SOMECAST

A Paradigm for Real-Time Adaptive Reliable Multicast*

JAEHEE YOON AZER BESTAVROS IBRAHIM MATTA
jaeheey@cs.bu.edu bestavros@cs.bu.edu matta@cs.bu.edu

Computer Science Department
Boston University
Boston, MA 02215

Abstract

SomeCast is a novel paradigm for the reliable multicast of real-time data to a large set of receivers
over the Internet. SomeCast is receiver-initiated and thus scalable in the number of receivers,
the diverse characteristics of paths between senders and receivers (e.g. maximum bandwidth and
round-trip-time), and the dynamic conditions of such paths (e.g. congestion-induced delays and
losses). SomeCast enables receivers to dynamically adjust the rate at which they receive multicast
information to enable the satisfaction of real-time QoS constraints (e.g. rate, deadlines, or jit-
ter). This is done by enabling a receiver to join SOME number of concurrent multiCAST sessions,
whereby each session delivers a portion of an encoding of the real-time data. By adjusting the
number of such sessions dynamically, client-specific QoS constraints can be met independently.
The SomeCast paradigm can be thought of as a generalization of the AnyCast (e.g. Dynamic
Server Selection) and ManyCast (e.g. Digital Fountain) paradigms, which have been proposed in
the literature to address issues of scalability of UniCast and MultiCast environments, respectively.

In this paper we overview the SomeCast paradigm, describe an instance of a SomeCast protocol,
and present simulation results that quantify the significant advantages gained from adopting such
a protocol for the reliable multicast of data to a diverse set of receivers subject to real-time QoS
constraints.

Keywords: Reliable Multicast, Real-Time Communication, FEC using Reed-Solomon-like
codes, Simulation.

*This work was supported in part by NSF research grants ESS CCR-9706685, CAREER ANIR-9701988, and MRI
EIA-9871022.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 2

1 Introduction

The ubiquity and acceptance of the Web in our society has encouraged the development of many
Internet applications that are inherently of a real-time nature—or that deal with information that
is inherently temporal in nature. The communication of real-time information over the Internet
is challenging due to the inherent unpredictability involved in using such an open infrastructure.
This unpredictability is documented in a number of studies that confirm the highly variable nature
of Internet traffic over a multitude of time scales [10, 12, 13|, and the futility of techniques such as
buffering to eliminate such variability [32].

Motivation: An important class of real-time applications requires the communication of the
same content to a very large number of receivers. In order to cope with the highly-variable nature
of network congestion, applications often trade reliability for timeliness, or trade timeliness for
reliability.

Trading reliability for timeliness is a common practice that involves the use of a rate-based
transport (e.g. using UDP for the communication of audio/video streams). An example of this
approach is the MBone multicast protocol. This approach results in the deployment of congestion-
insensitive applications, and is viewed by the Internet community as a bad practice [26]. Even
if acceptable, such an approach would only be useful for real-time Internet applications that are
able to tolerate a degree of unreliability (i.e. packet losses). For many real-time applications, such
unreliability is not tolerable. Examples include group simulations, live auctions, real-time content
replication for Web portals, and stock brokerage applications. Such applications require a multicast
infrastructure that is both real-time and reliable [40].

A common approach to improving reliability is through the use of redundancy. Two forms of
redundancy are typically exploited: temporal and spatial. Temporal redundancy involves the use
of the same set of resources to recover from failures over an extended period of time. An example
of this approach is the use of ARQ-based (or retransmission-based) recovery techniques. Spatial
redundancy involves the use of additional resources to mask failures. An example of this approach
is the use of FEC techniques.

Trading timeliness for reliability is evident in all communication protocols that use retransmis-
sions to recover from packet losses due to network congestion (including TCP). An example of this
approach for multicast communication is the Scalable Reliable Multicast (SRM) [15] and the Cyclic
UDP Multicast [2] and the Digital Fountain Multicast [7] paradigms. Obviously, such techniques
are not adequate for real-time applications, for which “a late packet is a lost packet”.

Trading resources for reliability is common for mission-critical systems that cannot tolerate
recovery delays (e.g. using N-modular redundancy for collision avoidance systems) or for system
components with irrecoverable failure modes (e.g. using mirror disks to protect against a disk
crash).

