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Abstract— Overlay networks have evolved as powerful systems
enabling the development of new applications ranging from
simple file sharing applications to more complex applications for
managing Internet traffic. Content Addressable Network (CAN)
[1] is one such network where nodes (peers) are organized in a
d-dimensional torus. Nodes maintain state for their immediate
neighbors and a request is routed inside the network through
the neighbor that is closest to the destination. This process is
repeated until the request reaches its destination. In this paper,
we consider routing tradeoffs between space and time; Space
in terms of state maintained at each node and time in terms
of the average path length experienced as requests get routed
inside the network. Our findings motivate the importance for
nodes to maintain state, not just for their immediate neighbors,
but also for a few Long Range Nodes (LRNs). These LRNs will
allow longer jumps inside the space, reducing the average path
length. We evaluate the effect of having these long jumps through
comparing different setups that store the same amount of state.
Based on this, we propose a new dynamical scheme where nodes
update their LRNs in order to adapt to the nature of requests.
This has significant implication when some nodes become popular
in hot-spot zones. We validate our findings through simulations.

Index Terms— Peer-to-Peer, Overlay Networks, Grid Comput-
ing and CAN.

I. INTRODUCTION

Over the past few years, overlay networks have received
a lot of attention in the networking research community
and many new applications were made possible through
these powerful networks. Recent studies [2], [3] show that
the majority of Internet traffic is attributed to file sharing
applications such as [4], [5], [6], [7], and many others. In
general, overlay networks can be classified into structured
versus unstructured networks. In unstructured networks, such
as Gnutella [4] and KaZaA [5], a request for a particular
object is flooded through the network until there is a hit
otherwise the request fails.1 This, in return, raises an issue of
scalability in addition to the generation of a lot of traffic [8].
In [9], the authors estimate the traffic generated by Gnutella’s
search mechanism to be 330 TB/month, based on 50,000
nodes where 95% of any pair of nodes are less than 7 hops
away from each other. Of course, the above limitations have

1Flooding is usually limited to several hops. In Gnutella [4], for example,
the Time To Live (TTL) field in a request packet is set to 7 and decremented
by each node before the packet gets discarded.

prompted research in the area of structured overlay networks
where scalability and robustness can be achieved through
the use of Distributed Hash Tables (DHTs). CAN [1], Chord
[10], Pastry [11] and Tapestry [12], for example, rely on the
presence of DHTs to locate content and thus they provide
scalable guarantees on the number of hops it takes to answer
a query.

Our main goal in this work is to explore the tradeoffs between
space (state maintained at each node) and time (average path
length) when routing is performed inside a d-dimensional
torus. This has significant impact on CAN [1] like structures
where nodes maintain state for their immediate neighbors. Our
results suggest that, with the same amount of state (or even
less), a careful selection of neighboring nodes, can reduce the
average path length experienced by the requests as they get
routed inside the network. We explain this below.
When nodes route requests inside the network, each node
selects the next hop that is closest to the destination and
forwards the request to such a node. This process is repeated
until the request reaches the destination. In this paper, we
propose different ways for decreasing the logical routes inside
the network. This is achieved by allowing the nodes to store
state for few Long Range Nodes (LRNs). The motivation of
having LRNs is to allow for long jumps inside the network.
We are further motivated by the cheap local computation of
the next hop, compared to the time taken to send a request to
the next hop.

There is work that studied the benefit of long-range contacts
inside a network. This work started by a paper in social
sciences by Stanley Milgram in 1967 [13], where he found
that individuals using local information are collectively very
effective at actually constructing short paths between two
points in a social network. Kleinberg in [14] modeled “The
Small World phenomenon”, showing that having correlation
between local structure and long-range contacts provides
fundamental clues for finding short paths inside the network.
He showed that when long-range contacts are chosen by a
process that is related to the zone coordinates in a specific
way, then long jumps will be useful and nodes would be able
to use them. He proved this for a decentralized algorithm
capable of finding short paths with high probability. This
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decentralized algorithm provides progressive closing-in on
the destination as each new node routes a given request. If a
network does not possess this decentralized algorithm, long
jumps may exist but the nodes, operating at the local level
only, may not be able to find them. In CAN, as nodes route
requests, there is this ”closing-in to the destination” property
that was described by Kleinberg, hence, having long range
jumps would be beneficial, as we show in this paper.

Paper Outline: The rest of the paper is organized as follows:
Section II summarizes the CAN architecture outlining the
preliminaries for routing in a d-dimensional torus. Section
III describes the Static Model, where each node stores few
LRNs and keeps them fixed at all times. We show different
alternatives on how we can choose a single LRN and what is its
marginal utility. Section IV describes a Dynamic Model, where
the LRNs are chosen and replaced as nodes route requests.
We show that the average path length could be significantly
decreased when hot-spot phenomena occur. In Section V, we
present relevant related work. We derive our conclusions along
with future work in Section VI.

