch to a path through y1 at time t + 3, where C(y2, t + 2) = y1 with
causation condition 2. The cycle is closed with y0 switching to a path via
y2 at time t + 4, where C(y0, t + 3) = y2 with causation condition 2.
Note the existence of a separate causation chain Y ′ = 〈y0 y2〉t.

Theorem 1. Every causation chain of an economic DPR

instance (�$,�
t, G) is valley-free.

For ease of exposition, the full proof of Theorem 1 is

in Appendix A. In the proof, we assume that there exists

a causation chain that has a valley consisting of three

consecutive nodes 〈a b c〉t. First we prove that at no time

during the causation chain did b have a customer path. Then

we prove that at some time during the causation chain, c had

a path through b. Since b is a customer/peer to c and b does

not have a customer path then c had a realized valley path

through b, causing a contradiction.

Definition 17 (Horizontal Cycle). A causation cycle is

horizontal if all adjacent nodes in the cycle are peers.

Definition 18 (Vertical Cycle). A causation cycle is ver-

tical if there is at least one customer/provider relationship

between adjacent nodes in the cycle.

Figure 6 represents a simple vertical causation cycle,

where node y0 loses a path to root and reroutes through

y2.

Lemma 1. Given a causation cycle Y = 〈y0 . . . yk〉
t of an

economic DPR instance (�$,�
t, G), every node in Y is a

provider to the first node y0.

Proof: Let yi ∈ Y , where 0 < i < k. By Theorem 1,

Y is valley-free and either yi−1 �$ yi or yi �$ yi+1. If the

first case is true, then by the definition of valley-free paths

yj−1 ≺$ yj for all 0 < j < i, and by the transitive nature

of economic relationships, y0 ≺$ yi. If the second case is

true, then by the definition of valley-free paths yj ≻$ yj+1

for all i < j < k, and by the transitive nature of economic

relationships, yi ≻$ yk. Thus every node yi is a provider to

y0 = yk.

Theorem 2. Every causation cycle Y = 〈y0 . . . yk〉
t of an

economic DPR instance is vertical and simple.

Proof: Lemma 1 directly implies that every causation

cycle in economic DPR instances are vertical. The second

part regarding simple causation cycles is proved by contra-

diction. Assume there exists a non-simple causation cycle

Y1 = 〈y0 y1 . . . yk y1〉
t where y0 = yk. From Lemma 1,

y0 ≺$ y1. However a new causation cycle Y2 exists where:

Y2 = 〈y1 y2 . . . yk−1 yk y1〉
t+1. Thus by Lemma 1,

y1 ≺$ yk = y0 which is a contradiction.

The theoretical results in this section are the proofs for the

three principles of safe policy routing dynamics introduced

in Section II. The non-interference principle comes from

Theorem 1, which states that every causation chain in an

economic DPR instance must be valley-free. The single

and multi-tiered cycle principles come from Theorem 2,

which states that every causation cycle in an economic DPR

instance is vertical and simple.

V. INTERFERENCEBEAT

In this section, we outline a distributed algorithm, IN-

TERFERENCEBEAT, that checks if the principles of safe

policy routing dynamics are maintained or whether policy

violations exist. This is accomplished by detecting forbid-

den causation chains (including cycles) induced by policy

violations. Once a forbidden causation chain is detected, the

ASes involved need to collaborate to resolve the potential

problem.

A. Description of INTERFERENCEBEAT

INTERFERENCEBEAT piggybacks a small token alongside

route updates. When a node y receives a route update from

its neighbor v at time t, it also receives a token θin. If

node y selects a new path then it broadcasts a new token

θout alongside its own route update at time t + 1. Tokens

are passed along causation chains. In general, a causation

chain is started when a link flaps (i.e., is lost or becomes

available) or when a node changes its path preferences. A

token consists of three parts, (i, r, n). The identifier of the

causation chain is i. The economic relationship between y
and its predecessor v on the causation chain is r ∈ {≻$, ≺$

, =$, ∅}. For example, if v is a provider to y, then r is ≻$.

The counter n keeps track of the number of times the token

was passed along a customer-to-provider or a provider-to-

customer link.

