
Adaptive Reliable Multicast∗

Jaehee Yoon Azer Bestavros Ibrahim Matta
jaeheey@cs.bu.edu bestavros@cs.bu.edu matta@cs.bu.edu

Computer Science Department
Boston University
Boston, MA 02215

Abstract
We present a new reliable multicast protocol, called ARM for
Adaptive Reliable Multicast. Our protocol integrates ARQ
and FEC techniques. The objectives of ARM are (1) reduce
the message overhead due to NACK requests, (2) reduce the
amount of data transmission, and (3) reduce the time it takes
for all receivers to receive the data intact (without loss). Dur-
ing data transmission, the sender periodically informs the re-
ceivers of the number of packets that are yet to be transmit-
ted. Based on this information, each receiver predicts whether
this amount is enough to recover its losses. Only if it is not
enough, that the receiver requests the sender to encode addi-
tional redundant packets. Using ns simulations, we show the
superiority of our hybrid ARQ-FEC protocol over the well-
known Scalable Reliable Multicast (SRM) protocol.

1 Introduction

An increasing number of distributed applications involve
one sender transmitting data to many recipients con-
currently. Examples include distributed games, tele-
conferencing, live auctions, concurrent engineering, and
interactive distance learning. Such applications require
the underlying network to provide a one-to-many (multi-
cast) communication.

The Internet implements a multicast service that is
unreliable best-effort [2]. To support the needs of ap-
plications, reliable multicast has been an active area of
research and many reliable multicast transport protocols
have been recently proposed.

Reliable multicast transport protocols can be catego-
rized into two groups: (1) ARQ (Automatic Repeat re-
Quest) based protocols, which retransmit lost data upon
request, and (2) FEC (Forward Error Correction) based
protocols, which transmit redundant data, called parity
data, along with the original data. The ARQ technique
is appropriate for unicast communication, such as in the
Transmission Control Protocol (TCP), but problems arise
when a straightforward ARQ based protocol is used in
a multicast setting. A major problem is the so-called

∗This work was supported in part by NSF research grants ESS
CCR-9706685, CAREER ANIR-9701988, and MRI EIA-9871022.

NACK implosion problem, which takes place when every
receiver sends a negative acknowledgment (NACK) mes-
sage for the same lost packet back to the sender. SRM
(Scalable Reliable Multicast) [3] is one of the most pop-
ular ARQ based protocols that have been proposed to
reduce this NACK implosion. The basic idea is to have a
receiver multicast NACK packets to the entire group. A
receiver waits for a random time before sending a NACK
packet, and refrains from sending a NACK if it sees a
NACK from another receiver for the same packet.

The basic principle of FEC is that the original data
is encoded to obtain some parity data, which is sent by
the sender along with the original data. This parity
data is used by a receiver to independently recover lost
data. With FEC, retransmission can, in principle, be
completely avoided, thus significantly reducing latency
to receive all data intact (without loss) at all receivers.
However, FEC by itself cannot provide full reliability, be-
cause the sender does not receive any feedback from the
receivers about their losses, thus there is no way for the
sender to know how much redundancy is needed to fully
recover lost data.

Many reliable multicast protocols based on merging
FEC and ARQ techniques have also been proposed (e.g.
[8, 4]). The main idea behind these hybrid ARQ-FEC
approaches is that the sender encodes data and transmits
the original data along with some redundant data. If a
receiver detects losses which cannot be recovered from the
data received from the sender, then the receiver requests
the number of (lost) packets that it needs to fully recover
the original data. The benefit of this approach is that
the sender and receivers need to be only aware of the
number of lost packets and not their sequence numbers.
Thus, the same (repair) packets sent by the sender, in
response to NACK requests from receivers who may have
lost different packets, can be used by all receivers for loss
recovery.

