
Declarative Transport
No more transport protocols to design, only policies to specify

1. INTRODUCTION
The general consensus is that the current Internet archi-

tecture is running out of steam. Incremental point-solutions
have almost been exhausted and are no longer adequate.
Networks have become more brittle and harder to manage,
forcing the research community to launch a tremendous ef-
fort to develop and evaluate new Internet architectures.

Part of that effort focused on declarative networking—a
way to specify network protocols in a domain-specific declar-
ative language. Declarative languages allow one to specify
the “what” and not the “how”. The ease of programming,
compactness of the specification, the reusability of the code,
as well as the security provided by the restricted expressive-
ness of the language significantly simplify the programma-
bility of network protocols. This has led to the declarative
specification of routing protocols [5, 8], overlays [7], as well
as sensor network architectures and applications [2,10], just
to name a few.

Meanwhile, the Internet continues to grow. New net-
work technologies (e.g., wireless, cellular, ad hoc, sensor and
mesh networks) and new applications continue to emerge.
These new network technologies come with new Quality-of-
Service (QoS) properties while new applications come with
new QoS requirements. This puts the state of transport
solutions in a never-ending flux as they are continuously
adapted for new environments1.

In general, the problem with existing transport solu-
tions is three-fold: 1) they only work well for the environ-
ment they were designed for, 2) there are too many protocols
but no unified framework, and 3) they do not go beyond
static protocol instantiations. To address these problems,
the contributions of our work can be summarized as follows:

• We develop a general transport architecture by separat-
ing mechanisms from policies. We identify a minimal
set of mechanisms, that once instantiated with the ap-
propriate policies is all that is required to realize any
transport solution.

• We specify an initial prototype of our transport ar-
chitecture in the declarative language, NDlog, mak-
ing the specification of different transport policies easy,
compact, reusable, dynamically configurable and po-
tentially verifiable. In NDlog, transport state is repre-
sented as database relations, state is updated/queried
using database operations, and transport policies are
specified using declarative rules.

• We identify limitations with NDlog that could poten-
tially threaten the correctness of our specification. We
note several language extensions to NDlog that would
significantly improve the programmability of transport
policies.

1By environment we are referring to the underlying network tech-
nology and the class of applications being supported.

2. NEW TRANSPORT ARCHITECTURE

2.1 Design Philosophy
There are several transport paradigms that exist to-

day. Each viewed as a different point in the spectrum of
possible solutions, having different requirements that can
only be satisfied with a different set of mechanisms. This
(somewhat) narrow view of transport has led to the devel-
opment of many custom point-solutions (e.g., UDP, TCP,
RTP, DCCP, JTP [9]) but no general framework or unified
theory.

Designing a custom transport solution for each new en-
vironment is a wasteful undertaking. Instead, we focus on
developing a general transport architecture. We show that
only a minimal set of mechanisms is required to realize the
entire spectrum of possible solutions. In fact, we contend
that there are no more transport protocols to design, only
policies to specify. The key idea is to separate mechanisms
from policies. We avoid overloaded semantics whenever pos-
sible even if it comes at a reasonable cost. The flexibility
of our proposed architecture comes from its ability to allow
different policies to be activated within each mechanism,
realizing any possible transport solution, while enabling dy-
namic configurability to satisfy potentially varying applica-
tion requirements over varying network characteristics at no
additional cost.

2.2 Components
In general, the two end-points of a transport connection

maintain shared state by exchanging protocol data units
(PDUs). A PDU consists of two parts, namely, the user’s
data and the protocol control information (PCI). State in-
formation is either passed explicitly in the PCI (e.g., the re-
ceiver’s current available buffer space) or inferred from the
exchange of PDUs over time (e.g., an estimate of the con-
nection’s round trip time). Analyzing the PCI in TCP, the
de-facto transport protocol, one quickly realizes that there
are two types of control information: 1) information that
must be associated with the user’s data (e.g., the check-
sum) and therefore must be transmitted with the data, 2)
information that does not have to be associated with the
user’s data (e.g., SACK blocks) and can be transmitted in
a separate PDU. We call these PDUs Transfer and Con-
trol PDUs, respectively. This leads to a natural decoupling
of transport into two separate protocols: the Data Trans-
fer Protocol (DTP) and the Data Transfer Control Proto-
col (DTCP). DTP and DTCP are decoupled via the Data
Transfer State Vector (DTSV) which contains all the shared
state. Our proposed architecture is outlined in Figure 1.

