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Abstract

Although cooperation generally increases the amount of resources available to a com-

munity of nodes, thus improving individual and collective performance, it also allows for

the appearance of potential mistreatment problems through the exposition of one node’s

resources to others. We study such concerns by considering a group of independent,

rational, self-aware nodes that cooperate using on-line caching algorithms, where the

exposed resource is the storage at each node. Motivated by content networking ap-

plications – including web caching, CDNs, and P2P – this paper extends our previous

work on the off-line version of the problem, which was conducted under a game-theoretic

framework, and limited to object replication. We identify and investigate two causes of

mistreatment: (1) cache state interactions (due to the cooperative servicing of requests)

and (2) the adoption of a common scheme for cache management policies. Using analytic

models, numerical solutions of these models, as well as simulation experiments, we show

that on-line cooperation schemes using caching are fairly robust to mistreatment caused

by state interactions. To appear in a substantial manner, the interaction through the

exchange of miss-streams has to be very intense, making it feasible for the mistreated

nodes to detect and react to exploitation. This robustness ceases to exist when nodes

fetch and store objects in response to remote requests, i.e., when they operate as Level-2

caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme,
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we show that this can easily take place when the “outlier” characteristics of some of the

nodes get overlooked. This finding underscores the importance of allowing cooperative

caching nodes the flexibility of choosing from a diverse set of schemes to fit the pecu-

liarities of individual nodes. To that end, we outline an emulation-based framework for

the development of mistreatment-resilient distributed selfish caching schemes.

1 Introduction

Background, Motivation, and Scope: Network applications often rely on distributed resources

available within a cooperative grouping of nodes to ensure scalability and efficiency. Traditionally,

such groupings are dictated by an overarching, common strategic goal. For example, nodes in a CDN

such as Akamai or Speedera cooperate to optimize the performance of the overall network, whereas

IGP routers in an Autonomous System (AS) cooperate to optimize routing within the AS.

More recently, however, new classes of network applications have emerged for which the grouping

of nodes is more “ad hoc” in the sense that it is not dictated by organizational boundaries or

strategic goals. Examples include overlay protocols [3, 6] and peer-to-peer (P2P) applications. Two

distinctive features of such applications are (1) individual nodes are autonomous, and as such, their

membership in a group is motivated solely by the selfish goal of benefiting from that group, and (2)

group membership is warranted only as long as a node is interested in being part of the application or

protocol, and as such, group membership is expected to be fluid. In light of these characteristics, an

important question is this: Are protocols and applications that rely on sharing of distributed resources

appropriate for this new breed of ad-hoc node associations?

In this paper, we answer this question for networking applications, whereby the distributed

resource being shared amongst a group of nodes is storage. While our work and methodology is

applicable for a wide range of applications that rely on distributed shared storage, we target the

distribution of voluminous content as our application of choice.1In particular, we consider a group

of nodes that store information objects and make them available to their local users as well as to

remote nodes. A user’s request is first received by the local node. If the requested object is stored

locally, it is returned to the requesting user immediately, thereby incurring a minimal access cost.

Otherwise, the requested object is searched for, and fetched from other nodes of the group, at a

1Unlike content distribution for static (typically small) web objects such as html web pages and images, voluminous content

requires treating the storage as a limited resource [19].
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potentially higher access cost. If the object cannot be located anywhere in the group, it is retrieved

from an origin server, which is assumed to be outside the group, thus incurring a maximal access

cost.

Under an object replication model, once selected for replication at a node, an object is stored

permanently at that node (i.e., the object cannot be replaced later). In [18] we established the

vulnerability of socially optimal (SO) object replication schemes in the literature to mistreatment

problems. We define a mistreated node to be a node whose access cost under SO replication is higher

than the minimal access cost that the node can guarantee under greedy local (GL) replication. Unlike

centrally designed/controlled groups where all constituent nodes have to abide by the ultimate goal

of optimizing the social utility of the group, an autonomous, selfish node will not tolerate such a

mistreatment. Indeed, the emergence of such mistreatments may cause selfish nodes to secede from

the replication group, resulting in severe inefficiencies for both the individual users as well as the

entire group.

In [18], we resolved this dilemma by proposing a family of equilibrium (EQ) object placement

strategies that (a) avoid the mistreatment problems of SO, (b) outperform GL by claiming available

“cooperation gain” that the GL algorithm fails to utilize, and (c) are implementable in a distributed

manner, requiring the exchange of only a limited amount of information. The EQ strategies were

obtained by formulating the Distributed Selfish Replication (DSR) game and devising a distributed

algorithm that is always capable of finding pure Nash equilibrium strategies for this particular game.

Apart from this work, we are aware of only two additional works on game-theoretic aspects of

replication, one due to Chun et al. [4] (distributed selfish replication under infinite storage capacities)

and the other due to Erçetin and Tassiulas [9] (market-based resource allocation in content delivery);

we are not aware of any previous work on distributed selfish caching.

Distributed Selfish Caching: Proactive replication strategies are not practical in a highly dynamic

content networking setting, which is likely to be the case for most of the Internet overlays and

P2P applications we envision. This is due to a variety of reasons: (1) Fluid group membership

makes it impractical for nodes to decide what to replicate based on what (and where) objects are

replicated in the group. (2) Access patterns as well as access costs may be highly dynamic (due

to bursty network/server loads), necessitating that the selection of replicas and their placement be

done continuously, which is not practical. (3) Both the identification of the appropriate re-invocation

times [22] and the estimation of the non-stationary demands (or equivalently, the timescale for a

stationarity assumption to hold) [12] are non-trivial problems. (4) Content objects may be dynamic
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and/or may expire, necessitating the use of “pull” (i.e., on-demand caching) as opposed to “push”

(i.e., pro-active replication) approaches. Using on-demand caching is the most widely acceptable

and natural solution to all of these issues because it requires no a priori knowledge of local/group

demand patterns and, as a consequence, responds dynamically to changes in these patterns over time

(e.g., introduction of new objects, reduction in the popularity of older ones, etc.)

Therefore, in this paper we consider the problem of Distributed Selfish Caching (DSC), which can

be seen as the on-line counterpart to the DSR problem. In DSC, we adopt an object caching model,

whereby a node employs demand-driven temporary storage of objects, combined with replacement.

At this juncture, it is important to note that we make a clear distinction between replication and

caching. While these terms may be seen as similar (and indeed used interchangeably in much of

the literature), we note that for our purposes they carry quite different meanings and implications.

Replication amounts to maintaining permanent copies whereas caching amounts to maintaining tem-

porary copies. This changes fundamentally the character and the methodologies used in analyzing

DSR and DSC.

Causes of Mistreatments Under DSC: We begin our examination of DSC by first considering

the operational characteristics of a group of nodes involved in a distributed caching solution. This

examination will enable us to identify two key culprits for the emergence of mistreatment phenomena.

First, we identify the mutual state interaction between replacement algorithms running on dif-

ferent nodes as the prime culprit for the appearance of mistreatment phenomena. This interaction

takes place through the so called “remote hits”. Consider nodes v, u and object o. A request for

object o issued by a user of v that cannot be served at v but could be served at u is said to have

incurred a local miss at v, but a remote hit at u. Consider now the implications of the remote hit

at u. If u does not discriminate between hits due to local requests and hits due to remote requests,

which is the default behavior of the Internet Cache Protocol (ICP) / Squid web cache [8] and other

systems (e.g., Akamai Content Distribution Network, IBM Olympic Server Architecture), then the

remote hit for object o will affect the state of the replacement algorithm in effect at u. If u is em-

ploying Least Recently Used (LRU) replacement, then o will be brought to the top of the LRU list.