The PROCESS function outlined in Figure 7 performs basic

routing tasks and handles the incoming and outgoing tokens.

It is invoked in every node y at time t after receiving all

routing update messages. In steps 2 and 3, node y chooses

and adopts its best available path. If y’s assigned path has

changed in step 4 (i.e., an action occurred), then node y’s

causing neighbor v is identified in step 5. The token received

from neighbor v is recovered in step 6. In step 7, the

CREATETOKEN function is called which returns the contents

of the new token to be sent out by y at time t + 1. The

CHECKPRINCIPLES function is called in step 8. Node y
stores information about the outgoing token in step 9, which

is later used to detect cycles in the CHECKPRINCIPLES

function. The outgoing token is then disseminated to all y’s

neighbors in step 10.

1: function PROCESS(y, t)
2: Best(y, t)← max�t Choices(y, t)
3: π(y, t + 1)← Best(y, t)
4: if π(y, t + 1) 6= π(y, t) then

5: v = C(y, t)
6: θin =GETTOKENFROMNEIGHBOR(y, v, t)
7: θout = CREATETOKEN(y, v, θin)

8: CHECKPRINCIPLES(y, v, θin, θout)

9: STORETOKEN(y, v, θout)

10: SENDTOKEN(y, t, θout)

Fig. 7. PROCESS function.

The CREATETOKEN function is outlined in Figure 8. Step

2 retrieves the needed parts from the incoming token. If the

identifier iin is empty in step 3 then a new one is generated

in step 4. Otherwise, in step 6, the outgoing identifier iout

is set to the incoming identifier iin. In step 7, rout is set

to the economic relationship between v and y. In steps 8

through 11, the outgoing counter nout is only incremented if

nodes y and v are not peers. The outgoing token is returned

in step 12.

The CHECKPRINCIPLES function is outlined in Figure 9.

Steps 2 and 3 retrieve the needed parts from the tokens. Step

4 checks for the existence of a valley causation chain. If one

is found, then interference is reported, where the causing

node v, the chain identifier iin and the relationship rin are

identified. In step 6, node y determines if it has previously

received a token with identifier iin. If so, then a cycle is

1: function CREATETOKEN(y, v, θin)

2: (iin, , nin) = θin

3: if iin is ∅ then

4: (iout, rout, nout) =(NEWID(), ∅, 0)

5: else

6: iout = iin

7: rout = ECONOMICRELATION(v, y)

8: if rout is equal to =$ then

9: nout = nin

10: else

11: nout = nin + 1

12: return (iout, rout, nout)

Fig. 8. CREATETOKEN function.

detected. Node y recovers the old information in step 7. If

the token was previously received from the same neighbor v
then a non-simple cycle is reported in step 9. Step 10 checks

if the token previously received contained the same counter

value. If so, then the token was only passed between peers

since leaving node y and a horizontal cycle is reported in

step 11.

1: function CHECKPRINCIPLES(y, v, θin, θout)

2: (iin, rin,) = θin

3: (, , nout) = θout

4: if (rin is equal to ≻$ or =$) and (v �$ y) then

5: REPORTINTERFERENCE(y, v, θin)

6: if HASRECEIVEDTOKEN(y, iin) then

7: (vold, nold) = GETSTOREDTOKEN(y, iin)

8: if vold is equal to v then

9: REPORTNONSIMPLECYCLE(y, v, θin)

10: if nold is equal to nout then

11: REPORTHORIZONTALCYCLE(y, v, θin)

Fig. 9. CHECKPRINCIPLES function.

B. Sample Operation of INTERFERENCEBEAT

Figure 10 shows the operation of INTERFERENCEBEAT

on the DPR instance described in Figure 3, assuming y0,

y1 and y2 are all peers. At time t + 1, node y0 initiates a

new causation chain with identifier ID1 and sends a token

to y1. Since y0 initiated the chain, the count is 0 and the

relationship is ∅. Node y1 takes an action and sends a new

token to y2. Since y1 and y0 are peers, the relationship is

set to =$ and the count is still 0 as the token only traversed

a peering link. Finally, since y2 is a peer to its causing node

y1, interference is detected by y2 upon receiving the token.