2.2.1 Data Transfer Protocol (DTP)
In general, every flow must have a DTP instance asso-

ciated with it. Service data units (SDUs) are enqueued in
outboundQ by the application (or the layer above). DTP

1



Figure 1: Our Transport Architecture

is responsible for delimiting the SDUs, performing any frag-
mentation / concatenation of SDUs to create transfer PDUs
whose size is less than the MTU of the layer below. DTP
is also responsible for tacking sequence numbers, addresses
and checksum information onto the transfer PDUs. Hence,
DTP only consists of mechanisms that are tightly coupled
with the user’s data and only generates a single PDU type—
the transfer PDU. Without a DTCP instance, DTP hardly
contains any policies and its implementation could be made
very efficient. We defer the details regarding the policies
associated with DTP, as well as its interaction with DTCP
to Section 5 where we specify various transport policies in
a declarative language.

2.2.2 Data Transfer Control Protocol (DTCP)
DTCP consists of all the loosely-coupled mechanisms

that execute concurrently and are independent from the
user’s data. Each mechanism generates its own control PDU
and/or affects required DTP mechanisms. DTCP is where
most of the transport policies reside.

The existence of a DTCP instance, is a matter of pol-
icy and depends on whether the supported flow requires any
of the control mechanisms to be activated. Sample control
mechanisms include, error, acknowledgement, retransmis-
sion, flow and congestion control.

2.2.3 Management
Management provides the applications being supported

with the necessary interfaces to specify their QoS require-
ments. It is then up to the policy selector to activate the
appropriate mechanisms and instantiate suitable policies to
satisfy these requirements. Management also provides sup-
port for all the required performance monitoring applica-
tions. Performance monitoring can be done either passively
(by observing transfer PDUs) or actively (by sending probe
packets). All monitoring information is stored in the Re-
source Information Base (RIB) and shared using the update
daemon that periodically sends update / refresh messages.

2.3 Transport in a Repeating IPC Layer
Our proposed transport architecture is part of a much

larger general structure—a repeating layer. More specifi-
cally, its development was greatly influenced by the fresh
perspective that networking is not a layered set of differ-

ent functions but rather a single layer of distributed Inter-
Process Communication (IPC) that repeats over different
scopes. In other words, the same set of functions / mech-
anisms repeat but are instantiated with policies that are
tuned to operate over different ranges of the performance
space (e.g., capacity, delay, loss). Even though a complete
specification of this repeating layer is outside the scope of
this paper, we highlight here a few key aspects.

In addition to scope, each repeating layer has a rank
denoted by N. The transport architecture we describe op-
erates at any (N)-layer. It receives SDUs from the (N+1)-
layer, consisting of transfer and control PDUs, potentially
from different (N+1)-flows. The concatenation mechanism
in DTP is responsible for aggregating these SDUs to improve
the Relaying and Multiplexing Task’s (RMT) performance—
to reduce switching overhead by processing larger units less
often.

The RMT, also a part of this repeating layer, supports
several transport instances2. The RMT is then responsible
for scheduling all outgoing packets, belonging to different
(N)-flows, onto the appropriate port-id (interface). Each
port-id provides a communication channel to a particular
destination with some desired QoS provided by the (N-1)-
layer. To abide by the rate limitations imposed by the (N-
1)-layer, the RMT may perform congestion control on all
flows scheduled for transmission on a particular port-id.

The existence of our transport architecture within this
repeating layer greatly simplifies its specification and allows
several functionalities to be supported solely as a conse-
quence of the structure itself, as we discuss in Section 4.

3. BACKGROUND
This section provides an overview of NDlog (the declar-

ative language) that we use to specify transport policies and
P2 (the underlying system that provides us with a bare-
bones communication pipe).