If it employs Least Frequently Used (LFU) replacement, then its frequency will be increased, and so

on with other replacement algorithms [26]. If the frequency of remote hits is sufficiently high, e.g.,

because v has a much higher local request rate and thus sends an intense miss-stream to u, then

there could be performance implications for the second: u’s cache may get invaded by objects that

follow v’s demand, thereby depriving the user’s of u from valuable storage space for caching their
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own objects. This can lead to the mistreatment of u, whose cache is effectively “hijacked” by v.

Moving on, we identify a second, less anticipated, culprit for the emergence of mistreatment in

DSC. We call it the common scheme problem. To understand it, one has to observe that most

of the work on cooperative caching has hinged on the fundamental assumption that all nodes in a

cooperating group adopt a common scheme. We use the word “scheme” to refer to the combination

of: (i) the employed replacement algorithm, (ii) the employed request redirection algorithm, and (iii)

the employed object admission algorithm. Cases (i) and (ii) are more or less self-explanatory. Case

(iii) refers to the decision of whether to cache locally an incoming object after a local miss. The

problem here is that the adoption of a common scheme can be beneficial to some of the nodes of a

group, but harmful to others, particularly to nodes that have special characteristics that make them

“outliers”. A simple case of an outlier, is a node that is situated further away from the center of the

group, where most nodes lie. Here distance may have a topological/affine meaning (e.g., number of

hops, or propagation delay), or it may relate to dynamic performance characteristics (e.g., variable

throughput or latencies due to load conditions on network links or server nodes). Such an outlier

node cannot rely on the other nodes for fetching objects at a small access cost, and thus prefers

to keep local copies of all incoming objects. The rest of the nodes, however, as long as they are

close enough to each other, prefer not to cache local copies of incoming objects that already exist

elsewhere in the group. Since such objects can be fetched from remote nodes at a small access cost,

it is better to preserve the local storage for keeping objects that do not exist in the group and, thus,

must be fetched from the origin server at a high access cost. In this setting, a common scheme is

bound to mistreat either the outlier node or the rest of the group.

2 Problem Setting and Summary of Results

In this section we first introduce the setting in which we study DSC and then summarize our results.

2.1 Definitions and Notation

Let oi, 1 ≤ i ≤ N , and vj , 1 ≤ j ≤ n, denote the ith unit-sized object and the jth node, and let

O = {o1, . . . , oN} and V = {v1, . . . , vn} denote the corresponding sets. Node vj is assumed to have

storage capacity for up to Cj unit-sized objects, a total request rate λj (total number of requests

per unit time, across all objects), and a demand described by a probability distribution over O,

~pj = {p1j , . . . , pNj}, where pij denotes the probability of object oi being request by the local users
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of node vj . Successive requests are assumed to be independent and identically distributed.2 Later

in this paper, we make the specific assumption that the popularity of objects follows a power-law

profile, i.e., the ith most popular object is requested with probability pi = K/ia. Such popularity

distributions occur in many measured workloads [2, 23] and, although used occasionally in our work

(e.g., in Section 3.1 to simplify an analytic argument, or in Section 4 for producing numerical results),

they do not constitute a basic assumption, in the sense that mistreatment can very well occur with

other demand distributions that do not follow such a profile.

Let tl, tr, ts denote the access cost paid for fetching an object locally, remotely, or from the

origin server, respectively, where ts > tr > tl.
3 User requests are serviced by the closest node that

stores the requested object along the following chain: local node, group, and origin server. Each

node employs a replacement algorithm for managing the content of its cache and employs an object

admission algorithm for accepting (or not) incoming objects.

2.2 Summary of Results

In addition to defining the DSC problem and the causes of mistreatment, this paper presents a

number of concrete results regarding each one of these causes. These results are intended to be used

as basic design guidelines on dealing with selfishness in current and future caching applications.

Mistreatment Due to Cache State Interaction: Regarding the state interaction problem, our

investigations answer the following basic question: “Could and under which schemes do mistreatments

arise in a DSC group?”. More, specifically:

+ We show that state interactions occur when nodes do not discriminate between local and remote

hits upon updating the state of their replacement algorithms.

+ To materialize, state interactions require substantial request rate imbalance, i.e., one or more

“overactive” nodes must generate disproportionally more requests than the other nodes. Even in

this case, mistreatment of less active nodes depends on the amount of storage that they posses:

Mistreatment occurs when these nodes have abundant storage, otherwise they are generally immune

to, or even benefit from, the existence of overactive nodes.

+ Comparing caching and replication with regard to their relative sensitivities to request rate im-

balance, we show that caching is much more robust than replication.

2The Independent Reference Model (IRM) [5] is commonly used to characterize cache access patterns [1, 2]. The impact of
temporal correlations was shown in [12, 27] to be minuscule, especially under typical, Zipf-like object popularity profiles.

3The assumption that the access cost is the same across all node pairs in the group is made only for the sake of simplifying
the presentation. Our results can be adapted easily to accommodate arbitrary inter-node distances.
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+ Regarding the vulnerability of different replacement algorithms, we show that “noisier” replace-

ment algorithms are more prone to state interactions. In that regard, we show that LRU is more

vulnerable than LFU.

+ Even the most vulnerable LRU replacement is quite robust to mistreatment as it requires a very

intense miss-stream in order to force a mistreated node to maintain locally unpopular objects in its

cache (thus depriving it of cache space for locally popular objects). In particular, the miss-stream

has to be strong enough to counter the sharp decline in the popularity of objects in typically skewed

workloads.

+ Robustness to mistreatment due to state interaction evaporates when a node operates as a Level-2

cache [31] (L2) for other nodes. L2 caching allows all remote requests (whether they hit or miss) to

affect the local state (as opposed to only hits under non-L2 caching), leading to a vulnerability level

that approaches the one under replication.

Mistreatment Due to Use of Common Scheme: We classify cooperative caching schemes into

two groups: Single Copy (SC) schemes, i.e., schemes where there can be at most one copy of each

distinct object in the group – two examples of SC schemes are HASH based caching [28] and LRU-

SC [10]; Multiple Copy (MC) schemes, i.e., schemes where there can be multiple copies of the same

object at different nodes.

+ We show that the relative performance ranking of SC and MC schemes changes with the “tightness”

of a cooperative group. SC schemes perform best when the inter-node distances are small compared

to the distance to the origin server; in such cases the maintenance of multiple copies of the same

object becomes unnecessary.4 MC schemes improve progressively as the inter-node distances increase,

and eventually outperform the SC schemes.

+ We demonstrate a case of mistreatment due to common scheme by considering a tight group of

nodes that operate under SC and a unique outlier node that has a larger distance to the group. We

show that this node is mistreated if it is forced to follow the same SC scheme.

Towards Mistreatment-Resilient DSC Schemes: More constructively, we present a framework

for the design of mistreatment-resilient DSC schemes. Our framework allows individual nodes to

decide autonomously (i.e., without having to trust any other node or service) whether they should

stick to, or secede from a DSC caching group, based on whether or not their participation is beneficial

to their performance compared to a selfish, greedy scheme. Resilience to mistreatments is achieved by

4We do not consider load balancing concerns in this study.
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allowing a node to emulate the performance gain possible by switching from one scheme to another,

or by adapting some control parameters of its currently deployed DSC scheme. We use a simple

control-theoretic approach to dynamically parametrize the DSC scheme in use by a local node. We

evaluate the performance of our solution by considering caching in wireless mobile nodes [32] where

distances and download rates depend on mobility patterns. We show that our adaptive schemes can

yield substantial performance benefits, especially under skewed demand profiles.