Fig. 10. Sample operation of INTERFERENCEBEAT.

C. Properties of INTERFERENCEBEAT

INTERFERENCEBEAT has the following characteristics:

• Efficient Space. A small token of space complexity

O(1) (a few bytes) is appended to each routing update

message irrespective of how the routing dynamics man-

ifest in the network.

• Provably Correct. INTERFERENCEBEAT is based on a

comprehensive theory of policy routing dynamics and

hence is provably correct with any dynamic network. In

other words, any changes in network topology or path

preferences do not affect the correctness of detecting

policy violations.

• Incrementally Deployable. INTERFERENCEBEAT re-

quires only a minor modification to BGP and can be de-

ployed incrementally. To detect policy violations, only

the ASes along the causation chains to be diagnosed

need to adopt the protocol. Thus neighboring ASes can

use INTERFERENCEBEAT to detect misconfigurations.

• Privacy Preserving. ASes do not reveal local policy

information and only AS relationships are explicitly

shared.

D. Practical Considerations for INTERFERENCEBEAT

INTERFERENCEBEAT could be implemented over BGP

where the token is passed in the message options. When

an AS initiates a new causation chain it must create a

new identifier using the NEWID() function. This can be

accomplished by hashing the AS number, router identifier,

time and destination prefix. A fixed number of bits can

be allocated to the identifier, with more bits reducing the

probability of a hash collision.

In INTERFERENCEBEAT, if a cycle or valley is detected by

a node y, only its causing neighbor node v can be immedi-

ately identified. In order to identify/notify other nodes along

the chain, a back-propagating alert protocol may be used.

Each node can leverage its stored tokens to find its previous

causing neighbor. Note that a token only needs to be stored

for the duration of the causation chain, thus the local storage

requirements at a node are expected to be minimal.

In [9] we show that the synchronicity of DPR is not a

hindrance and that it has sufficient expressive power to model

asynchronicity. Hence, INTERFERENCEBEAT can be trivially

extended to a real-time setting.

VI. VIOLATIONS OF THE ECONOMIC DPR MODEL

We formally define four common policy violations, which

represent different relaxations to the strict economic DPR

model1. For each violation we prove the invariant properties

of the resultant causation chains and cycles. The modelled

dynamics induced by each violation can be compared against

the dynamics observed by INTERFERENCEBEAT. If a viola-

tion cannot cause the observed behavior, then it can be ruled

out.

1There are other relaxations that can be considered such as sibling
relationships (i.e., backup links) between ASes [10].

A. Description of Violations

To describe paths and causation chains in better detail we

categorize valleys into four subtypes.

Definition 19 (Valley Types). We extend definition 15 of

valleys to four subtypes as shown in Table II.

TABLE II
VALLEY TYPES GIVEN SEQUENCE 〈a b c〉.

Valley Type Condition Illustration

A a ≻$ b ≺$ c

B a ≻$ b =$ c

C a =$ b ≺$ c

D a =$ b =$ c

Violation 1: Non-Strict Economic Relationships

With non-strict economic relationships, a node can be

both a (direct or indirect) provider and a (direct or indirect)

peer to another node. Figure 11 shows a comparison

between non-strict and strict economic relationships.

z

u
peer

peer

provider

provider

Non-Strict

z

u
peer

peer

provider

provider

Strict

Fig. 11. Strict and non-strict economic relationships. In the strict variant,
node u cannot be an indirect provider and peer to node z.

Violation 2: Transiting Between Peers

Generally, an AS only carries traffic that is destined to

(or originating from) one of its customers. However, due to

misconfigurations or complex agreements between peers,

an AS may transit traffic between its peers. Economic

DPR instances with this violation have an enlarged set

of realizable paths. Paths containing valleys of type D
can be adopted by nodes. However, paths are forbidden

if they contain valley types A, B, or C. Therefore, every

realizable path consists of a series of zero or more

ascending customer-to-provider edges, followed by zero

or more peer edges, followed by zero or more descending

provider-to-customer edges, as shown in Figure 12.