Hybrid ARQ-FEC approaches clearly reduce the num-
ber of repair packets while reducing NACK implosion.
However, the problem of setting the proper redundancy
so as to avoid retransmission in such hybrid protocols still
remains. If the sender uses a fixed redundancy that is in-

dependent of the loss rates experienced by receivers, then
if the loss rates are much higher than what FEC is able
to mask, the sender may suffer from NACK implosion.
Also, the need for retransmissions will increase the overall
transmission latency. On the other hand, if the loss rates
are much lower than predicted, bandwidth is wasted due
to the unnecessary redundant data sent to receivers. Fi-
nally, with a static redundancy, additional repair packets
may not be available when NACK requests arrive from
receivers. This suggests that the sender should adjust
the amount of redundancy dynamically based on feedback
from the receivers about their loss state. This, however,
raises challenging issues regarding the times of these ad-
justments and the loss conditions under which a receiver
sends a feedback (NACK) message.

Our Contribution: We propose an Adaptive Reliable
Multicast protocol, called ARM, that is based on a hybrid
ARQ-FEC approach. In our protocol, the sender dynam-
ically adjusts the amount of redundancy needed for full
recovery from losses. This is achieved as the data is being
transmitted. The sender in ARM keeps track of the re-
quired redundancy by periodically sending probes which
are piggy-backed on the data packets. Based on their esti-
mated loss rates, receivers predict the number of packets
they will successfully receive, and only if this number is
not sufficient to fully recover the original data, a receiver
responds to the probe with a NACK. Upon receiving this
NACK information, the sender readjusts the required re-
dundancy, and encodes more repair packets if needed.

ARM has several salient features: (1) the proper num-
ber of redundant packets is encoded based on the loss
state of receivers as it changes over the lifetime of the
data transmission, (2) the transmission time needed for
all receivers to receive the original data intact is signifi-
cantly reduced, and (3) the message overhead due to data
and NACK transmission is significantly reduced.

The reduction in transmission times is due to the elim-
ination of most NACK requests as a result of the proper
dynamic adjustment of redundancy employed in ARM.
Furthermore, encoding additional redundancy to combat
expected (future) losses is overlapped with data transmis-
sion.

The reduction in message overhead is due to the fact
that the sender encodes new repair packets as needed,
hence receivers do not receive duplicate (useless) pack-
ets. Also, receivers do not send NACK requests if the
redundancy that is currently estimated is enough for full
recovery, hence dramatically reducing NACK implosion.
Finally, once a receiver receives the number of packets
needed to fully recover the original data, it can leave the
multicast group, thus the multicast routing tree shrinks
(and hence less resources are consumed) over time.

The rest of the paper is organized as follows. Section 2
describes our proposed ARM protocol. Section 3 presents
our simulation results. Section 4 concludes the paper.
Due to space limitations, we refer the reader to [9] for
detailed discussion of related work and ARM description.

2 Adaptive Reliable Multicast Protocol

In this section we detail our Adaptive Reliable Multi-
cast (ARM) Protocol. We start with an overview. Next,
we present a detailed description of the protocol.

2.1 ARM Protocol Overview

As with other FEC-based protocols, we assume that
all receivers know the least number of packets, K ′, that
they must receive to be able to reconstruct the original
data. Therefore, a receiver is not concerned about receiv-
ing a particular set of packets. Rather, it is concerned
with receiving a minimum number of distinct packets. To
reduce latency, the sender starts by multicasting original
packets. In the meantime, the sender encodes the origi-
nal data to obtain additional repair packets. Thus, the
encoding time is overlapped with the data transmission
time. To reduce the number of packets transmitted by
the sender, the sender transmits probes (piggy-backed on
data packets), and (a small subset of the) receivers re-
spond with NACKs that allow the sender to estimate the
number of repair packets that are needed to mask the
effects of current loss conditions.

We assume that the encoding and decoding technique
used by the sender and receivers is Tornado [5].1 With
Tornado coding, a receiver must receive at least K ′ =
(1+ ε)K, where K is the number of original data packets
and ε is the reception (decoding) overhead.2 In [1], ε was
found to be very small.