3 Mistreatment Due to State Interaction: Analysis

Our goal in this section is to understand the conditions under which mistreatment may arise as

a result of (cache) state interactions. We start in Section 3.1 with a replacement-agnostic model

that focuses on the rate-imbalance (between the local request stream and the remote miss stream)

necessary for mistreatment to set in. Next, in Section 3.2, we present a more detailed analytical model

that allows for the derivation of the average access cost in a distributed caching group composed of

n nodes that operate under LRU replacement.

3.1 General conditions

We would like to determine the level of request rate imbalance that is necessary for mistreatment to

be feasible. We model this imbalance through the ratio λn/λj , where λj denotes the request rate of

any normally-behaving node vj , while λn denotes the request rate of an over-active node, which we

use to instigate mistreatment problems. As a convention we assume this overactive node to be the

last (nth) node of the group.
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We focus on the interaction between vj and vn. Fig. 1 shows a particular choice of demand

patterns that fosters the occurrence of mistreatment. The initial most popular objects in ~pj and ~pn

up to the two capacities (Cj for vj and Cn for vn) are completely disjoint, while the remaining ones

in the middle part of the two distributions are identical; both demands are assumed to be power-law

with parameter a. Let X denote the most popular object that is common to both distributions.

A boundary condition for the occurrence of mistreatment can be obtained by considering the ratio

λn/λj that results in a switch of ranking between X and Y at vj , where Y denotes the least most

popular object that would be kept in the cache of vj under a perfect ranking of objects according

to the local demand, if no miss-stream was received. To derive the condition for the switch we first

note that X is the (Cj +1)th most popular object for vj and the (Cn +1)th most popular one for vn.

Y is the Cjth most popular object for vj . Let f(n) denote a function that captures the operation of

different object location mechanisms in a group of n nodes (used for locating and retrieving objects

from remote nodes). For example, f(n) = 1 can be used for modeling request flooding (following

a local miss, a request is sent to all other nodes in the group); f(n) = 1/(n − 1) can be used for

modeling index-based mechanisms [10] (following a local miss, a request is sent to only one of the

nodes that appear to be storing the object according to some index). The boundary condition for

the occurrence of the switch can be written as follows:

λjpCj
≤ λjpCj+1 + λnpCn+1f(n) ⇒ λj

1

(Cj)a
≤ λj

1

(Cj + 1)a
+ λn

1

(Cn + 1)a
f(n) ⇒

λn

λj
≥

(Cn + 1)a

f(n)

(

1

Ca
j

−
1

(Cj + 1)a

) (1)

Writing a continuous approximation for the rate of change of 1/Ca with respect to C, we get:

d
(

1
Ca

)

dC
=

1
Ca − 1

(C+1)a

C − (C + 1)
≈ −a ·

1

C1+a
⇒

1

Ca
−

1

(C + 1)a
≈ a ·

1

C1+a
(2)

Using the approximation from Eq. (2) on Eq. (1) we obtain:

λn

λj
≥

(Cn + 1)a

f(n)
· a

1

(Cj)1+a
∼

a

f(n)Cj

(

Cn

Cj

)a

(3)

Eq. (3) states that the amount of imbalance in request rates ( λn

λj
) that is required for the occurrence

of mistreatment is: (i) increasing with Cn, (ii) decreasing with Cj , and (iii) increasing when request

flooding is employed for locating remote objects (in this case all the nodes get the full miss-stream

from vn, otherwise the miss-stream weakens by being split into n − 1 parts).

Now assume that as a result of the received miss-stream, k objects of vj are switched (objects

with ids Cj , . . . , Cj − k + 1 evicted, objects Cj + 1, . . . , Cj + k inserted); k can be computed from a
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costj =

N
∑

i=1

pij ·[πij · tl + (1 − πij) · πi−j · tr + (1 − πij) · (1 − πi−j) · ts] where πi−j = 1−
∏

∀j′ 6=j

(1−πij′)

(6)

p
(k)
ij =

λj · pij +
∑n

j′=1,j′ 6=j λj′ · pij′ · (1 − π
(k−1)
ij′ ) ·

[
“

π
(k−1)
ij

”2

Pn
j′′=1,j′′ 6=j′

π
(k−1)

ij′′

]+

π
(k−1)
ij

∑N
i′=1



λj · pi′j +
∑n

j′=1,j′ 6=j λj′ · pi′j′ · (1 − π
(k−1)
i′j′ ) ·

[
“

π
(k−1)

i′j

”2

Pn
j′′=1,j′′ 6=j′

π
(k−1)

i′j′′

]+

π
(k−1)

i′j





(7)

condition similar to that in (Eq. 1). Define the Loss of vj as the reduction in the probability mass

of the objects that it caches locally.

Loss =

Cj
∑

i=Cj−k+1

pi −

Cj+k
∑

i=Cj+1

pi = K · (H
(a)
Cj

− H
(a)
Cj−k − H

(a)
Cj+k + H

(a)
Cj

) = K · (2H
(a)
Cj

− H
(a)
Cj−k − H

(a)
Cj+k),

(4)

where K is the normalization constant of the power-law distribution pi = K/ia. The generalized

harmonic number H
(a)
C can be approximated by its integral expression (see [30]) H

(a)
C =

∑C
i=1

1
ia ≈

∫ C
1 1/ladl = C1−a−1

1−a . Plugging this into Eq. (4) we obtain:

Loss = K

(

2
Cj

1−a − 1

1 − a
−

(Cj − k)1−a − 1

1 − a
−

(Cj + k)1−a − 1

1 − a

)

(5)

¿From Eq. (5) it is clear that as Cj increases, both Cj − k and Cj + k → Cj thus leading to

Loss → 0. Combining our observations from Eq. (3) and Eq. (5) we conclude that the occurrence of

mistreatment is fostered by small Cn and large Cj . Its magnitude, however, decreases with Cj . So,

practically, it is in intermediate values of Cj that mistreatment can arise in a substantial manner.

3.2 Analysis of Mistreatment Under LRU Replacement

In the remainder of this section, our objective will be to derive the steady-state hit probabilities

~πj = {π1j , . . . , πNj}, where πij denotes the steady-state probability of finding object oi at node vj

that operates under LRU replacement. We will then use these results for studying mistreatment in

the context of LRU.

Let ~π = LRU(~p, C) denote a function that computes the steady-state object hit probabilities

for a single LRU cache in isolation, given the cache size and the demand distribution. Due to the
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combinatorial hardness of analyzing LRU replacement, it is difficult to derive an exact value for ~π;

there are, however, several methods for computing approximate values for it (see for example [15]

and references therein). In this paper, we employ the approximate method of Dan and Towsley in [7]

that provides an accurate estimation of ~π through an iterative algorithm that incurs O(NC) time

complexity. Having computed ~πj , ∀vj ∈ V , we can obtain the per-node access cost, costj , as well

as the social cost of the entire group, costsoc =
∑

∀vj
costj , by using Eq. (6). In this equation πi−j

denotes the probability of finding oi in any node of the group other than vj .

We can obtain ~πj by using the LRU(·, ·) function for isolated caches as our basic building block

and taking into consideration the impact on the local state of the hits caused by remote requests.

Deriving an exact expression for these added hits based on the involved cache states is intractable as

it leads to state-space explosion. Therefore, we turn to approximate techniques and, in particular, to

techniques that consider the expected values of the involved random variables, instead of their exact

distributions. The basic idea of our approach is to capture these added hits by properly modifying

the input to the LRU(·, ·) function.