While a widely accepted practice for hard real-time systems, the trading of resources for relia-
bility and/or timeliness is not a common practice for systems with “softer” deadline constraints, for
example over the Internet. In this paper, we argue that the use of redundant resources to improve

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 3

the reliability and timeliness of Internet applications in general (and multicast communication in
particular) is appropriate due to the already existing multiplicity of resources in such systems—a
multiplicity that is required for performance and scalability purposes.

Contribution: In this paper we present SomeCast—a multicast paradigm that enables the satis-
faction of timing constraints without sacrificing communication reliability. This is done by enabling
receivers to dynamically adjust the rate at which they receive multicast information to guarantee
the satisfaction of real-time QoS constraints (e.g. rate, deadlines, or jitter). This rate adjustment
is made possible by enabling a receiver to join SOME number of concurrent multiCAST sessions,
whereby each session delivers a portion of an encoding of the real-time data. By adjusting the num-
ber of such sessions dynamically, client-specific QoS constraints can be met independently. The
SomeCast paradigm can be thought of as a generalization of the AnyCast and ManyCast paradigms,
which have been proposed in the literature to address issues of scalability of UniCast and MultiCast
environments, respectively. The SomeCast is receiver-initiated and thus scalable in the number of
receivers, the diverse characteristics of paths between senders and receivers (e.g. maximum band-
width and round-trip-time), and the dynamic conditions of such paths (e.g. congestion-induced
delays and losses).

Scope: We start this paper with a review of related work in Section 2. We follow that with an
overview of the SomeCast paradigm in Section 3. We present an instance of a SomeCast-based
real-time reliable multicast protocol in Section 4. We present performance evaluation results that
quantify the benefits of our proposed protocol in Section 5. Finally, we conclude with a summary

and an overview of future work in Section 6.

2 Related Work

ARQ-based Techniques: The first category of reliable multicast transport protocols is based
on ARQ (Automatic Repeat reQuest). Here, the sender retransmits lost data upon request from
the receiver. A straightforward application of ARQ in a multicast setting results in the so-called
NACK implosion problem. This problem occurs when every receiver sends a NACK message
to request retransmission of the same packet, causing an implosion at the sender. To prevent
this implosion of control packets, Xpress Transport Protocol (XTP) [41] proposed that a receiver
multicasts control packets to the entire group. A receiver waits for a random time before sending
a NACK packet, and refrains from sending a NACK if it sees a NACK from another receiver for
the same packet. SRM (Scalable Reliable Multicast) [15] uses similar mechanisms to control the
sending of request (NACK) and repair (retransmitted data) packets. In SRM, the random delay
before sending a request (repair) packet is a function of the receiver’s distance from the node that
triggered the repair (request). Each node estimates its distances from other nodes by multicasting
session messages. The random timer is set to be inversely proportional to the distance. Thus,
although a number of receivers may all miss the same packet, a receiver close to the point of failure
is likely to timeout first and multicast the request. Other receivers that are also missing the data
hear the request and suppress their own request.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 4

As we hinted earlier, retransmission-based approaches trade timeliness for reliability and hence
are not useful for the class of multicast applications that require both reliability and timeliness.

Deadline-Cognizant Techniques: Most reliable transport protocols (whether unicast or mul-
ticast) are incognizant of the temporal semantics of the data being communicated. As a result, a
reliable transport protocol may end up wasting resources attempting to recover from the loss of a
packet that is of no value to the receiver (because it is late). Such wasteful utilization of resources
may result in delaying more packets, resulting in further violations of timeliness constraints. The
work of Li, Ha, Varghavan [21] is an example of an approach that attempts to address such a
scenario. While this technique was proposed primarily for unicast communication (namely TCP),
it is conceivable that similar techniques could be used to avoid unecessary retransmissions in a
multicast environment (e.g. SRM).

Deadline cognizance is likely to improve the timeliness of a reliable communication by preserving
network resources, but it is unable to mask (or hide) the delays resulting from congestion between
a sender and a receiver.