To determine the amount of redundancy needed, the
sender periodically sends a probe with information about
the number of packets that are yet to be sent. We denote
this quantity by PTS.

Upon receiving a probe, a receiver uses the PTS in-
formation as follows: first, it is used to predict whether
or not the yet-to-be transmitted packets are enough to
reconstruct the original data—based on the current loss
rate it is experiencing. If the forthcoming packets are in-
sufficient to recover the original data, the receiver sends
a (unicast) NACK to the sender, which includes the max-
imum sequence number that should be delivered. If the
forthcoming packets are sufficient to recover the original
data, the receiver simply does not need to respond to the
sender’s probe. Second, by adding PTS to the current se-
quence number of the probe packet, a receiver calculates
the current maxseqno of the sender. If it is the same as the
receiver’s maxseqno previously calculated and sent back
to the sender in a NACK, the receiver considers itself the
bottleneck as it is the one that had set the maxseqno of
the sender. Then, the receiver responds to the probe with
a NACK containing the updated maxseqno, which can be
less or greater than the current value of the sender.

Upon receiving a NACK from a receiver, the sender
adjusts its maximum sequence number to accommodate

1The use of Tornado codes—while preferred—is not necessary.
In particular, ARM could be used with traditional Reed-Solomon
Coding (e.g. Rabin’s Information Dispersal Algorithm [7]).

2In our simulations, we take ε = 0.03.

the needs of that receiver. Future probes multicast by the
sender will reflect this adjusted maximum sequence num-
ber. This feedback mechanism enabled through probing
is minimal in the sense that only those receivers with loss
rates that are “worse” than the loss rate predicted by the
sender are required to send NACKs. If no such receivers
exist, then no feedback is generated in response to a probe
except only by the bottleneck to decrease the maxseqno.

2.2 ARM Protocol Description

We describe the details of ARM by presenting the steps
undertaken by the Sender and Receiver(s) at various
stages of the protocol.

Sender: Start
SS.1 Sender sets maxseqno to K ′ before transmitting the

first packet.

SS.2 Sender starts to transfer the original data packets.

SS.3 Concurrently with step SS.2, the sender applies Tor-
nado coding to the original K data packets to ob-
tain N packets.3 These packets constitute the original
K packets and the N − K additional repair packets
(K < N).

Sender: Probing
SP.1 Periodically, the sender transmits a probe piggy-

backed on a data packet. The probe consists of a
time-stamp that identifies the time at which the probe
is sent and PTS. Namely, PTS = maxseqno− seqno,
where seqno is the sequence number of the packet
transmitted with the probe. The purpose of the times-
tamp is to estimate the maximum round-trip time
(RTT).4

Receiver: Packet Processing
RP.1 Whenever a receiver receives a packet, it increases

the Received Packet Counter (RPC) by one to keep
track of the number of packets received.

RP.2 If RPC is greater than or equal to K ′, the original
data can be reconstructed from the packets received so
far. The receiver then decodes the received data and
leaves the multicast group.5

RP.3 If RPC is less than K ′ and a probe is received from
the sender, then the receiver proceeds as follows:

RP.3.1 Compute m, the number of packets expected to
be received, as follows: m = PTS × (1 − r) + RPC,
where r is the expected loss rate computed as in RE.2.

RP.3.2 If the value of m (computed in RP.3.1) is greater
than or equal to K ′, the receiver does not respond to
the probe (i.e. it does not send a NACK).
3In our simulations, we take N = 2K at first. It is increased

(without waiting) if need be as described in step SN.2.
4More frequent probing is needed toward the end of the data

transmission so as to trigger NACKs and encode more repair packets
if needed. In our simulations, we send the first probe after sending
the first K/5 packets, then we increase the probing frequency by
sending one probe every RTT . In order to account for scenarios
where the last transmitted packets experience unexpected losses,
ARM uses the timeout mechanism described in step SE.1 until every
receiver receives K′ packets.