With Peer Transiting Without Peer Transiting

Fig. 12. Allowable paths in economic DPR with and without violation 2.

TABLE III
VIOLATIONS OF THE ECONOMIC DPR MODEL

Violation Valley Types in Causation Chains: Vertical Cycles Horizontal Cycles Potentially
A B C D Unsafe?

0: None simple none no

1: Non-Strict Economics simple none no

2: Transiting simple non-simple, simple yes

3: Peers Preferred simple non-simple, simple yes

4: Providers Preferred non-simple, simple non-simple, simple yes

Violation 3: Peer Paths over Customer Paths

Whereas violation 2 is a relaxation on the set of realizable

paths, violation 3 is a relaxation of the path preferences.

Nodes in economic DPR instances with violation 3 can

prefer peer paths over customer paths. Nodes, however,

cannot prefer provider paths over peer/customer paths. Only

valley-free paths are realizable.

Violation 4: Provider Paths over Peer/Customer

Paths

Nodes in economic DPR instances with violation 4 can

prefer provider paths over peer/customer paths. Again, only

valley-free paths are realizable.

B. Dynamics Induced by Violations

The four violations describe different variants of the

economic DPR model. Each variant results in different types

of causation chains and cycles. For ease of exposition, we

model the resulting dynamics of each violation in isolation.

The theoretical proofs for violation 2 can be found in Ap-

pendix B. The proofs for all the other individual violations,

as well as all possible combinations of these violations can

be found in [9].

Table III summarizes the effects of each violation on the

characteristics of causation chains and cycles. The first and

second rows show the strict and non-strict economic DPR

models. They are the only two variants guaranteed to be

safe. The non-strict economic DPR model, however, when

combined with other violations could lead to potentially

unsafe behavior. The three other violations induce routing

behavior which is potentially unsafe.

INTERFERENCEBEAT can be extended using the results

of Table III. Upon the detection of a valley in the causation

chain, its type (A, B, C, or D) can rule out possible causing

violations. For example, if a valley of type B was detected

using INTERFERENCEBEAT, then violations 1, 2, and 3

can be immediately ruled out as the possible causes for

the observed behavior. Similar methods can be used upon

detection of non-simple or horizontal cycles.

VII. RELATED WORK

Static models for BGP, such as the Stable Paths Problem

(SPP) [4], provide insight into the steady-state behavior of

policy routing. There are also offline methods that leverage

SPP and utilize information from BGP tables [11] to infer

policy conflicts between ASes. DPR extends SPP to give

insight into the real-time transient behavior of networks.

DPR allows us to reason about issues such as misconfigured

routing policies or networks with sporadic link failures.

The canonical solution for detecting policy conflicts based

on SPP is the Safe Path Vector Protocol (SPVP) introduced

by Griffin et al. in [12]. SPVP exchanges route flaps among

ASes in extended “history” messages that are essentially

passed along our causation chains. INTERFERENCEBEAT ex-

tends SPVP by appending additional information in a small

token to each routing update message to detect violations of

the Gao-Rexford guidelines [5].

There are many algorithms that attempt to detect and

resolve policy conflicts. Counting [13] and other token-

based [14] heuristic approaches benefit from having a

low communication overhead. INTERFERENCEBEAT extends

such approaches by leveraging the DPR model to guarantee

the correctness of policy violation detection and diagnosis.

Finally, there are routing architectures that constrain tra-

ditional policy routing to guarantee convergence. Metarout-

ing [15] defines a policy language based on a routing

algebra [16] that gives compile-time guarantees of routing

convergence. In [17], real-time enforcement of convergence

is achieved by passing information in tokens to affect policy

rankings. INTERFERENCEBEAT does not enforce conver-

gence. Instead it leverages the DPR model to detect non-

compliance to the principles of safe routing dynamics and

notifies ASes upon the detection of policy violations.

VIII. CONCLUSIONS

We introduced a Dynamic Policy Routing (DPR) model,

which extends the static model of BGP to capture the

propagation dynamics of route flaps due to arbitrary changes

in topology or path preferences. The theoretical results

of this paper can be summarized by three key principles

which distill the properties of routing dynamics in a safe

(economic) policy configuration.