FEC-based Techniques: Another category of reliable multicast protocols is based on FEC
(Forward Error Correction). Here, the original data is encoded to obtain additional repair packets
that are used to recover data packet loss. An example of this approach is the use of FEC in the
SHARQFEC protocol of Kermode [20] and the use of FEC in the real-time reliable multicast of
Rubenstein, Kurose, and Towsley [38].

Compared to retransmission-based approaches, FEC-based techniques enable a more efficient
(and timely) recovery from packet losses. However, they cannot mask (or hide) the delays resulting
from congestion between a sender and a receiver.

Multi-Layer-based Techniques: One approach to providing scalable reliable multicast is the
use of multiple channels (or layers), whereby receivers experiencing a higher degree of losses join
more channels to recover lost packets. An example of this approach is the work of Kasera, Hjalm-
tysson, Towsley, and Kurose [19].

Multi-layer-based techniques—while effective in dealing with the variability of loss character-
istics across a large set of receivers—do not allow receivers experiencing high loss rates to recover
from such losses in a timely fashion. In other words, the reliability of a multicast is guaranteed,
but not its timeliness.

AnyCast-based Techniques: To adapt to the dynamic conditions of the network, several tech-
niques have been proposed to enable a receiver to select “the best” one of many possible servers
to fulfill its request. Such selection could be done at the server or at the client. An example of a
server-based approach is the AnyCast paradigm of Fei, Bhattacharjee, Zegura, and Ammar [14]. An
example of a client-based approach is the dynamic server selection protocol of Carter and Crovella
[9]. While these techniques were proposed primarily for unicast communication, it is conceivable

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 5

that a similar AnyCast paradigm could be used to select the “best” multicast group for a given
receiver (out of many possible alternatives offering the same service).

Given the high variability in network conditions, AnyCast-based techniques are unlikely to be
effective for applications that involve a prolonged communication session (e.g. video-on-demand).

ManyCast-based Techniques: Another approach to speeding up access to popular content is
the use of multiple sources concurrently—or ManyCasting. This is exemplified in the work of Byers,
Luby, and Mitzenmacher [8], which use Tornado encoding to ensure the efficiency of the retrieval
and reconstruction processes. While not addressing the problem of real-time reliable multicast
specifically, this work is similar to ours in that it enables a receiver to communicate concurrently
with many senders.

3 Overview of the SomeCast Paradigm

From AnyCast and ManyCast to SomeCast: The SomeCast paradigm can be thought of
as a generalization that encompasses both the AnyCast and the ManyCast paradigms to which we
eluded in Section 2.

Both the AnyCast and the ManyCast paradigms are server-based approaches for improving
the scalability, fault tolerance, and performance of best-effort Internet systems (e.g. Web servers).
Under the AnyCast paradigm, the “best possible” provider of service is identified out of many such
providers of service. Under the ManyCast paradigm, “all” providers of service are contacted to
speed up the service. In both cases, the multiplicity of providers of service is necessary to deal with
the issue of scale in a best-effort environment.

Under the SomeCast paradigm, clients are empowered to exploit the multiplicity of resources so
as to meet specific reliability and real-time QoS constraints. In other words, the SomeCast paradigm
is client-based. It enables multiple resources available in an inherently best-effort environment to be
leveraged to achieve a prescribed QoS. A client (or receiver) contacts “some” providers of service as
needed. The delegation of QoS management to clients is attractive because it enables the receivers
to have very diverse QoS requirements without resulting in a state-explosion problem at the sender
(or network).

Architecture of Content Delivery under SomeCast: Figure 1 illustrates the general archi-
tecture of a SomeCast system. We assume that “content” is to be delivered from a source to a
potentially very large number of receivers (or clients) through a number of senders, each of which
acts as a proxy of the source (i.e. as an outlet for the content).! Under SomeCast, each sender sets
up a multicast group and a receiver joins as many multicast groups as necessary to satisfy its QoS
constraints, in an adaptive fashion.

It is important to emphasize that there are two “distribution” problems in the architecture

1This architecture—comprising a large number of servers acting as proxies for a single content source—is quickly
being accepted as inevitable for scalable Internet systems [1, 39, 18].