3.1 P2 System
P2 is a declarative networking system developed at Berke-

ley. Users specify network protocols in NDlog, a declarative
language based on extensions to Datalog [6]. These specifi-
cations are then compiled into a dataflow graph similar to
the one used by Click [4]. Each declarative rule specified
in NDlog is converted to a strand of elements implement-
ing the required relational database operations (joins, selec-
tions, projections, aggregations) to evaluate the rule. Rules
query / update relations and trigger events to implement
the desired logic. Tuples, representing PDUs and events,
are sent and received over the network via the Network-Out
and Network-In modules. The network modules implement
functionalities for sending and receiving messages, reliable
transmission, and congestion control. The network modules,
the queuing / multiplexing elements and the rule strands
constitute the dataflow graph that when executed results
in the implementation of the specified protocol. Figure 2
outlines P2’s dataflow architecture. As we discuss later in
Section 4 we replace P2’s transport modules (retry, ack and
congestion control elements) with a fine-grained specifica-
tion of transport policies (i.e. declarative rules). P2 thus

2A transport instance, consisting of a DTP and possibly a DTCP
instance, is created for each (N)-layer flow.

2



provides us with a bare-bones pipe over which transport tu-
ples are communicated.

Figure 2: P2’s Dataflow Architecture

3.2 Network Datalog
An NDlog program consists of a set of declarative rules.

A rule has the form rulename <head> :- <body>, where the
body consists of many predicates separated by commas in-
dicating an implicit conjunction. The head is triggered only
if all the predicates in the body evaluate to true.

In NDlog, a relation can be either a hard-state, soft-
state or an event relation. Hard-state and soft-state rela-
tions are materialized relations containing tuples that have
infinite and finite lifetimes, respectively. Event relations, on
the other hand, are treated as streaming tuples that serve
as trigger events and have a zero lifetime. When a tuple’s
time-to-live expires, it is removed from the relation. Materi-
alized relations are declared using the materialize command
where the name, tuple lifetime, maximum number of tuples
and primary key fields of the relation are specified. Tuples
in a materialized relation can be inserted, updated, deleted
or queried. Each tuple generated by an NDlog program is
stored at the address associated with the location specifier
denoted with the @ symbol. If the address is remote, the tu-
ple is sent over the network. The declarative rules in NDlog
are implemented using traditional database operations.

We consider below four sample declarative rules that
highlight the key aspects of NDlog that will be used in our
specification of transport policies. We denote event relations
by eEventName and materialized relations by relationName. The
body of rule r1 contains one event relation eEvent1 and one
materialized relation table13. The body is triggered when
the event tuple is fired (i.e., exists and evaluates to true).
Tuples are then selected from table1 such that all the values
of identical field names in table1 and eEvent1 match. Each
matching tuple causes the head of the rule to be triggered.
All tuples will be generated and consumed by node I.

r1 eHead(@I,A,B) :- eEvent1(@I,A,B), table1(@I,A,B).

The body of rule r2 contains two materialized relations,
table1 and table2. The body is triggered when either table1

or table2 is triggered. In general, materialized relations are
triggered when tuples are inserted or updated. Having two
(or more) materialized relations in the rule’s body causes
the relations to be joined. Finally, a projection on field B is
done. All eHead tuples are sent from node I to node J.

r2 eHead(@J,I,B) :- table1(@I,J,A,B), table2(@I,J,A,B).

3The body of a rule can contain at most one event relation.

In rule r3, the head contains an aggregation operator
that returns the number of tuples in table1.

r3 eHead(@I,a COUNT<*>) :- table1(@I,A,B).

NDlog supports built-in functions. In rule r4 the cur-
rent time is returned using a built-in function when eEvent1

is triggered. If the expression in the rule body is true a tuple
with a matching time field is deleted from table1.

r4 delete table1(@I,Time) :- eEvent1(@I,Time),
TNow := f now(), TNow > Time.

4. DECLARATIVE TRANSPORT
This section motivates our choice to implement a spec-

ification of our transport architecture in a declarative lan-
guage and compares it to existing approaches.

4.1 Componentized Versus Declarative
The network elements in P2 implement functionalities

for sending and receiving messages, reliable transmission
and congestion control, as shown in Figure 2. In [3], the
authors propose utilizing the configurability of the dataflow
graph to organize and reorder these elements to implement
a componentized transport solution while providing appli-
cations with several functionalities, including: 1) routing
around failures or congested paths by placing route selection
downstream of retries, 2) performing congestion control on
aggregate flows, 3) buffering outgoing tuples to enable data
aggregation, and 4) selecting a suitable congestion controller
to satisfy application requirements.