Remote hits can be considered simply as additional request that augment the local demand,

thereby creating a new aggregate demand for the LRU(·, ·) function as explained later. The idea of

modifying the input of a simpler system to capture a policy aspect of a more complex system and

then using the modified simpler system to study the more complex one has been employed frequently

in the past [14]. Since the remote hits are shaped by the cache states, which are coupled due to

the exchanges of miss-streams, an iterative procedure is followed for the derivation of the per-node

steady-state vectors and access costs. The uncoupled solution (corresponding to nodes operating in

isolation) is obtained first, and is refined progressively by taking into account the derived states and

the cooperative servicing of the misses. The resulting approximate analytical model for predicting

the average access cost in a distributed caching group is described below. In the next section, we show

that the results produced from this model match quite well the results obtained through simulations.

The iterative procedure follows:

(1) For each node vj compute ~π
(0)
j = LRU(~pj , Cj), i.e., assume no state interaction among the

different nodes.

(2) Initiate Iteration: At the kth iteration the aggregate demand distribution for vj , ~pj
(k) = {p

(k)
ij },

1 ≤ i ≤ N , is given by Eq. (7) (see top of page). The function [x]+y returns 0 if y = 0 and
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x otherwise.5 The steady state vector of object hit probabilities for vj at iteration k can be

obtain from: ~π
(k)
j = LRU(~pj

(k), Cj)

(3) Convergence Test: if |~π
(k)
j − ~π

(k−1)
j | < ~ε for all vj , 1 ≤ j ≤ n, then set ~πj = ~π

(k)
j and compute

the per node access costs from Eq. (6); ~ε denotes a user-defined tolerance for the convergence

of the iterative method. Otherwise, set ~π
(k−1)
j = ~π

(k)
j and ~p

(k−1)
j = ~p

(k)
j and perform another

iteration by returning to step 2.

The nominator of Eq. (7) adds the requests generated by the local population of vj for object oi,

to the requests for the same object due to the n − 1 miss streams from all other nodes that create

hits at vj . The explanation of the circumstances under which such hits exist, goes as follows (see also

Fig. 2): a request for oi received at the contributor node vj′ (prob. pij′) affects the tagged node vj ,

if the request cannot be serviced at the contributor node (prob. (1−π
(k−1)
ij′ )), can be serviced at the

tagged node (prob. π
(k−1)
ij ), and is indeed serviced by the tagged node and not by any other helper

node vj′′ that can potentially service it (prob. π
(k−1)
ij /

∑n
j′′=1,j′′ 6=j′ π

(k−1)
ij′′ , i.e., the model assumes

that when more than one helper nodes can offer service, then the request is assigned uniformly to

any one of them).

Before we conclude this section, we note that our aforementioned analysis could be construed as

providing a lower bound of the intensity of mistreatment assuming that the proxy is configured such

that only one peer (proxy cache) replies to a remote request. Mistreatment could be more severe

if, upon a local miss, requests are routed to more than one proxy, which is the case in many real

systems [8].

4 Mistreatment Due to State Interaction: Evaluation

In this section, we use a combination of simulation experiments and numerical solutions of the

analytical model developed in the previous section to explore the design space of distributed caching

with respect to its vulnerability to the on-set of mistreatment as a result of the state interaction

phenomenon. We start by validating the accuracy of the analytical model of Section 3.2 and follow

that with an examination of various dimensions of the design space for distributed caching, including

a comparative evaluation of mistreatment in caching versus replication.

5This function is used to ensure correctness when the denominator
Pn

j′′=1,j′′ 6=j′ π
(k−1)
ij′′

becomes zero. Notice that the

nominator π
(k−1)
ij is included in the denominator, so when π

(k−1)
ij > 0, the denominator is guaranteed to be non zero.
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It is important to note that throughout this section, we use a number of settings to gain an

understanding of state interaction in distributed caches and its consequences on local and group

access costs. Most of these settings are intentionally very simple (i.e., small “toy” examples) so that

they can be possible to track.

Also, it is important to note that the various parameterizations of our analytical and simulation

models are not meant to represent particular content networking applications. Examining specific

incarnations of the state interaction phenomenon is, after all, not our intention in this paper—

which is the first to identify and analyze the problem. Rather, our exploration of the extent of

mistreatment is meant to help us gain insights into the fundamental aspects of state interactions in

distributed caching, such as its dependence on the request rate imbalance and the nodes’ relative

storage capacities.6 In most of the following numerical results we assume that nodes follow a common

power-law demand distribution with skewness a as reported by several measurement studies [10].

We relax the common demand distribution assumption in Sect. 4.3 where we study the effect of

non-homogeneous demand on mistreatment and the social cost of the group. Overall we pay greater

attention to the case of homogeneous demand, since it is under such demand that cooperative caching

becomes meaningful and effective (the benefits from employing cooperative caching diminish when

the similarity of demand patterns is small).

4.1 Validation of the Analytic Model

The analytical model presented in Section 3.2 included a number of approximations—namely: (i)

the basic building block, the LRU(·, ·) function, is itself an approximation; (ii) the mapping of the

effect of remote hits on the local state through Eq. (7) is approximate; the solution of the model

through the iterative method is approximate.

In this section, we show that despite these approximations, the analytical model presented in

Section 3.2 is able to produce fairly accurate results. We do so by comparing the model predictions

with simulation results in Fig. 3. As evident from these results, the aforementioned approximations

have a very limited effect on the model’s prediction accuracy. We have obtained similar results across

a wide variety of parameter sets. Thus, in the remainder of this section, we use this model to study

several aspects of mistreatment due to state interaction.

6With respect to storage capacities, it is important to note that performance results depend on the relative size of the cache
to the object space–i.e., the ratio C/N , but not on the particular values of C and N , i.e., our results are immune to scale.
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Figure 4: Analytical results on the effect of request rate imbalance on the per object request and hit probabilities under LRU
(values with “*” superscript) and LRU without state interaction. ~p denotes the demand and ~π the steady-state hit probabilities.
Other parameters: N = 10, n = 4, C = 4, α = 0.9.

4.2 Understanding State Interaction

Fig. 4 provides a microscopic view of state interaction by showing its effect at the object level. The

results are from an illustrative example involving a group of n = 4 nodes, each of which has storage

for up to C = 4 objects, in a universe of N = 10 objects (other parameters are shown in the caption

and legends of the figure). Nodes v1, . . . , v3 have the same fixed request rate λ1 = 1, whereas the

overactive node v4 has request rate λ4 = 1, 10, 100 (i.e., we have three sets of results that correspond

to different λ4; each set is depicted on a different column of Fig. 4). The three graphs on the top

depict the demand and the steady-state vector for node v1 (which will be used as a representative

for all three non-overactive nodes), while the ones on the bottom depict the corresponding quantities

for node v4. Each graph includes four curves. The bottom two curves indicate the local demand

distribution ~p and the aggregate demand distribution ~p∗, which includes the effect of the other nodes’

miss streams (each of these curves sums up to 1). The top two curves ~π and ~π∗ show the steady-

state vectors of a node when the input is ~p (no miss-stream present) and ~p∗ (miss-stream present),

respectively, as obtained from the analytical method of Section 3.2 (each of these curves sums up to

C).

Looking at the three graphs on the bottom of Fig. 4, we see that overactive node v4 is not affected

by the miss streams of other nodes. For λ4 = 10 and 100, its aggregate demand and its steady state

vector are identical to the corresponding ones without state interaction, i.e., ~p∗
4 ≈ ~p4 and ~π∗

4 ≈ ~π4.
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Figure 8: Analytical results on the comparison of replication and caching under three cases of request imbalance (1,10 and
100).

For λ4 = 1, there is a very slight effect due to the presence of the miss streams of the other three

nodes, but this has almost no effect on the steady-state vector ~π∗
4.