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 6

= |.
Proxy S1 =
c = :

S = 4 = Client
> = =2
= X = >
— » O ()
@ g = Proxy S2 =
> - O O
£z = a)
= — €
Source SO S — %
Proxy S3 8

;<

Client

Senders Receivers

Figure 1: The SomeCast Paradigm

depicted in Figure 1: (1) the source must distribute the content to its proxies (the senders), and
(2) the senders must relay that content to the receivers. These two problems are quite different.
In the first, the system is “closed” in the sense that the set of proxies are all known a priori, and
are (most likely) within the confines of a single organization or network (e.g. content replication
services on the Internet [1, 39]). In the second, the system is “open” in the sense that the (potentially
very large) set of receivers are not known a priori; they operate independently and may require
significantly different QoS. The SomeCast paradigm addresses the challenges posed by the second

of the above two distribution problems.?

Store-and-Forward versus Streaming Multicast Models: Another important consideration
in the architecture depicted in Figure 1, is the nature of the content being distributed. Two
possibilities exist: (1) the content comprises a single object (e.g. current bids) that is updated
frequently by the source, or (2) the content comprises a live feed (e.g. prices on the stock exchange)
that is constantly generated at the source. The SomeCast paradigm can be used to support both
of these models.

Under the first model, senders act as repeaters. They continuously and repeatedly multicast
the most-up-to-date content on their respective multicast groups. Receivers join as many such
multicast groups as necessary to retrieve such content in a timely fashion. The continuous, periodic

ZThere are many products in the market-place that address the distribution of content from source to proxies
[18, 40].

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 7

retransmission of content by senders is similar to the Broadcast Disk techniques proposed in [3, 4],
the Digital Fountain techniques proposed in [7], and the Cyclic Best Effort UDP Protocol proposed
in [2]. Thus, under this model, content flows in a store-and-forward fashion from the source to the
senders and then from the senders to the receivers. Example applications that fit that model would
be the multicast of radar information, or the multicast of the status of an on-line auction.

Under the second model, senders act as relays. They receive a segment of the stream, which
they multicast once on their respective multicast groups. Receivers join as many such multicast
groups as necessary to be able to recover such segments in a timely fashion (i.e. before the senders
switch to the next segment). Thus, under this model, content flows in a pipelined fashion from
the source to the senders to the receivers. Example applications that fit that model would be the
multicast of live feeds from a stock market exchange, or the multicast of sensory information or
live video.

It should be clear that from the perspective of distributing content from the proxies (i.e. senders)
to the receivers, the problem is identical under both models. Thus, to simplify our presentation,
for the rest of this paper (and without loss of generality), we assume that the first of the above two
models is in play.

Reed-Solomon Encoding in SomeCast: In SomeCast, receivers receive the multicast content
from multiple senders. Thus, a key component of the SomeCast paradigm is the use of a mechanism
that ensures that the various segments of content (received from the various senders) are indepen-
dent, and thus can be combined efficiently to obtain the original content. To that end, SomeCast
assumes that content is encoded using a Reed-Solomon encoding mechanism.

Reed-Solomon Codes (RSC) [27] are a popular FEC coding technique, which is used in many
FEC-based reliable multicast protocols [20, 38]. Reed-Solomon codes are based on the arithmetic
of finite (Galois) fields [35]. Reed-Solomon-like codes have been proposed and used in a number
of projects for efficient information retrieval. Examples include (1) the Information Dispersal
Algorithm (IDA) [34] used for efficient, secure, and fault-tolerant parallel data access [25], (2)
the Adaptive IDA communication protocol [5] used in TCP Boston to address the fragmentation
problem of IP over ATM [6], and (3) the Tornado codes [23] used in Digital-Fountain multicast [7].

Conceptually, a Reed-Solomon code is a mapping from an m-dimentional vector space over a
finite field K into a vector space of higher dimension over the same field. Starting from a data
segment (Sg, S1, .., Sm—1), where each s is an element of the field, a Reed-Solomon code produces
(P(0), P(g), P(g%), ..., P(gN 1)), where N is the number of elements in K, g is a generator of the
cyclic group of nonzero elements in K, and P(z) is the polynomial sg + 812 + ... + sp_12™ L. If N
is greater than m, then the values of P overspecify P, and the properties of finite fields guarantee
that the coefficients of P (namely, the original data segment) can be recovered from any m of the
values.