II. PRELIMINARIES

In this section, we summarize the CAN architecture and
we refer the reader to [1] for a detailed description.

CAN [1] is a distributed system that divides a virtual
d-dimensional Cartesian coordinate space among n individual
nodes (peers), where each node stores a region of the hash
table in the form of (key,value) pairs. To store or retrieve
a pair (k1, v1), key k1 is mapped onto a point p in the
coordinate space using a deterministic uniform hash function.
Then the node who owns the zone where p lies, will be
the one responsible for the pair (k1, v1). Requests for a
particular key are routed by intermediate nodes towards the
CAN node whose zone contains that key. Each CAN node
will only maintain state for its 2d neighbors (2 nodes along
each dimension). The higher the value of d, the shorter is
the path between two nodes but with correspondingly more
information state needed to be maintained at each node. This
is the fundamental trade-off that we will consider in this
paper. It is important to note that these paths are logical in
the sense that they don’t reflect anything about the underlying
Internet (IP) topology, since a single logical CAN hop could
mean several physical IP network hops.

The n nodes can be organized in different ways based on our
choice of the dimension d. In particular, n = md where m
is the number of nodes that can be projected per dimension
(we refer to m as the base). Since the torus wraps around,
no two nodes can be more than m

2 hops away from each
other, per dimension. Thus, the maximum distance between
any two nodes is m.d

2 . Figure 1 illustrates how all the nodes
are distributed as a function of the distance from a given source
node.
The top level in Figure 1 represents any source node at
level = 0. The next level represents the set of nodes the can
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Fig. 1. Distribution of nodes at different levels.

be reached in one hop from the source (immediate neighbors).
The third level, represents the set of nodes that can be reached
in 2 hops and so on. The maximum number of nodes that can

reached are at distance d.(n
1
d

4 ) which is in the middle level.
Then the number of nodes per set that can be reached will
start to decrease as we increase the number of jumps since
the torus will start to wrap around. Figure 1 is important,
because the distribution is not symmetric in the sense that if
a node i chooses a node j uniformly at random, it is more

likely to reach it at a distance d.(n
1
d

4 ) away from it, because
there is larger number of nodes at that level. We will see how
this fact is used to drive our intuition about the results later on.

An illustrative Example: Let’s choose the number of nodes
equal to 625 and we will organize them in a 4 dimensional
space with a base of 5, as 54 = 625. Assume we start at
Node A [2,1,3,0] and we want to route a request to Node B
[3,2,1,4]. Since A is only aware of its immediate neighbors, it
routes the request to one of its neighbors along the direction
to the destination. So in this case it routes to Node [3,1,3,0].
One possible route would be starting at A [2,1,3,0] to [3,1,3,0]
to [3,2,3,0] to [3,2,2,0] to [3,2,1,0] to B [3,2,1,4] for a total
of 5 hops. 2

III. A STATIC MODEL

In this section, we slightly change the CAN architecture by
allowing each node, in addition to maintaining state for its
immediate 2d neighbors, to maintain state for a fixed number
of Long Range Nodes (LRNs) denoted by k, for a total of
2d + k nodes. These are the nodes that can be reached in a
single hop. In this section, we only consider the case where the
k LRNs will be chosen independent from the requests being
generated and will be kept unchanged during the lifetime of the

2Notice that there are other possible routes between node A and Node B.
These can be utilized when nodes go down.
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nodes.3 The routing algorithm is similar to the one described
in the original CAN paper [1]; when a node receives a request
and it is not the destination, it computes the distance between
the destination and every node of its 2d+k nodes for which it
maintains state. Then it selects the node that is as close to the
destination as possible in terms of the Cartesian distance. This
process is repeated until the request reaches its destination.

A. Impact of Long Range Nodes

To demonstrate the impact of having LRNs on the average
path length, we wrote a simulator for the CAN architecture.
Figure 2 illustrates the average path length as a function
of k . These k LRNs are chosen uniformly at random and
the average path length is computed over 100,000 requests
generated uniformly at random. Increasing the number of
requests beyond 100,000 does not change the average path
length significantly. The curves in Figure 2 correspond to two
setups; one is for 279,936 nodes with d = 7 and m = 6; and
the other is for 390,625 nodes with d = 8 and m = 5.
When k is chosen to be zero, this would be the base case where
nodes do not maintain state for LRNs. Clearly, the higher the
value of k, the shorter is the average path length between any
two nodes, because it is more likely for a request to utilize
one or more LRN while being routed.
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Fig. 2. Average path length as a function of additional Long Range Nodes.
Setup A corresponds to 279,936 nodes with d = 7 and m = 6. Setup B
corresponds to 390,625 nodes with d = 8 and m = 5.