Looking at the top left graph in Fig. 4, which corresponds to λ4 = 1, we see that the same slight

effect exists for node v1 due to the reception of the other three miss streams. The situation, however,

changes radically when increasing λ4 (second and third graphs of the top row). In that case, ~p∗1 and

~p1, and as a consequence ~π∗
1 and ~π1 also become distinctively different. The intense miss stream from

v4 increases the popularity of some objects from the middle part of ~p1, thereby making them the

most popular objects in ~p∗1. For example, when λ4 = 100, objects 2,3 and 4, become more popular

than object 1. This change in the profile of ~p∗1 is then reflected in ~π∗
1, thereby affecting its access

cost (Eq. (6)), as we explain below.

4.3 Effect on Performance

Fig. 5 provides a macroscopic view of state interaction by considering its effects on the normalized

access cost of each node. The normalized cost of node vj under the aggregate demand ~p∗j is defined
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as follows:

ˆcostj(~p
∗
j , ~pj) =

costj(~p
∗
j )

costisoj (~pj)
, (8)

where costisoj (~pj) =
∑N

i=1 pij · [πij · tl + (1 − πij) · ts] is the cost that would be incurred by vj if it

operated in isolation (outside the group) and received only its local demand ~pj . If ˆcostj < 1, the

node benefits from its participation in the group, otherwise, it is being mistreated. When considering

two nodes, vj and vj′ , then the fact that 1 > ˆcostj > ˆcostj′ , means that although both are better off

by participating in the group, vj gets a relatively larger benefit.

There are two main points to be concluded from Fig. 5. First, it requires a very strong imbalance

of request rates in order to create a substantial difference in the incurred normalized access costs. In

the presented example, the overactive node v4 has a 30% reduction of its normalized cost, only when

it produces a 100-fold more intense request stream. Even such a strong imbalance, is not enough

to mistreat the other nodes (v1, . . . , v3 have normalized access costs < 1). For the occurrence of

mistreatment, remote accesses have to be even more expensive (this is shown in Fig. 6, where tr

increases from 1 to 1.4, thereby making the normalized access cost of the group nodes > 1). Second,

the nodes must have large storage capacity to be affected by state interaction related phenomena. In

the presented example, the nodes must have at least 20% relative storage capacity C/N to be affected

by the overactive node. Surprisingly, for small C/N , e.g., less than 15%, the group nodes actually

benefit more than the overactive node, i.e., they achieve a smaller normalized access cost. In [17]

we explained this peculiar phenomenon by arguing that the miss-stream from the overactive node

actually helps the other nodes, in this case by creating more skewed demands for them, which lead

to higher hit ratios. Figure 7) shows that increasing the size of the group, reduces the effects of the

state interaction. This occurs as the miss stream of the overactive node(s) (here just one) weakens

by being divided across more nodes.

4.4 The Case of Non-homogeneous Demand Patterns

What we described so far is fairly optimistic as we assumed that all participants in the distributed

caching group exhibit similar access patterns. If this assumption does not hold, then intensity of

the mistreatment could be much higher, even for small C/N . To underscore this point, in this

section, we will deviate from our course so far, and examine mistreatments and the social cost of

the group under non-homogeneous demand distributions. For non-overactive nodes we will maintain

the popularity ranking of objects as it was (o1, o2, . . . ). For the overactive node, however, we will
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Figure 10: Analytical results of the state interaction on the normalized access
cost of the outlier and the remaining nodes in the group, and the normalized social
cost of the nodes in the caching group under non-homogeneous demand distributions,
where overactive’s node popularity ranking has been shifted rightwards by an offset
O.

shift the popularity ranking by an offset O, 0 ≤ O ≤ N , therefore making object o1+(O+i−1) mod N

be the ith most popular object. We assign request probabilities taken from the same generalized

power-law profile with skewness a = 0.9 that is used for the non-overactive nodes. Figure 9 depicts

the demand distribution for the overactive for O = N/2 − 1. The two graphs of Fig. 10 depict

the normalized individual cost for the overactive and the non-overactive nodes as well as the social

cost (normalization is obtained by dividing by the corresponding cost obtained when remote hits are

not allowed to affect the local caching state). As it is obvious, mistreatments can occur even under

non-homogeneous demand distributions. The concave profile with respect to O occurs as with high

O the popularity ranking starts to look like the original one due to “wrapping” after N . We have

obtained similar results with several other perturbations of the popularity ranking [29].

4.5 Caching versus Replication

In this section we will consider both replication and caching and compare their relative robustness to

mistreatment. For replication we will consider the socially optimal (SO) replication algorithm of Leff

et al. [20]. For simplicity of exposition, and also to be able to compare with our previous numerical

results from [18], we will consider a group with only n = 2 nodes and a universe of N = 100 objects.

The three graphs of Fig. 8 depict the normalized access costs7 for nodes v1 and v2 (overactive), for

three cases of request imbalance, 1, 10, and 100. When there is no request imbalance (first graph),

no node is mistreated. Caching yields the exact same performance for both nodes (the two curves

for v1, v2 coinciding), while replication might unintentionally favor one of them (there are several

optimal solutions, and the particular one chosen has to do with the specific solution algorithm that

7For the case of replication, the normalization is conducted by dividing with the performance of the greedy local (GL)
replication strategy. See [18] for details.
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Figure 11: Analytical results on the comparison LRU vs LFU.

is employed, here an LP relaxation of an integer problem solved via Simplex).

The different sensitivity to mistreatment becomes apparent as soon as request imbalance is

introduced, i.e., with λ2/λ1 = 10 and 100 (second and third graphs of Fig. 8). By observing

these figures, we see that the curves for caching are always contained within the angle specified

by the curves for replication (except for very small C/N , where we have the peculiar behavior of

caching discussed in the previous section). The point to be kept from these results is that replication

is much more sensitive to mistreatment than caching. Under replication, the slightest imbalance

of request intensities is directly reflected in the outcome of the replication algorithm. In contrast,

the state interaction that takes place in caching is a much weaker catalyst for mistreatment. This

fortunate weakness owes to the stochastic nature of caching, and to the requirement for the concurrent

occurrence of two independent events: An unpopular object must first be brought to the cache due

to the local demand, and then the miss-stream must feed it with requests, if it is to lock it in the

cache (and thereafter beat the local request stream that tries to push it out and reclaim the storage

space).

4.6 LRU versus LFU

Fig. 11 shows analytical results under LRU replacement, as well as simulation results under perfect

LFU replacement [26] (two group sizes, n = 2 and n = 4, are considered). We plot the absolute, in-

stead of the normalized access costs, as we are considering different replacement algorithms. Looking

first at LRU, we notice the following. The effects of state interaction (reflected in the width of the

angle between group and overactive curves, after λn/λj = 10) decrease as the group grows larger,

as also noted in the previous section. Moreover, the absolute access costs for both the group and

the overactive node also decrease with the size of the group. The reason is that a bigger group has

more aggregate storage capacity and thus succeeds in caching more distinct objects, which in turn

benefits all the nodes.
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Turning our attention to the LFU curves, we see a completely different behavior. For a given

n, both the overactive node and the rest of the group, have the same access cost, i.e., the request

imbalance has no affect on the nodes under LFU. This happens because once in steady-state, perfect

LFU avoids replacement errors, thus does not give any opportunities for locking unpopular objects

and losing storage due to the miss-stream of remote overactive nodes. Thus LFU has an advantage

over LRU in terms of its immunity to request imbalance. What is even more interesting, however,

is that the access cost under LFU remains the same under different n, i.e., increasing the group

size does not help in reducing the access costs. This happens because under LFU and common

demand patterns, all the nodes end up caching exactly the same sets of objects. In such a group,

a local miss is bound to miss also in the group. In other words, LFU eliminates all the cooperation

gain in groups of similar nodes. This does not occur when the group operates under LRU: the

replacement errors committed by the individual nodes in this case, create a healthy amount of noise

that increases the distinct objects held in the group, thereby decreasing the access cost of all the

nodes. Thus, in large groups under small inter-node distances, LRU is more appropriate than LFU

(see for example the access cost for small tr in Fig. 12 in Section 5.1, where n = 10). When the inter-

node distances increase, then the perfect ranking of objects under LFU becomes more important

than the cooperation gain and, thus, LFU becomes better for the group (see Fig. 12 for large tr).