We introduce INTERFERENCEBEAT, a novel distributed

algorithm to detect and diagnose policy violations. INTER-

FERENCEBEAT has a beneficial set of characteristics such

as efficiency, privacy, and adoptability. Diagnosis is further

enhanced by modelling common policy violations such as

the preference of peer paths over customer paths.

ACKNOWLEDGMENTS

This work has been partially supported by National Sci-

ence Foundations awards: CISE/CCF #0820138, CISE/CSR

#0720604, CISE/CNS #0524477, CNS/ITR #0205294, and

CISE/EIA RI #0202067.

REFERENCES

[1] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
Routing Convergence,” IEEE/ACM Trans. Netw., vol. 9, pp. 293–306,
June 2001.

[2] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs, “Lo-
cating Internet Routing Instabilities,” in ACM SIGCOMM, September
2004.

[3] K. Varadhan, R. Govindan, and D. Estrin, “Persistent Route Oscil-
lations in Inter-domain Routing,” Computer Networks, vol. 32, pp.
1–16, 2000.

[4] T. Griffin, F. Shepherd, and G. Wilfong, “The Stable Paths Problem
and Interdomain Routing,” IEEE/ACM Trans. Netw., vol. 10, no. 2,
pp. 232–243, Apr 2002.

[5] L. Gao and J. Rexford, “Stable Internet Routing Without Global
Coordination,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 681–692,
2001.

[6] D. Obradovic, “Real-time Model and Convergence Time of BGP,” in
INFOCOM, 2002.

[7] N. Feamster, H. Balakrishnan, and J. Rexford, “Some Foundational
Problems in Interdomain Routing,” in ACM SIGCOMM HotNets,
November 2004.

[8] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
Cambridge University Press, April 2002.

[9] S. Epstein, K. Mattar, and I. Matta, “Principles of Safe Policy Routing
Dynamics,” Computer Science Department, Boston University, Tech.
Rep. BUCS-TR-2009-13, April 2009.

[10] L. Gao, “On Inferring Autonomous System Relationships in the
Internet,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 733–745, 2001.

[11] F. Wang and L. Gao, “Inferring and Characterizing Internet Routing
Policies,” in ACM IMC, 2003, pp. 15–26.

[12] T. Griffin and G. Wilfong, “A Safe Path Vector Protocol,” in INFO-

COM, 2000, pp. 490–499.
[13] J. Cobb and R. Musunuri, “Enforcing Convergence in Inter-domain

Routing,” IEEE GLOBECOM, vol. 3, pp. 1353–1358, November 2004.
[14] S. Yilmaz and I. Matta, “An Adaptive Management Approach to

Resolving Policy Conflicts,” in IFIP Networking, May 2007.
[15] T. Griffin and J. L. Sobrinho, “Metarouting,” in ACM SIGCOMM,

2005, pp. 1–12.
[16] J. L. Sobrinho, “An Algebraic Theory of Dynamic Network Routing,”

IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, 2005.
[17] C. Ee and V. Ramachandran and B. Chun and K. Lakshminarayanan

and S. Shenker, “Resolving Inter-Domain Policy Disputes,” in ACM

SIGCOMM, 2007, pp. 157–168.

APPENDIX A

PROOF OF THEOREM 1

For convenience of notation, we drop the time index of

terms with respect to a given chain Y = 〈y0 y1 . . . yk〉
t:

π(yi) = π(yi, t + i)

πnext(yi) = π(yi, t + i + 1)

ρ(yi) = ρ(yi, t + i)

ρnext(yi) = ρ(yi, t + i + 1)

RankDec(yi) iff RankDec(yi, t + i)

RankSame(yi) iff RankSame(yi, t + i)

RankInc(yi) iff RankInc(yi, t + i)

Theorem 1. Every causation chain of an economic DPR

instance (�$,�
t, G) is valley-free.

Proof: Assume not. Then there exists a causation chain

Y = 〈y0 y1 . . . yk〉
t and an index i such that 0 < i < k

and yi−1 �$ yi �$ yi+1. Thus yi−1 and yi+1 are peers or

providers to yi.