We believe that the repeating nature of our architecture
(cf. Section 2.3) allows all these functionalities to be sup-
ported solely as a consequence of the structure itself—i.e.,
without requiring any new mechanisms. The SDUs from
multiple (N+1)-layer flows can be concatenated, the RMT
can schedule, multiplex as well as perform congestion control
on aggregate flows, and several congestion control policies
can be easily supported. Instead of implementing various
transport elements in an imperative language, we take the
more radical approach of implementing a fine-grained spec-
ification of transport policies using declarative rules. The
retry element in P2’s network module, for example, is re-
placed with rule strands specifying several possible retrans-
mission policies. Thus, P2 provides us only with a bare-
bones communication pipe over which we build our trans-
port system declaratively.

4.2 Benefits of a Fine-Grained Specification
NDlog provides us with a suitable and somewhat unique

communication paradigm. Transfer and control PDUs are
created by sending formatted tuples over the network. A for-
matted tuple contains fields that both transport end-points
understand (i.e., expect and know how to process). The ex-
change and/or firing of tuples allows different mechanisms to
pass and share information (user data, different PCI fields,
control information, etc).

In general, we believe that implementing the specifi-
cation of any existing transport solution in NDlog would
be a difficult undertaking. Minimizing rule dependencies
and limiting interactions between relations is imperative to
producing concise specifications. Thus, since our transport
architecture decouples mechanisms from policies while mini-
mizing interactions, it can be more easily specified in NDlog.

3



In addition, having an executable dataflow specification that
is potentially verifiable is simply invaluable.

4.3 Transport State as Database Relations
All transport state is maintained as database relations

while state updates are triggered by events and realized us-
ing database operations.

We first describe the relational schema for the materi-
alized relations representing the queues in DTP. The DTP
outbound mechanisms require outboundQ(@I, J, TimeInserted,

Data) that holds SDUs inserted by the (N+1)-layer. The
closedWinQ(@I, J, Seq, Data) holds transfer PDUs to be sched-
uled for transmission by the DTCP flow control mechanism
once the window opens up. Copies of transmitted transfer
PDUs are stored in rtxQ(@I, J, TimeSent, Seq, Data) when-
ever the DTCP retransmission control mechanism is acti-
vated. The DTP inbound mechanisms, on the other hand,
require rcvQ(@I, J, TimeRcvd, Seq, Data) which holds transfer
PDUs received from the (N-1)-layer. Out-of-order transfer
PDUs are enqueued in orderQ(@I, J, Seq, Data). We assume
that all relations representing queues have no limit on the
number of tuples that can be inserted.

Next we describe the relational scheme for the mate-
rialized relations representing the state variables in DTSV.
At the sender, the sequencing mechanism in DTP maintains
the current sequence number in curSeq(@I, J, Seq) and the
sequence number of the last in-order acknowledged packet
in lastAckRcvd(@I, J, LastAckRcvd). At the receiver, the ex-
pected sequence number is maintained in expSeq(@I,J,ExpSeq).
The maximum buffer space available at the receiver is stored
in winSize(@I, J, Win). We focus on a single transport con-
nection so all state relations contain at most one tuple.

All state relations, as described in this paper, have infi-
nite lifetime indicating that transport state is hard-state and
requires explicit control and removal. In reality, transport
policies require soft-state relations and hence good support
for timers is needed (see Section 6.1 for further discussion).
For example, Delta-t [11] policies require (timer-based) soft-
state relations that render explicit connection management
mechanisms unnecessary.

5. TRANSPORT POLICIES IN NDLOG
In this section, we declaratively specify a subset of our

transport architecture outlined in Figure 1. We focus on
DTP mechanisms and how they are affected by various DTCP
policies, as well as a few independent control policies in
DTCP. The sender and receiver are located at nodes I and
J, respectively, while the connection between them is stored
in link(@I,J). For ease of exposition, we incrementally add
DTCP control mechanisms.