RP.3.3 If the value of m (computed in RP.3.1) is less
than K ′, then the forthcoming packets are not enough
to recover the original data. The receiver proceeds as
in RP.3.5 and RP.3.6.

RP.3.4 The receiver decides whether it is the bottleneck,
i.e. the one that had set the current value of maxseqno
of the sender. This is so if maxseqno that it had sent
to the sender in a previous NACK, equals the current
sequence number plus PTS. In case the receiver is the
bottleneck, it proceeds as in RP.3.5 and RP.3.6.

RP.3.5 A new maxseqno is computed as follows:

maxseqno = seqno + (K ′ − RPC)/(1 − r)

where (K ′ − RPC) is the number of additional pack-
ets that a receiver needs to receive. Thus, at least
(K ′ −RPC)/(1− r) additional packets should be sent
in order to endure packet losses at the currently esti-
mated loss rate of r.

RP.3.6 The receiver sends a NACK that includes the
new maxseqno calculated in step RP.3.5.

Receiver: Loss Rate Estimation
RE.1 Periodically, a receiver updates its current estimate

of loss rate l as follows:
l = 1 − (∆RPC/∆seqno)

where ∆seqno is the difference in sequence numbers
of packets received at the beginning and end of the
update time interval. ∆RPC is the number of packets
received during the update interval. Thus, the ratio l
gives the current proportion of packets lost.

RE.2 Based on l, a receiver maintains exponential mov-
ing average and deviation of the loss rate. Specifically,

AvgL = α × AvgL + (1 − α) × l

DevL = (1 − δ) × | l − AvgL | + δ × DevL

r = AvgL + γ × DevL

where r is the estimated loss rate. AvgL and DevL
are the moving average and deviation, respectively.6

Sender: NACK Processing
SN.1 Upon receipt of a NACK, the sender updates

maxseqno as the maximum value among maxseqno
returned by receivers in response to the same probe.

SN.2 If the new maxseqno requested by a receiver is
greater than N , the sender needs to encode more re-
pair packets, and the new value of N becomes: N =
maxseqno. This makes it possible to adjust the level of
redundancy in the middle of a multicast transmission.

5By allowing receivers to leave the multicast group once they re-
ceive the K′ packets needed, we significantly reduce the bandwidth
consumed over the network.

6In our experiments, we take α = δ = 0.5, and we set γ to 3.
γ could be set to higher values to account for high variability in
loss conditions. We take the estimation update interval to be 0.2
seconds.

Sender: End
SE.1 After transmitting all maxseqno packets, the

sender sets a timer with RTT . If a NACK is re-
ceived before the timer expires, the sender resets the
timer. If the timer expires before every receiver re-
ceives K ′ packets, the sender increases maxseqno by
the number of packets per RTT , which is calculated
as RTT × packet sending rate.

SE.2 The transmission ends once the sender transmits all
maxseqno packets and all receivers leave the multicast
group after each receiving at least K ′ packets.

3 Performance Evaluation

In this section we present the results of our prototype
implementation and performance evaluation of ARM.

Simulated Protocols: We evaluated the performance
of our ARM protocol by comparing it to the well-known
SRM protocol of Floyd et al. [3].

We prototyped an implementation of our ARM proto-
col using the UCB/LBNL/VINT network simulator, ns-
2.1b4 [6]. A new agent, called ARM, is created as a sub-
class of AgentClass and defined in arm.cc and arm.h.
This agent implements ARM for reliable multicast. The
sender starts transmitting data at time 25.0. The simu-
lation run is stopped once all receivers receive the needed
packets to recover the original data.

We used the SRM implementation of ns version 2.1b4.
The code is modified to stop the simulation once every
receiver receives K packets, instead of stopping at a pre-
defined simulation time. SRM senders start sending ses-
sion messages at time 20.0 and start sending data at time
25.0. Session messages are sent periodically, so receivers
can estimate RTT [3].