The first part of this proof shows that if this is the case,

then at no time during the causation chain did yi have a

customer path. The second part of this proof shows that

sometime during the causation chain yi+1 had a path through

yi. Therefore yi+1 had a realized valley path since yi did not

have a customer path and yi is a customer of or peer to yi+1.

Since valley-paths are forbidden in economic DPR instances,

this results in a contradiction. Since C(yi) = yi−1, either the

first or second condition of causation from Table I holds for

yi at time t + i.

Case: yi Causation Condition 1

If the first condition of Table I holds for yi then: ρ(yi) =
yi−1 and RankDec(yi), as shown in Figure 13. Therefore

π(yi) ≻
t+i πnext(yi). Let v = ρnext(yi). It cannot be that

v ≺$ yi. Otherwise, since πnext(yi) is a customer path and

π(yi) is not a customer path (since ρ(yi) = yi−1 �$ yi),

by the conditions of economic DPR instances: π(yi) ≺
t+i

πnext(yi), causing a contradiction as shown in Figure 14.

Thus v �$ yi and ρnext(yi) �$ yi.

root

y
i-1

t+i

v
y
i

y
i+1

root

y
i-1

t+i+1

v
y
i

y
i+1

Fig. 13. Causation condition 1: RankDec(yi)

root

y
i-1

t+i+1

v

y
i

y
i+1

root

y
i-1

t+i

v

y
i

y
i+1

Fig. 14. Contradiction: RankInc(yi)

Case: yi Causation Condition 2

If the second condition of Table I holds for yi then:

ρnext(yi) = yi−1 and RankInc(yi), as shown in Figure 15.

Therefore π(yi) ≺
t+i πnext(yi). Let v = ρ(yi). It cannot

be that v ≺$ yi. Otherwise, since π(yi) is a customer

path and πnext(yi) is not (since ρnext(yi) = yi−1 �$ yi),

by the conditions of economic DPR instances π(yi) ≻
t+i

πnext(yi), causing a contradiction, as shown in Figure 16.

Thus ρnext(yi) �$ yi and v �$ yi. So for both cases, at no

time in the causation chain did yi have a customer path:

ρ(yi) �$ yi and ρnext(yi) �$ yi

Case: yi+1 Causation Condition 1

If the first causation condition of Table I holds for

yi+1, then ρ(yi+1) = yi. By Proposition 1: π(yi+1) =

root

y
i-1

t+i

v
y
i

y
i+1

root

y
i-1

t+i+1

v
y
i

y
i+1

Fig. 15. Causation condition 2: RankInc(yi)

root

y
i-1

t+i+1

v

y
i

y
i+1

root

y
i-1

t+i

v

y
i

y
i+1

Fig. 16. Contradiction: RankDec(yi)

〈yi+1 π(yi)〉. π(yi+1) is a valley path since yi+1 �$ yi �$

ρ(yi). Since all valley paths are forbidden, π(yi+1) can never

be realized, causing a contradiction.

Case: yi+1 Causation Condition 2

Similar arguments can be used if the second causation

condition of Table I holds for yi+1: ρnext(yi+1) = yi. Thus

by Proposition 1: πnext(yi+1) = 〈yi+1 πnext(yi)〉. πnext(yi+1)
is a valley path since yi+1 �$ yi �$ ρnext(yi), and can never

be realized. Thus in all cases a contradiction occurs, proving

the theorem.

APPENDIX B

THEOREMS AND PROOFS FOR VIOLATION 2

Theorem 3. Every causation chain in an economic DPR

instance with violation 2 does not admit valley types A, B
or C.

Proof: Assume not. Then there exists a causation chain

Y = 〈y0 y1 . . . yk〉
t and an index i such that 0 < i < k and

at least one of the two conditions hold: (a) yi−1 ≻$ yi �$

yi+1 and/or (b) yi−1 �$ yi ≺$ yi+1.