As illustrated in Figure 2, for as small values for k as 2, we
can get up to 20% shorter path length. Then the improvement
increases but at a slower pace. In other words, the significance
of Figure 2 lies in the marginal utility for the addition of a
single LRN. The presence of the first few LRNs (one or two
nodes) have the most profound impact on reducing the average
path length. Beyond which, the diminishing return effect kicks
in. The locations of the LRN(s) also play an important role on
the average path length. Indeed, a LRN that allows long jumps
in a zone to which no other LRN is pointing, is favorable. A
good choice of a LRN is the one that provides reachability to

3In case of a node going off-line, another node will replace it as described
in [1].

a fresh zone. As the number of LRNs increases, such zones
will start to overlap reducing the marginal gain. In order to
be precise when assessing the impact of LRNs, we need to
compare two setups that require to maintain the same amount
of state. So far, nodes have been maintaining more state. Next,
we look at the marginal utility of a single LRN based on its
location.

B. Marginal Utility for a single LRN

In this part, we turn our attention to how to choose a single
LRN. In particular, we explore the trade-offs between time
and space for different schemes for the choice of a single LRN.

Scheme I (Random): A simple scheme is to choose the LRN
uniformly at random.

Scheme II (Max-Distance): Our second alternative is to
choose the LRN to be as far as possible from the selecting
node. Ties between nodes that are at the same maximum
distance will be broken arbitrarily. Since two nodes can not
be more than m.d

2 hops away from each other, we choose the
LRN to be at that exact maximum distance from the selecting
node.

Scheme III (Hybrid-Distance): The above scheme would
not allow a particular request to benefit from multiple long
jumps as it gets routed inside the network since all the jumps
are of the same maximum distance. In this scheme, we allow
each node to choose its LRN with different number of hops.
The main goal of this approach is allow a given request to
use multiple longer jumps as it gets routed.

Setup 1 Setup 2
Base (m) 4 5
Dimension (d) 7 6
Number of Nodes (n) 16384 15625
Base Case k=0 6.9827 7.1911
Scheme I (Random) k = 1 6.1243 6.3498
Scheme II (Max-Distance) k = 1 5.9069 6.2489
Scheme III (Hybrid-Distance) k = 1 6.2369 6.5604

TABLE I

AVERAGE PATH LENGTH FOR TWO DIFFERENT SETUPS WITH DIFFERENT

CHOICES FOR A SINGLE LRN. THE DATA IS COMPUTED BASED ON

100,000 REQUESTS

Table I depicts the average path length according to the
different schemes for the choice of a single LRN. The base
case, without the presence of LRNs, is provided here for
comparison.

Clearly, all schemes reduce the average path length compared
to the base case. However, the improvement is more
pronounced when each node selects its LRN to be at
the maximum distance from itself (i.e., scheme II). The
improvement is about 15%. This choice insures that with a
single jump, the node can get to a completely fresh zone
because we are sort of dividing the space into two parts, and
assigning a LRN inside the further half. Schemes I and III
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perform almost the same because they both use short jumps
as well as longer ones, however, the short ones do not have a
strong impact on reducing the average path length.

An important result to note is the benefit of a single LRN,
which is demonstrated when one compares the base case for
Setup 1 against using scheme II in Setup 2. These two setups
have almost the same number of nodes, so it is fair to compare
them. For a node in Setup 1, it stores state for 14 nodes and the
average path length observed by requests is 6.9. However, for
a node in Setup 2, it stores state for 13 nodes (2×6 neighbors
+ 1 LRN) and requests observe an average path length of 6.2
with scheme II. So by having nodes store state for a single
LRN, we achieve shorter average path length with less state
being maintained at each node. This fact can be leveraged in
CAN [1] where instead of moving to a higher dimension to
reduce the average path length, it is better to store few LRNs
(one or two) and maintain the same (or less) amount of state.

IV. A DYNAMIC MODEL

In the previous section, we assumed that requests are
generated uniformly at random across the whole CAN
topology. In practice, hot-spot phenomena do occur when
some particular nodes become extremely popular. When such
phenomena occur, it is quite beneficial for other nodes to
reach such popular zones as quickly as possible through the
minimum number of hops. This fact drives our idea that we
would allow nodes to dynamically adapt their LRNs to the
nature of the requests. As the number of requests destined to
the popular node increases, the location of the LRN becomes
more important. The static model, ignores this case so if a
node fails to have its LRN near that popular node, such LRN
will not be beneficial and it is better for the node to replace
it.