In our experiments, we didn’t account for the Tornado
encoding and decoding times and we did not account for
the delays resulting from SRM’s need to send session mes-
sages periodically to estimate RTT.

Simulation Model and Metrics: To evaluate the
performance of ARM and SRM we set up a simulated mul-
ticast network using the 15-node tree topology depicted
in Figure 1. In this topology, a CBR (Constant Bit Rate)
data source is attached to node 14 and all other nodes
(i.e. nodes 0 to 13) act as receivers. In our simulations,
the packet interarrival time for the CBR source is set to
0.01 seconds. Each link in the network is subjected to a
maximum of 32 on-off cross connections generated by a
UDP-based agent. This UDP-based agent generates con-
nections with an inter-arrival time uniformly distributed
between 0 and 0.1 second. Each connection is an on-
off source with Pareto distributed “on” and “off” periods
with average durations of 0.1 second and 0.9 second, re-
spectively. The Pareto distribution has a skew parameter
of 1.35. During the “on” periods, packets are generated
at a rate of 1000Kbps. This cross-traffic resulted in up
to 30% loss rates observed at receivers. The bandwidth
of the links in our simulated topology are set to 1.5Mbps.

All links have a propagation delay of 15ms. The packet
size is 1KB. So, for example, if K is 1000, the data size
is 1MB. We assume that the receivers join the multicast
group before starting data transmission.

0

1

2

3

4

5

7

8

9

10

11

12

13

6

14

Figure 1. Simulated Network Topology
In our simulations, we measured three performance

metrics. The first is the transmission time, which is de-
fined as the time it takes from the start of the multicast
transmission until all receivers are able to reconstruct the
original data transmitted. The second is the total number
of packets injected by the sender into the network. This
metric allows us to evaluate the goodput, which is the ratio
of the packets needed to the packets actually sent. The
third is the request traffic, i.e., the number of NACKs
emitted from the receivers to the sender.

Simulation Results: In Figure 2(a), we compare the
transmission time of ARM against that of SRM. As ex-
pected, ARM completes its transmission faster than SRM.
The transmission delay is cut by almost 50% by using
ARM as opposed to SRM. In ARM, receivers do not re-
cover their lost packets by waiting for retransmissions as
in SRM. Rather, receivers can recover their losses as they
receive “fresh” repair packets from the sender.

Figure 2(b) shows the total number of packets trans-
mitted by the sender (on the Y-axis) to complete a K-
packet reliable multicast transmission (on the X-axis).
Under SRM, the total number of transmitted packets is
the number of original and retransmitted data packets
from the sender, as well as the repair packets sent by re-
ceivers. Under ARM, it is the total number of packets
sent from the sender (including original and repair pack-
ets). The figure shows that ARM consistently reduces
the total number of packets and thus has a better good-
put than that of SRM. ARM transmits enough packets to
compensate for the worst-case loss among all receivers—
i.e. it transmits K/(1−R) packets, where R is the worst-
case loss among all receivers.

Figure 2(c) shows the number of NACK packets han-
dled by the sender as a function of the number of original
packets transmitted (i.e. K). The NACK traffic depends
on the loss model. In particular, NACK traffic will be pro-
portional to the length of the multicast transmission—or
more accurately to the variability of network loss charac-
teristics throughout the multicast session. Compared to
SRM, ARM results in significantly fewer NACKs under
the dynamic cross-traffic loss model used in our experi-
ments.

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000

T
ra

ns
m

is
si

on
 T

im
e

(s
ec

on
ds

)

K

Transmission Time vs K

ARM
SRM

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000

D
at

a
an

d
R

ep
ai

r
Pa

ck
et

s
vs

 K

K

Data and Repair Packets vs K

ARM
SRM

10

100

1000

10000

100000

200 500 1000 1500 2000

lo
g1

0(
no

 o
f

N
A

C
K

s)

K

Request Packets vs K

ARM
SRM

(a) (b) (c)

Figure 2. Performance vs. Number of Original Packets: (a) Transmission Time, (b) Total Number of
Transmitted Data Packets, (c) Number of Request Packets (NACKs)

In Figure 3, we studied how the value of maxseqno
of the sender changes over time. As explained in step
SN.1 of the ARM protocol described in Section 2.2, the
value of maxseqno is increased based on the NACK feed-
back from receivers. It might also be decreased based on
the NACK feedback from bottleneck nodes as described
in step RP.3.4. This process ensures that maxseqno ad-
justs dynamically to the actual loss rates experienced by
receivers, which are estimated as in RE.1 and RE.2.