Case (a): yi−1 ≻$ yi �$ yi+1

If case (a) holds, then it can be shown that both ρ(yi) ≻$

yi and ρnext(yi) ≻$ yi. This can be seen by looking at the

causation conditions of yi. If causation condition 1 holds for

yi, then yi−1 = ρ(yi) and RankDec(yi). It cannot be the case

that ρnext(yi) �$ yi, since this would imply that yi switched

from a provider path through yi−1 to a non-provider path,

since yi ≺$ ρ(yi) = yi−1 and yi �$ ρnext(yi). This would

imply RankInc(yi), causing a contradiction. Thus ρ(yi) ≻$

yi and ρnext(yi) ≻$ yi. If causation condition 2 holds for yi,

then yi−1 = ρnext(yi) and RankInc(yi). It cannot be the case

that ρ(yi) �$ yi, since this would imply that yi switched

from a non-provider path to a provider path through yi−1,

since yi �$ ρ(yi) and yi ≺$ ρnext(yi) = yi−1. This would

imply RankDec(yi), causing a contradiction. Thus for both

cases, ρ(yi) ≻$ yi and ρnext(yi) ≻$ yi.

Thus given the results above, we can prove that yi+1

had a realized path with valley type A or C. If causation

condition 1 holds for yi+1, then π(yi+1) = 〈yi+1 π(yi)〉.
Since yi+1 �$ yi and yi ≺$ ρ(yi), then π(yi+1) is a realized

path with valley type A or C, causing a contradiction. If

causation condition 2 holds for yi+1, then πnext(yi+1) =
〈yi+1 πnext(yi)〉. Since yi+1 �$ yi and yi ≺$ ρnext(yi), then

πnext(yi+1) is a realized path with valley typeA or C, causing

a contradiction.

Case (b): yi−1 �$ yi ≺$ yi+1

If case (b) holds, then using an argument similar to case

(a) it can be shown that both ρ(yi) �$ yi and ρnext(yi) �$ yi.

We can then prove that yi+1 had a realized path with valley

type A or B, causing a contradiction.

Theorem 4. Every vertical causation cycle Y =
〈y0 . . . yk〉

t in an economic DPR instance with violation 2

is simple.

Proof: This proof proceeds by determining y1’s eco-

nomic relationship with y0 and yk−1’s economic relationship

with yk = y0. Since Y is a vertical causation cycle, there

exists a minimal index i, 0 < i < k such that yi 6=$ yi−1.

Note that i 6= k, otherwise y0 =$ y1 =$. . . =$ yk−1 6=$ yk,

implying y0 6=$ yk, which is a contradiction. Either yi ≻$

yi−1 or yi ≺$ yi−1. It cannot be that yi−1 ≻$ yi, since by

Theorem 3 y0 =$ yi−1 ≻$ yi ≻$ yi+1 . . . ≻$ yk, implying

y0 ≻$ yk which is a contradiction. Therefore yi−1 ≺$ yi.

If i > 1, then yi−2 =$ yi−1 ≺$ yi, representing a valley of

type C, which is a contradiction. So i = 1 and y0 ≺$ y1.

Let j be the first index 1 < j < k where yj−1 ≻$ yj .

Note that j has to exist otherwise y0 ≺$ y1 �$. . . �$ yk,

implying y0 ≺$ yk which is a contradiction. From Theo-

rem 3, yh−1 ≻$ yh for all j < h ≤ k. So yk−1 ≻$ yk = y0.

Therefore Y must be simple, otherwise 〈yk−1 y0 y1〉 must be

a causation chain. However since yk−1 ≻$ y0 and y0 ≺$ y1,

Y contains a valley of type A, contradicting Theorem 3, and

thus proving the theorem.

Theorem 5. An economic DPR instance with violation 2

admits simple, non-simple horizontal causation cycles, and

is potentially unsafe.

Proof: From the example in Figure 17 representing

“Bad Gadget” that is known to have no stable assignment [4].

Path preferences:

Node a: 〈a b root〉
〈a root〉

Node b: 〈b c root〉
〈b root〉

Node c: 〈c a root〉
〈c root〉

Peer

root

c

a b

Peer

Peer Peer

Peer Peer

Fig. 17. An economic DPR instance with violation 2.