In this section, we consider the impact of maintaining a single
LRN, which will be replaced dynamically as nodes route
requests. Given a request for a node to route, the node will
examine the distance between its LRN and the destination,
if such a distance is bigger than a certain threshold called
Update Threshold, the node would replace its LRN by
another node that is at half the distance between its old LRN
and the destination. So if we have a popular node, as more
requests arrive to this node, its LRN will start to point closer
and closer to the hot-spot, until its LRN will be the popular
node itself4. It is important to note that this convergence
depends on two parameters; the update threshold and the
probability that a request will be destined to the hot-spot
node. We denote this latter probability by p. To avoid frequent
updating of the LRN on each request, a node can simply toss
a coin and with some probability it updates its LRN and with
the remaining probability it keeps it as is.

We generated a single hot-spot phenomenon and we ran
several experiments with different update thresholds and with

4Notice that this algorithm does not point immediately to the hotspot,
because in case of multiple hotspots, we would like to have the LRN at
an equal distance between them.

different probabilities p. With probability p the requests are
destined to the hot-spot node and with the remaining prob-
ability they are destined to another node at random. Figure
3 illustrates the average path length for different update
thresholds as the probabilities for requests to be destined to the
single hot-spot node changes. The setup is for 15,625 nodes
with m chosen to be 5 and d is equal to 6. This setup has
an average path length of 7.1 when k=0 and an average path
length of 6.2 when k=1. It is clear that as the probability
increases, the average path length decreases almost linearly.
Having small update threshold reduces the path length for
a fixed probability value, but the higher is the overhead for
updating the LRN. When 50% of all the requests are destined
to a single hot-spot node and the update threshold is set to 1,
the average path length is 3.5. A 50% improvement compared
to the base case when k is equal to 0 and 43% improvement
when k is chosen to be 1 according to scheme II. As the
probability p increases the improvement increases and with p
= 0.9, the improvement is 78% and 75%, respectively.
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Fig. 3. Average path length for a particular node in a system with 15,625
nodes with base = 5 and dimension = 6. This system had average path length
of 7.1 when k=0 and average path length of 6.2 when k=1. The data is based
on the generation of 100,000 requests.

The above results are limited to a single hot-spot node. In
the case of multiple hot-spot nodes, each node can maintain
a single LRN per each hot-spot node. This ensures that pop-
ular requests will always utilize shorter average path lengths
through the appropriate LRN, in addition to reducing the total
traffic through the network.

V. RELATED WORK

There is a lot of work that looked at improving routing
in overlay networks as well as reducing traffic generated by
search mechanisms in file sharing applications. This work can
be classified based on the overlay structures, being present
or not. In unstructured overlays, introducing hierarchical
mechanisms indeed improves the search mechanisms. In [5],
some nodes act as super-nodes and requests are only flooded
between these super-nodes. Since each super-node maintains
state for nodes directly connected to it and will be able to
answer queries on their behalf, the average path length can
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be reduced. Despite the efforts in reducing the average path
length, unstructured networks do not scale very well [8]. This
has prompted research in the area of structured overlays as in
[1], [10], [11], [12]. In structured overlays, and specifically in
CAN [1], the authors discuss how nodes can carefully choose
their neighbors that are physically close at the IP layer. This
can be achieved by the idea of land-marking where nodes mea-
sure their RTTs to different landmarks and order their list and
when they join the CAN, they only join in that portion of the
coordinate space associated with this landmark ordering. This
method reduces the physical delay per CAN hop. In this paper,
we were interested in reducing the number of logical hops.
This method can be combined with our approach to expedite
the search mechanism. On the other hand, hot-spot phenomena
occur when one or more nodes become popular due to the
keys they are responsible for. Research has addressed hot-
spots through content replication and caching [15], [16], [17].
This indeed alleviates the contention on the nodes involved. In
this paper, we addressed how to dynamically choose the LRN
in order to reduce the average path length. Our technique can
be used in conjunction with content replication and caching.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how routing can be improved
in CAN like systems. Maintaining state for Long Range Nodes
allow long jumps inside the space. We have demonstrated that
the average path length can decrease with less state being
maintained at each node. The key idea is to let each node
have its LRN point to a fresh zone in the torus. This fact has
significant implication on CAN [1] where instead of moving
to a higher dimension to reduce the average path length, it
is more efficient to maintain state for one or two LRNs. We
proposed a dynamic model for updating the LRNs. The key
is to adapt to the nature of requests which improves routing
significantly when hot-spot phenomena do occur. As for future
work, we would like to choose the LRNs, not just based on
CAN distances but also based on the underlying IP topology.
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