5.1 DTP Data Transfer Policies

5.1.1 DTP Outbound + No Dup Removal +
No DTCP Mechanisms

We start by specifying the outbound mechanisms (re-
sponsible for processing outgoing SDUs) associated with a
flow that only has a DTP instance and does not require the
duplicate removal mechanism. Neither sequencing nor error
correction is required in this case, thus these mechanisms are
deactivated by having a null policy. Addressing is provided
by P2’s location specifiers. For simplicity, we ignore delim-

iting and fragmentation / concatenation of SDUs to create
transfer PDUs. Thus when an SDU is inserted in outboundQ

by the (N+1)-layer, a transfer PDU is constructed and sent
over the network. Without a DTCP instance, transfer PDUs
are transmitted, only once, at the maximum rate allowed by
the (N-1)-layer.
snd01 eTransferPDU(@J, I, Data) :-

outboundQ(@I, J, TimeInserted, Data).

5.1.2 DTP Outbound + DTP Dup Removal +
DTCP Error Ctrl

Duplicate removal and error control require transfer
PDUs to contain a sequence number and a checksum, respec-
tively. When SDUs are inserted in outboundQ, the sequence
number curSeq associated with the DTP instance is first in-
cremented. Then the first SDU inserted in outboundQ is se-
lected (in case multiple SDUs were inserted), a transfer PDU
is constructed and sequenced. The transfer PDU’s check-
sum is then computed using a built-in function. Once the
sequence number and checksum are tacked onto the transfer
PDU, it is sent over the network.
snd01 eUpdateSeq(@I, J) :- outboundQ(@I, J, Time, Data).

snd02 curSeq(@I, J, NewSeq) :- eUpdateSeq(@I, J),
curSeq(@I, J, Seq), NewSeq := Seq+1.

snd03 eSeqUpdated(@I,J) :- curSeq(@I,J,Seq).

snd04 eMinTime(@I,J,a MIN<Time>) :- eSeqUpdated(@I,J),
outboundQ(@I,J,Time, ).

snd05 eSequencedData(@I,J,Seq,Data) :- eMinTime(@I,J,Time),
outboundQ(@I,J,Time,Data), curSeq(@I,J,Seq).

snd06 eData(@I,J,Seq,Data,Checksum) :-
eSequencedData(@I,J,Seq,Data),
Checksum := f checksum(I,J,Seq,Data).

snd07 eTransferPDU(@J,I,Seq,Data,Checksum) :-
eData(@I,J,Seq,Data,Checksum).

5.1.3 DTP Outbound + DTCP Rtx Control
When the flow has a DTCP retransmission control in-

stance associated with it, the rtxQ relation is allocated and a
copy of every transmitted transfer PDU is inserted in it. It
is then up to DTCP to retransmit the inserted PDU when
its retransmission timer expires. We will discuss retrans-
mission policies in more detail in Section 5.3. For ease of
presentation, the Checksum field is henceforth omitted.
#include(snd01,snd02,snd03,snd04,snd05).

snd06 rtxQ(@I,J,Tnow,Seq,Data) :-
eData(@I,J,Seq,Data), Tnow := f now().

5.1.4 DTP Outbound + DTCP Flow Control
When the flow has a DTCP flow control instance associ-

ated with it, the closedWinQ, lastAckRcvd and winSize relations
are allocated. A transfer PDU is sent over the network only
if the number of unacknowledged transfer PDUs computed
by (Seq - LastAckRcvd), where Seq denotes the sequence num-
ber of the PDU to be transmitted, does not exceed the win-
dow size allowed by the flow control mechanism. Otherwise,
the PDU is buffered in closedWinQ. It is then up to DTCP
to transmit the buffered PDUs when the window opens up
again.
#include(snd01,snd02,snd03,snd04,snd05).

snd07 eTransferPDU(@J,I,Seq,Data) :- eSequencedData(@I,J,Seq,
Data), lastAckRcvd(@I,J,LastAckRcvd), winSize(@I,J,Win),
Win >= Seq-LastAckRcvd.

snd08 closedWindowQ(@I,J,Seq,Data) :- eSequencedData(@I,J,
Seq, Data), lastAckRcvd(@I,J, LastAckRcvd),
winSize(@I,J, Win), Win < Seq-LastAckRcvd.