4.7 L2 versus Non-L2 Caching

When a cache operates in Level-2 (L2) mode, it fetches and maintains a copy from the origin server

for every request that it receives from a remote node (whether it hits or misses locally). In [17]

we showed that L2 caching eliminates the robustness to mistreatment of non-L2 caching, leading to

a vulnerability level similar to the one under replication. To understand this, one has to observe

that in L2-caching and replication, locally irrelevant objects may occupy the local cache without the

intervention of the local demand, whereas in non-L2 caching, the local demand has first to bring the

objects in the cache, and thus give other nodes the opportunity to maintain them there by feeding

them with requests.

5 Mistreatment Due to Use of a Common Scheme

In this section we study cases of mistreatment due to the use of a common scheme vis-a-vis the

object admission control algorithm. Specifically, we consider Single Copy (SC) schemes, like, HASH
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Figure 12: Simulation results on the effect of the remote access cost tr on the performance ranking of different SC and MC
schemes for three cases of skewness of demand (a = 0.2, a = 0.6, a = 0.9). MC schemes (LRU, LFU) perform better when
tr → ts.

and LRU-SC 8, i.e., schemes that allow for the existence of up to one copy of each object in the

group and, Multiple Copy (MC) schemes, i.e., schemes that allow for the existence of multiple copies

of the same object at different nodes of the group. All the replacement algorithms when combined

with a non-SC object admission control fall into the MC category.

5.1 Single Versus Multiple Copy Schemes

Fig. 12 depicts simulation results showing the average access cost of a group (social cost) under

different SC and MC schemes, and for different values of tr representing different levels of “tightness”

of the group. Three types of demand are considered: lightly (a=0.2), moderately (a=0.6), and highly

skewed (a=0.9) demand. The following observations apply. Single copy schemes, ( i.e., HASH and

LRU-SC, whose curves overlap almost completely in these figures, as the two have very similar

caching behavior) perform better when the access cost between the nodes is small. In such cases the

cost of local and remote accesses is similar, so it pays to eliminate multiple copies of the same object

at different nodes and instead make room for storing a larger number of distinct objects. Multiple

copy schemes, (i.e., LRU and LFU) perform better when the access cost between the nodes is high.

In such cases, a much higher cost is incurred when an object is fetched from the group, so it becomes

imperative to maintain some of the most popular objects locally (thereby creating multiple copies at

different nodes). The threshold value of tr at which the performance ranking between SC and MC

changes depends on the skewness of the demand: the higher the skewness, the lower the value of tr

and the earlier the MC schemes become better.

8Under HASH, requests are received by the local node, which employs a hash function to identify the node that is responsible
for the requested object. The responsible node returns the object immediately if it already caches it, or contacts the origin
server, and then returns it, also keeping a local copy in this case. The local node does not keep a local copy, unless it is the one
responsible for that object according to the employed hash function. Under LRU-SC (single copy), a local copy is maintained at
the local node only for objects that were fetched from the origin server. When an object is fetched from elsewhere in the group,
no local copy is kept. In both cases, the number of copies of each object in the group is limited to at most one.
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It is also worthwhile noting that the curves for LFU are parallel to the x-axis, i.e., the access

cost is immune to the inter-node distance under LFU and identical demand. This happens because,

as noted earlier, under LFU all the nodes store the same objects, and this has the consequence of

eliminating all remote hits. In that case, the exact value of the remote access cost does not affect the

LFU curves, since there are no remote hits. Regarding the comparison between LRU and LFU, the

figure shows that LFU is better when the remote access cost is high (see the discussion in Section 4.6

for an explanation of this).

The above observations highlight the fact that “fixed schemes” operate efficiently only under

specific parameter sets. If these parameter sets are common to all the nodes, then good design

choices can be made among the different schemes. However, when some of the parameters (e.g.,

inter-node distances) are not common to all nodes, then it may well be the case that no single

scheme is appropriate for all the nodes. Enforcing a common scheme under such conditions is bound

to mistreat some of the nodes. The following section illustrates such an example.

5.2 Relaxing the Common Scheme Requirement

So far, we have assumed that all group nodes employ the same (common) caching scheme. In this

section, we look at the advantages to be gotten from relaxing this constraint.

Consider the group depicted in Fig. 13 in which n−1 nodes are clustered together, meaning that

they are very close to each other (tr → tl), while there’s also a single “outlier” node at distance t′r

from the cluster. The n− 1 nodes would naturally employ the LRU-SC scheme in order to capitalize

on their small remote access cost. From the previous discussion it should be clear that the best

scheme for the outlier node would depend on t′r. If t′r → tl, the outlier should obviously follow

LRU-SC and avoid duplicating objects that already exist elsewhere in the group. If t′r � tl, then

the outlier should follow a MC scheme, e.g., LRU.

To permit the outlier to adjust its caching behavior according to its distance from the group,

we introduce the LRU(q) scheme, under which, objects that are fetched from the origin server are

automatically cached locally, but objects that are fetched from the group are cached locally only

with probability q. For q = 0, LRU(q) reduces to LRU-SC, while for q = 1 it reduces to the multiple

copy LRU scheme. One may think of q as a reliance parameter, capturing the confidence that a node

has in its ability to fetch objects efficiently (i.e., “cheaply”) from other members of the group.

Figure 14 presents the performance of LRU(q), for q = 0, 0.1, 0.5, 1 under different t′r. The results

are normalized by dividing the access cost of each LRU(q) scheme by the corresponding access cost
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Figure 13: An example of
a group composed of a cluster of
n−1 nodes and a unique outlier.
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Figure 15: Simulation results on the ef-
fect of the remote access cost t′r on the ac-
cess cost of the outlier node under the virtual
cache and LRU(0) schemes.

of the LRU(q = 1) scheme. The later can be seen as a basis for what a node can achieve by operating

greedily, i.e., when it always keeps a copy of each incoming object. Such a behavior corresponds to

a node that wants to avoid relying on other nodes for fetching objects. As with the state interaction

case, mistreatment is signified by a normalized access cost greater than 1.

Figure 14 shows that for the considered scenario, always keeping local copies of all incoming

objects (i.e., employing LRU(1) and incurring a normalized access cost of 1) is a reasonably good

choice across most values of t′r. The only case that LRU(1) performs poorly is when t′r becomes very

small, which corresponds to the case in which the node ceases to be an outlier, and actually becomes

part of the cluster. As discussed earlier, in this case maintaining multiple object copies within the

group becomes wasteful, with the optimal scheme being the single copy LRU(0) scheme.