1000

1050

1100

1150

1200

1250

1300

1350

0 200 400 600 800 1000 1200

m
ax

se
qn

o

seqno

Maximum Sequence Number

maxseqno

Figure 3. Adaptation of maxseqno.

4 Conclusion

In this paper we have proposed and evaluated a hy-
brid ARQ-FEC Adaptive Reliable Multicast (ARM) pro-
tocol, which uses minimal feedback from receivers to dy-
namically adjust the amount of redundant data that the
sender must transmit to ensure a reliable delivery of mul-
ticast data to all receivers. In particular, an ARM sender
employs a probing mechanism to solicit feedback from
only those receivers experiencing a loss rate that cannot
be accommodated given the current level of redundancy
adopted by the sender. Such feedback (or lack thereof)
is used by an ARM sender to select (or readjust) “on the
fly” the level of redundancy to be used to mask packet
losses. Our preliminary evaluation of ARM suggests that
it promises shorter transmission times, decreased NACK

traffic, and improved bandwidth utilization (or goodput)
when compared to the well-known SRM reliable multi-
cast protocol. We have recently proposed SomeCast, a
paradigm that extends ARM to support reliable multicast
delivery subject to real-time constraints [10].

Acknowledgment: We would like to thank John Byers
for the many discussions on Tornado codes and Digital
Fountains.

References
[1] J. Byers, Luby, and Mitzenmacher. A Digital Fountain

Approach to Reliable Distribution of Bulk Data
(Tornado). Proc. ACM SIGCOMM ’98, Vancouver, Sep.
1998.

[2] S. Deering. Multicast routing in a datagram
internetwork. Tech. Rep. No. STAN-CS-92-1415,
Stanford Univ., CA, Dec. 1991.

[3] S. Floyd, V. Jacobson, L. Ching-Gung, S. McCanne,
and L. Zhang. A Reliable Multicast Framework for
Light-weight Sessions and Application Level Framing.
Proc. ACM SIGCOMM ’95, Aug. 1995.

[4] R. Kermode. Scoped Hybrid Automatic Repeat Request
with Forward Error Correction (SHARQFEC). Proc.
ACM SIGCOMM 98, Sep. 1998, Vancouver, Canada.

[5] M. Luby, M. Mitzenmacher, A. Shokrollahi, D.
Spielman. Practical Loss Resilient Codes. Proc. 29th

ACM Symposium on Theory of Computing, 1997.

[6] UCB/LBNL/VINT Network Simulator, ns, URL:
http://www-mash.cs.brekeley.edu/ns.

[7] Michael O. Rabin. Efficient dispersal of information for
security, load balancing and fault tolerance. Journal of
the Association for Computing Machinery,
36(2):335–348, Apr. 1989.

[8] D. Rubenstein, J. Kurose, D. Towsley. Real-Time
Reliable Multicast Using Proactive Forward Error
Correction. NOSSDAV ’98, Cambridge, UK, Jul. 1998.

[9] J. Yoon, A. Bestavros, and I. Matta. Adaptive Reliable
Multicast. Tech. Rep. No. BU-CS-1999-012, Sep. 1999.

[10] J. Yoon, A. Bestavros, and I. Matta. SomeCast: A
Paradigm for Real-Time Adaptive Reliable Multicast.
To appear in IEEE Real-Time Technology and
Applications Symposium (RTAS) 2000, Washington
D.C., Jun. 2000.