4



5.1.5 DTP Inbound + DTP Ordering +
No DTCP Mechanisms

Here we specify DTP inbound mechanisms, particularly
the ordering mechanism, associated with a flow that only
has a DTP instance. The receiver could potentially have
several policies for buffering received transfer PDUs. When
a transfer PDU is received it is placed in rcvQ. The receiver
may process (and buffer) only in-order (expected) PDUs by
triggering eOrderedDataRcvd while dropping all out-of-order
PDUs.
ord01 eOrderedDataRcvd(@I,J,Seq,Data) :-

rcvQ(@I,J,TimeRcvd,RcvdSeq,Data), expSeq(@I,J,ExpSeq),
RcvdSeq == ExpSeq.

ord02 eUnexpDataRcvd(@I,J,Seq,Data) :-
rcvQ(@I,J,TimeRcvd,RcvdSeq,Data), expSeq(@I,J,ExpSeq),
RcvdSeq != ExpSeq.

On the other hand, the receiver may choose to enqueue
at most an entire window of out-of-order transfer PDUs in
orderQ. PDUs that do not have the expected sequence num-
ber are considered out-of-order.
#include(ord01).

ord02 eUnexpDataRcvd(@I,J,Seq,Data) :- rcvQ(@I,J,TimeRcvd,
RcvdSeq,Data), expSeq(@I,J,ExpSeq), winSize(@I,J,Win),
RcvdSeq >= ExpSeq+Win, RcvdSeq < ExpSeq.

ord03 orderQ(@I,J,Seq,Data) :- rcvQ(@I,J,TimeRcvd,RcvdSeq,
Data), expSeq(@I,J,ExpSeq), winSize(@I,J,Win),
RcvdSeq >= ExpSeq, RcvdSeq < ExpSeq + Win.

5.2 DTCP Acknowledgement Policies
There are several acknowledgement policies that are

commonly used. Cumulative acknowledgements inform the
sender of the last in-order correctly received packet (or byte).
Selective acknowledgements, on the other hand, inform the
sender of all, potentially non-contiguous, packets received.

5.2.1 Cumulative Acknowledgements
As the receiver enqueues transfer PDUs in rcvQ, the ex-

pected sequence number expSeq is maintained by DTP and
stored in DTSV. If the received PDU is expected and subse-
quent PDUs were previously received, expSeq is incremented
recursively. Once the expected sequence number has been
maintained (and eExpSeqReady is triggered), the ack control
mechanism uses it in the acknowledgement PDU transmit-
ted over the network. For simplicity, we assume that trans-
fer PDUs with sequence numbers less than the expected
sequence number are deleted from rcvQ once processed.
ack01 eIncrementExpSeq(@I, J) :- rcvQ(@I,J, ,Seq, ),

expSeq(@I,J,ExpSeq), Seq == ExpSeq.

ack02 eExpSeqReady(@I, J) :- rcvQ(@I,J, ,Seq, ),
expSeq(@I, J, ExpSeq), Seq != ExpSeq.

ack03 expSeq(@I,J,NewExpSeq) :- eIncrementExpSeq(@I,J),
expSeq(@I,J,ExpSeq), NewExpSeq := ExpSeq + 1.

ack04 eExpSeqIncremented(@I,J,ExpSeq) :- expSeq(@I,J,ExpSeq).

ack05 eMinSeq(@I,J,a MIN<Seq>) :- eExpSeqIncremented(@I,J,
ExpSeq), rcvQ(@I, J, , Seq, ), Seq >= ExpSeq.

ack06 eIncrementExpSeq(@I, J) :- eMinSeq(@I, J, MinSeq),
expSeq(@I, J, NewExpSeq), MinSeq == NewExpSeq.

ack07 eExpSeqReady(@I, J) :- eMinSeq(@I, J, MinSeq),
expSeq(@I, J, NewExpSeq), MinSeq != NewExpSeq.

ack08 eAckPDU(@J, I, Seq) :- eExpSeqReady(@I, J),
expSeq(@I, J, ExpSeq), Seq := ExpSeq - 1.

The sender handles cumulative acknowledgements by
removing all records in rtxQ such that the sequence number

received in the acknowledgement is greater than or equal
to the sequence number field in the PDU’s record. Each
matching record triggers eDelAckedPDUs to delete a tuple.
ack09 eDelAckedPDUs(@I,J,TimeSent,Seq,Data) :-

eAckPDU(@I,J,RcvdSeq), rtxQ(@I,J,TimeSent,Seq,Data),
RcvdSeq >= Seq.

ack10 delete rtxQ(@I, J, TimeSent, Seq, Data) :-
eDelAckedPDUs(@I, J, TimeSent, Seq, Data).