Another interesting observation from the above results is that there is a noticeable performance

differential between the single copy LRU(0) scheme, and any other multiple copy LRU(q) scheme

with q > 0. A non-zero LRU(q) scheme, even one where q is small, is capable of eventually caching

locally the most popular objects, even if this requires several misses. LRU(0), on the other hand,

has almost no chance of bringing a globally popular object locally since it is much more likely for

such an object to be cached in the cluster before being requested by the outlier node (which means

that it won’t be cached locally). When this happens for several popular objects, the performance

degradation for the outlier node becomes very serious. That is why LRU(0) performs poorly for

large values of t′r.
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6 Towards Mistreatment-Resilient Caching

From the exposition so far, it should be clear that there exist situations under which an inappropriate,

or enforced, scheme may mistreat some of the nodes. While we have focused on detecting and

analyzing two causes of mistreatment which appear to be important (namely, due to cache state

interactions and the adoption of a common cache management scheme), it should be evident that

mistreatments may well arise through other causes. For example, we have not investigated the

possibility of mistreatment due to request re-routing [25], not to mention that there are vastly more

parameter sets and combinations of schemes that cannot all be investigated exhaustively.

To address the above challenges, we first sketch a general framework for designing mistreatment-

resilient schemes. We then apply this general framework to the two types of mistreatments that we

have considered in this work. We target “open systems” in which group settings (e.g., number of

nodes, distances, demand patterns) change dynamically. In such systems it is not possible to address

the mistreatment issue with predefined, fixed designs (e.g., using the results of the previous section

for selecting a fixed value for the reliance parameter q). Instead, we believe that nodes should adjust

their scheme dynamically so as to avoid or respond to mistreatment if and when it emerges. To

achieve this goal we argue that the following three requirements are necessary.

Detection Mechanism: This requirement is obvious but not trivially achievable when operating

in a dynamic environment. How can a node realize that it is being mistreated? In our previous work

on replication [18], a node compared its access cost under a given replication scheme with the

guaranteed maximal access cost obtained through GL replication. This gave the node a “reference

point” for a mistreatment test. In that-game theoretic framework, we considered nodes that had a

priori knowledge of their demand patterns, thus could easily compute their GL cost thresholds. In

caching, however, demand patterns (even local ones) are not known a priori, nor are they stationary.

Thus in our DSC setting, the nodes have to estimate and update their thresholds in an on-line

manner. We believe that a promising approach for this is emulation. Figure 16 depicts a node

equipped with an additional virtual cache, alongside its “real” cache that holds its objects. The

virtual cache does not hold actual objects, but rather object identifiers. It is used for emulating the

cache contents and the access cost under a scheme different from the one being currently employed by

the node to manage its “real” cache under the same request sequence (notice that the input request

stream is copied to both caches). The basic idea is that the virtual cache can be used for emulating

the threshold cost that the node can guarantee for itself by employing a greedy scheme.
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Mitigation Mechanism: This requirement ensures that a node has a mechanism that allows it

to react to mistreatment—a mechanism via which it is able to respond to the onset of mistreatment.

In the context of the common scheme problem, the ability to adjust the reliance parameter q acted

as such a mechanism. In the context of the state interaction problem, one may define an interaction

parameter ps and the corresponding LRU(ps) scheme, in which a remote hit is allowed to affect the

local state with probability ps, whereas it is denied such access with probability (1-ps). As it will

be demonstrated later on, nodes may avoid mistreatment by selecting appropriate values for these

parameters according to the current operating conditions.

Control Scheme: In addition to the availability of a mistreatment mitigation mechanism (e.g.,

LRU(q)), there needs to be a programmatic scheme for adapting the control variable(s) of that

mechanism (e.g., how to set the value of q). Since the optimal setting of these control variables

depends heavily on a multitude of other time-varying parameters of the DSC system (e.g., group

size, storage capacities, demand patterns, distances), it is clear that there cannot be a simple (static)

rule-of-thumb for optimally setting the control variables of the mitigation mechanism. To that end,

dynamic feedback-based control becomes an attractive option.

To make the previous discussion more concrete, we now focus on the common scheme problem and

demonstrate a mistreatment-resilient solution based on the previous three principle requirements. A

similar solution can be developed for the state interaction problem.

6.1 Resilience to Common-Scheme-Induced Mistreatments under

“Soft Selfishness”

We start with a simple “binary” policy that allows a node to change operating parameters by selecting

between two alternative schemes. This can be achieved by using the virtual cache for emulating the

LRU(1) scheme, i.e., the scheme in which the reliance parameter q is equal to 1 (capturing the case

that the outlier node does not put any trust on the remote nodes for fetching objects and, thus,

keeps copies of all incoming objects after local misses). Equipped with such a device, the outlier can

calculate a running estimate of its threshold cost based on the objects it emulates as present in the

virtual cache.9 By comparing the access cost from sticking to the current scheme to the access cost

obtained through the emulated scheme, the outlier can decide which one of the two schemes is more

appropriate. For example, it may transit between the two extreme LRU(q) schemes–the LRU(q = 0)

9The outlier can include in the emulation the remote fetches that would result from misses in the emulated cache contents;
this would give it the exact access cost under the emulated scheme. A simpler approach would be to disregard the remote fetches
and thus reduce the inter-node query traffic; this would give it an upper bound on the access cost under the emulated scheme.
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scheme and the LRU(q = 1) scheme. Figure 15 shows that the relative performance ranking of the

two schemes depends on the distance from the group t′r and that there is a value of t′r for which the

ranking changes.

The above mechanism is appropriate for avoiding mistreatments as defined for “soft selfish”

nodes that are satisfied if they can guarantee a performance level at least as good as the one they

can guarantee for themselves in isolation. In the sequel we sketch a scheme for addressing “hard

selfish” nodes, i.e., nodes that want to minimize their cost granted the current behavior by other

nodes. Such a goal is clearly more ambitious than just avoiding mistreatment. In game theoretic

terms, it amounts to selecting a “best-response” strategy.

6.2 Resilience to Common-Scheme-Induced Mistreatments under

“Hard Selfishness”

Hard selfishness demands setting the reliance parameter q so as to minimize the local cost under the

current behavior by the other nodes. Indeed, there are situations in which intermediate values of q,

0 < q < 1, are better than both q = 0 and q = 1 which is what the previous binary scheme allows

(see the LRU(0.1) and LRU(0.5) curves in Fig. 14). Consider two different values of the reliance

parameter q1, q2 such that q1 < q2. Figure 17 illustrates a typical development of the average object

access cost under q1 and q2 as a function of the distance t′r of the outlier node from its cooperative

cluster. As discussed in the previous section, q1 (q2) will perform better with small (large) t′r.

In a longer version [16] of this article we propose and analyze a Proportional-Integral-Differential

(PID) controller for controlling the value of q so as to achieve the aforementioned best-response. A

brief sketch of its operation goes as follows. The controller maintains running averages of the actual

cost under the current q and the corresponding one from a virtual cache that emulates an LRU(q = 1)-

scheme. The controller changes the actual q so as to minimize the actual cost. In doing so it uses

as point of reference the emulated cost (see [16] for details). In the same document we argue that

such a controller can be realized with minimal overhead in terms of information exchange, required

memory and processing. Performance Evaluation: In order to evaluate our adaptive scheme, we

compare its cumulative average access cost to the corresponding cost of one of the two extreme static

schemes (LRU(q = 0),LRU(q = 1)). Thus, we define the following performance metric:

minimum cost reduction (%) = 100 ·
coststatic − costadaptive

coststatic
(9)

where costadaptive is the access cost of our adaptive mechanism, and coststatic is the minimum cost
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Figure 18: Simulation results on the cost reduction that is achieved using our adaptive mechanism, (left): The minimum cost
reduction, (right): The maximum cost reduction.

among the two static schemes: coststatic = min (cost(LRU(q = 0), LRU(q = 1)). This metric cap-

tures the minimum additional benefit that our adaptive scheme has over the previous static schemes.

To capture the maximum additional benefit of our adaptive scheme (the optimistic case), we similarly

define maximum cost reduction as in Eq. (9), where coststatic = max (cost(LRU(q = 0), LRU(q = 1)).

We evaluate the performance of our PID-style feedback controller experimentally by considering

a scenario in which the distance between the outlier node and the cooperative group (t′r) changes

according to the Modified Random Waypoint Model [21]. The motivation for such a scenario comes

from a wireless caching application [32]. A detailed description of the design of this experiment can

be found in [16]. Figure 18 summarizes results we obtained under different cache sizes, demand

skewness, and movement speed Vmax = 1 distance units/time unit (similar results are observed

under higher speeds as well). All experiments were repeated 10 times and we include 95th-percentile

confidence intervals in the graphs.

By employing our adaptive scheme, the outlier achieves a maximum cost reduction that can be

up to 60% under skewed demand. The depicted profile of the maximum cost reduction curve can

be explained as follows. The worst performance of the static schemes appears at the two extremes
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of skewness. Under uniform demand, a = 0, we get the worst performance of the LRU(1) static

scheme, whereas under highly skewed demand, a = 1, we get the worst performance of the LRU(0)

static scheme. In the intermediate region both static schemes provide for some level of compromise,

and thus the ratio of the cost achieved by either schemes to the corresponding cost of the adaptive

scheme becomes smaller than in the two extremes.

Turning our attention to the minimum cost reduction, we observe that it can be substantial

under skewed demand, and disappears only under uniform demand (such demand, however, is not

typically observed in measured workloads [2]). The explanation of this behavior is as follows. At

the two extreme cases of skewness, one of the static scheme reaches its optimal performance—under

low skewed demand, the best static scheme is the LRU(0) and under high skewed demand the best

static scheme is the LRU(1). Thus, the ratio of the cost achieved by the best static scheme and

the corresponding cost of our adaptive scheme gets maximized in the intermediate region, in which

neither of the static schemes can reach its best performance.

6.3 Resilience to State-Interaction-Induced Mistreatments

Immunizing a node against mistreatments that emerge from state interactions could be similarly

achieved. The interaction parameter ps can be controlled using schemes similar to those we considered

above for the reliance parameter q. It is important to note that one may argue for isolationism (by

permanently setting ps = 0) as a simple approach to avoid state-interaction-induced mistreatments.

This is not a viable solution. Specifically, by adopting an LRU(ps = 0) approach, a node is depriving

itself from the opportunity of using miss streams from other nodes to improve the accuracy of LRU-

based cache/no-cache decisions (assuming a uniform popularity profile for group members). This

was highlighted in the results shown in Fig. 5.

To conclude this section, we note that the approaches we presented above for mistreatment

resilience may be viewed as “passive” or “end-to-end” in the sense that a node infers the onset of

mistreatment implicitly by monitoring its utility function. As we alluded at the outset of this paper,

for the emerging class of network applications for which grouping of nodes is “ad hoc” (i.e., not

dictated by organizational boundaries or strategic goals), this might be the only realistic solution.

In particular, to understand “exactly how and exactly why” mistreatment is taking place would

require the use of proactive measures (e.g., monitoring/policing group member behaviors, measuring

distances with pings, etc.), which would require group members to subscribe to some common services

or to trust some common authority—both of which are not consistent with the autonomous nature
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(and the mutual distrust) of participating nodes.

7 Summary and Concluding Remarks

Distributed on-demand caching enables loosely coupled groups of nodes to share their (storage)

resources to achieve higher efficiencies and scalability. In addition to its traditional use in content

distribution/delivery networks, distributed caching is also used as an important building block of

many emerging applications and protocols, including its use in route caching in ad-hoc networks [24]

and in P2P content replication [6, 13].

Summary: This paper has uncovered the susceptibility of nodes participating in a distributed on-

demand caching group to being mistreated. We have identified two causes of mistreatments–namely

mistreatment due to cache state interactions between various members of the group, and due to the

use of a common scheme for cache management across all members of the group. We have backed

up our findings by analytic models, numerical solutions of these models, as well as simulations in

which assumptions (necessary for analysis) have been relaxed.

The results of our analysis and evaluation suggest that on-demand distributed caching is fairly

resilient to the onset of mistreatment as long as proxying (a.k.a. L2 caching) is not enabled, and as

long as intra-group access costs do not include outliers. More constructively, we have outlined an

efficient emulation-based approach that allows individual nodes to decide autonomously (i.e., without

having to trust any other node or service) whether they should stick to, or secede from a caching

group, based on whether or not their participation is beneficial to their performance compared to a

selfish, greedy scheme.

Other Incarnations of Mistreatment in On-Line Distributed Resource Management

Problems: In this paper, we focused on distributed caching as an instance of an on-line proto-

col for the management of a distributed resource—namely the limited storage available at each node.

While our exposition has focused on the well-known problem of caching “retrievable” content (e.g.,

web pages and media objects), it should be evident that our results extend to any other type of

cached content, including non-retrievable content used as part of the control plane of a distributed

protocol or application (e.g., route paths stored in routing tables of group members). Clearly, given

the different nature of the workloads that such distributed resources must support, a more specific

examination of potential mistreatments in such settings is warranted, and is a current subject of

inquiry of ours.
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Coincidental versus Adversarial Mistreatment: In this paper we focused on the onset of

mistreatment due to benign operating conditions of a caching group. For instance we identified rate

imbalance (of local versus remote requests streams) conditions as well as cache sizing conditions

that are necessary for mistreatment to occur. As such, the cases of mistreatment we have uncovered

could be considered “coincidental”. Another possible source of mistreatment, however, could be

adversarially motivated, in the sense that one (or more) of the group members collude to negatively

impact the performance of other members. While we did not consider adversarial mistreatments

per se, our results suggest that distributed caching is fairly immune to high potency exploits [11]

(a.k.a. low rate attacks) by non-clairvoyant adversaries. More work is needed to characterize the

vulnerability of distributed caching to more elaborate adversarial exploits, including those from more

powerful agents (e.g., those with knowledge of a victim’s cache contents).

References
[1] Martin F. Arlitt and Carey L. Williamson. Web server workload characterization: the search for invariants. In Proceedings of

the 1996 ACM SIGMETRICS international conference on Measurement and modeling of computer systems, pages 126–137,
1996.

[2] Lee Breslau, Pei Cao, Li Fan, Graham Philips, and Scott Shenker. Web caching and Zipf-like distributions: Evidence and
implications. In Proceedings of the Conference on Computer Communications (IEEE Infocom), New York, March 1999.

[3] John W. Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost. Informed content delivery across adaptive
overlay networks. IEEE/ACM Transactions on Networking, 12(5):767–780, October 2004.

[4] Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck Wee, Marco Barreno, Christos H. Papadimitriou, and John Kubiatowicz.
Selfish caching in distributed systems: A game-theoretic analysis. In Proc. ACM Symposium on Principles of Distributed
Computing (ACM PODC), Newfoundland, Canada, July 2004.

[5] E. G. Coffman and P. J. Denning. Operating systems theory. Prentice-Hall, 1973.

[6] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer networks. In Proceedings of ACM SIG-
COMM’02 Conference, Pittsburgh, PA, USA, August 2002.

[7] Asit Dan and Dan Towsley. An approximate analysis of the LRU and FIFO buffer replacement schemes. In Proceedings of
ACM SIGMETRICS, pages 143–152, Boulder, Colorado, United States, 1990.

[8] Duane Wessels and k claffy. ICP and the Squid Web Cache. http://www.ircache.net/∼wessels/Papers/icp-squid.ps.gz.
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