5.2.2 Selective Acknowledgements
Selective acknowledgements are simpler. Every time

the receiver enqueues a transfer PDU in rcvQ, the eDataRcvd

event is triggered and the DTCP ack control mechanism
sends an acknowledgement with the sequence number of that
PDU over the network.
ack01 eDataRcvd(@J, I, Seq) :- rcvQ(@I, J, ,Seq, ).

ack02 eAckPDU(@J, I, Seq) :- eDataRcvd(@I, J,Seq).

The sender handles the selective acknowledgement by
only removing records from rtxQ that match the received
sequence number Seq.
ack03 eDelAckedPDUs(@I, J, TimeSent, Seq, Data) :-

eAckPDU(@I,J,RcvdSeq), rtxQ(@I,J,TimeSent,Seq,Data).

#include ack10.

5.3 DTCP Retransmission Policies
For simplicity, we only consider timeout-triggered re-

transmissions. DTCP’s retransmission control mechanism
might have several policies associated with it. Upon the
timeout of a transfer PDU, either only the PDU that timed
out is retransmitted, all unacknowledged PDUs are retrans-
mitted or at most N unacknowledged PDUs are retransmit-
ted4.

5.3.1 Retransmit Expired Transfer PDU Only
NDlog does not have support for timers. We consider

this issue in detail in Section 6.1. NDlog does, however, have
a periodic command that could infinitely trigger a tuple at
node I every T seconds. We use periodic to continuously
check if any transfer PDUs have timed out. If so, the PDU
is retransmitted and reinserted in rtxQ.
rtx01 eData(@I, J, Seq, Data) :- periodic(@I, E, T),

rtxQ(@I, J, TimeSent, Seq, Data),
Tnow := f now(), Tnow - TimeSent > RTO5.

rtx02 eTransferPDU(@J,I, Seq, Data) :- eData(@I,J, Seq, Data).

5.3.2 Retransmit All Unacknowledged Transfer PDUs
Here we first need to detect if any transfer PDU ex-

perienced a timeout by checking the first transmitted PDU
(using the MIN aggregate) stored in rtxQ. If a timeout oc-
curred, all PDUs in rtxQ are selected and retransmitted.
rtx01 ePeriodic(@I, J) :- periodic(@I, E, T), link(@I,J).

rtx02 eCountUnackedPDUs(@I,J, a COUNT<*>) :-
ePeriodic(@I, J), rtxQ(@I,J, , , ).

rtx03 eRtxOnCount(@I, J) :-
eCountUnackedPDUs(@I,J,Count), Count > 0.

rtx04 eMinTimePDUSent(@I,J, a MIN<TimeSent>) :-
eRtxOnCount(@I,J), rtxQ(@I,J,TimeSent, , ).

rtx05 eTimeout(@I,J) :- eMinTimePDUSent(@I,J, TimeSent),
TNow := f now(), TNow - TimeSent > RTO.

rtx06 eData(@I,J, Seq, Data) :- eTimeout(@I,J),
rtxQ(@I,J, TimeSent, Seq, Data).

rtx07 eTransferPDU(@J,I, Seq,Data) :- eData(@I,J, Seq,Data).

4Due to space limitations we omit the last policy’s specification.

5



5.4 DTCP Congestion Control Policies
Monitoring applications keep track of a wide range of

connection performance metrics such as throughput, good-
put, loss rate, available capacity, delay, etc. Thus, any con-
gestion control policy, which is arguably the hardest policy
in a transport protocol, degenerates to simply querying the
required metrics from the RIB and using any rate control
algorithm that is suitable for the environment.

6. EXTENSIONS TO NDLOG

6.1 Support for Timers
Implementing transport policies in NDlog requires sup-

port for timers6 (e.g., retransmission and/or state mainte-
nance timers). We are currently considering a few alter-
natives. One possibility involves two extensions to NDlog:
1) allowing each tuple in a materialized relation to have its
own lifetime attribute7, and 2) triggering a rule-level event
containing all the information associated with a tuple being
removed from a materialized relation due to the expiration
of its lifetime.

Consider the tuples in rtxQ8. Each tuple would have
a lifetime that is equal to the packet’s retransmission time-
out. When the tuple expires, the triggering of the expired
tuple event allows the packet retransmission to be readily
scheduled.

6.2 Support for Transactions
NDlog does not support multi-rule atomicity. This leaves

specifications susceptible to race conditions. Imagine two
rules, r1 and r2 that operate as follows. Rule r1 reads from
a materialized relation and checks if a particular condition
is satisfied. Rule r2 writes a new value to the relation. One
may require rules r1 and r2 to be executed atomically to
guarantee correct behavior. This can be crudely achieved
by assigning priorities to rules as done in [2] to bias the
scheduling of rule execution.

When dealing with transport state in DTSV, race con-
ditions lead to either performance degradation or threaten
protocol correctness—something which cannot be tolerated.
For example, rejecting a received packet because the ex-
pected sequence number was not updated correctly causes
the transport protocol to induce unnecessary losses. On the
other hand, sending two consecutive packets with the same
sequence number, threatens the reliability of the protocol.
We are currently considering possible extensions to NDlog
based on Transactional Datalog [1].

7. ONGOING AND FUTURE WORK
In addition to specifying our proposed transport archi-

tecture and evaluating it, our ongoing work involves pro-
ducing a full specification of a repeating IPC layer (cf. Sec-
tion 2.3). Such a layer would combine transport and rout-
ing, as well as layer management functions for performing

6Using periodic to check if the timer expired triggers tuples
unnecessarily and degrades performance.
7NDlog associates the same lifetime attribute with all the tuples
in a relation.
8Contains copies of packets that may need to be retransmitted
by DTCP.

enrollment, authentication, resource allocation, address as-
signment, access control, etc. Our goal is to build repeating
IPC layers in P2, as part of our effort to realize and eval-
uate a clean-slate Internet architecture. This architecture
is scalable in that it can potentially repeat infinitely where
the scope of the lowest IPC layer is a physical (shared or
dedicated) link.

In this regard, we view P2 as a bare-bones communica-
tion pipe for exchanging tuples at any IPC layer, and NDlog
as the declarative language in which all the elements in the
IPC layer can be specified. We plan on leveraging existing
declarative specifications (e.g., routing [8] and overlays [7]).
We will evaluate all aspects of our architecture including its
performance, manageability and ease of specification. We
aim to compare it against the existing Internet architecture,
as well as emerging proposals by running it over testbeds
such as PlanetLab and GENI.

8. REFERENCES
[1] A.J. Bonner. Workflow, Transactions, and Datalog. In ACM

Symposium on the Principles of Database Systems, pages

294–305, November 1999.

[2] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,

S. Shenker, and I. Stoica. The Design and Implementation of a

Declarative Sensor Network System. In International Conference

on Embedded Networked Sensor Systems, 2007.

[3] T. Condie, J. Hellerstein, P. Maniatis, S. Rhea, and T. Roscoe.

Finally, a Use for Componentized Transport Protocols. In

HotNets-IV, 2005.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.

The Click Modular Router. ACM Transactions on Computer

Systems, 18(3):263–297, 2000.

[5] C. Liu, Y. Mao, M. Oprea, P. Basu, and B.T. Loo. A

Declarative Perspective on Adaptive MANET Routing.

Technical Report MS-CIS-08-03, Department of Computer and

Information Science, University of Pennsylvania, March 2008.

[6] B. Loo, T. Condie, M. Garofalakis, D. Gay, J. Hellerstein,

P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica.

Declarative Networking: Language, Execution and

Optimization. In ACM SIGMOD International Conference on

Management of Data, pages 97–108, 2006.

[7] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and

I. Stoica. Implementing Declarative Overlays. In 20th ACM

Symposium on Operating Systems Principles (SOSP), October

2005.

[8] B. Loo, J. Hellerstein, I. Stoica, and R. Ramakrishnan.

Declarative Routing: Extensible Routing with Declarative

Queries. In ACM SIGCOMM, August 2005.

[9] N. Riga, I. Matta, A. Medina, C. Partridge, and J. Redi. JTP:

An Energy-conscious Transport Protocol for Multi-hop Wireless

Networks. In CoNEXT Conference, December 2007.

[10] A. Tavakoli, D. Chu, J. Hellerstein, P. Levis, and S. Shenker. A

Declarative Sensornet Architecture. SIGBED Rev., 4(3):55–60,

2007.

[11] R. W. Watson. The Delta-t Transport Protocol: Features and

Experience. In Local Computer Networks, pages 399–407,

October 1989.

6