The SomeCast paradigm we propose in this paper is independent of the specific Reed-Solomon
coding technique chosen for an implementation. However, to make our presentation concrete—and
for purposes of illustration and derivation of specific realizations—we will adopt one such coding
technique, namely the Information Dispersal Algorithm (IDA) of Rabin [34]. Note that other Reed-

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 8

Solomon-like coding techniques (e.g. Tornado [23]) may have more attractive properties than those
of IDA with respect to encoding and decoding efficiency (for example). Thus, if SomeCast is to
be deployed, IDA may not be the best choice. Nevertheless, for the purposes of this paper, IDA’s
elegance and simplicity will allow us to focus on the details of the SomeCast paradigm as opposed
to the details of the underlying encoding/decoding technology.

To understand how IDA works, consider (a segment of) a data object to be multicast. Let
that object consist of K blocks (or packets). Using IDA’s dispersal operation, this object could
be processed to obtain s * K blocks, where s > 1 is the stretch factor. Recombining any K of
these blocks, using IDA’s reconstruction operation, is sufficient to retrieve the original data object.
Figure 2 illustrates the dispersal, communication, and reconstruction of an object using IDA.

Unavai | abl e
. . bl ocks .
Original Dispersed Retrieved

Object Object

Disperse

Reconstruct

nenory page,
vi deo frane,

D.B. record.
Bl ocks redéived from
mul ti cast groups to
which client is a nenber .
Source Senders Client

Figure 2: Dispersal and reconstruction of information using IDA.

4 Real-Time Reliable Multicast using the SomeCast Paradigm

In this section, we present an instance of a SomeCast-enabled protocol that empowers a set of
receivers to satisfy diverse real-time QoS constraints in a reliable multicast setting. In Section 4.1,
we give an overview of the protocol, followed in Section 4.2 with a detailed description.

4.1 Protocol Overview

We consider the reliable multicast of an object of size K packets. We assume that the object is
encoded so that each sender S; has u x K packets, where u = s/S, s is the stretch factor of the
encoding and § is the total number of senders. S; starts a multicast group over which its packets
will be sent only if there is at least one receiver that is a member of its group. At any point in
time, if S; finds that its group is empty (i.e., with no members), S; stops transmitting packets.

Let Sy be the primary sender. If there is no deadline requirements or the delay bounds are
very loose, then a receiver may only join the multicast group of Sy to receive at least K packets
and reliably recover the original data by the deadline.

Initially, a receiver may join one or more multicast groups associated with one or more senders.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 9

Those senders send packets over their multicast groups. By allowing a receiver to join all groups,
the protocol can effectively handle stringent delay bounds. For less stringent delay bounds, the
receiver may leave all but the first group associated with the primary sender Sy.

Periodically, a receiver updates its estimates of its loss rate and throughput of the path from
sender S;. A receiver can then estimate the total number of packets that it expects to receive by the
deadline from senders/groups to which it is subscribed. If this is not enough to receive all K packets
by the deadline, then the receiver joins as many groups as needed. On the other hand, if the receiver
anticipates to receive much more than K packets by the deadline, then the receiver unsubscribes
from “some” groups to only receive what is needed and thus avoid unnecessary transmissions.
Without loss of generality, we henceforth assume that if a receiver decides to unsubscribe from
some multicast groups, it does so by unsubscribing from higher numbered ones first.

In addition to dynamically adjusting the number of groups to which a receiver subscribes, in
response to probes from senders, a receiver sends sender S; NACK messages specifying how many
more packets it needs from S;. Thus, S; can send the right amount of additional packets so that
all receivers subscribed to its group meet their deadlines. Whenever a receiver receives K packets,
it leaves all multicast groups to which it is currently subscribed.

4.2 Protocol Description

Table 1 introduces the notation we adopt throughout this paper to describe our SomeCast-enabled
protocol. We describe the details of our SomeCast-enabled protocol by presenting the steps under-
taken by the Sender(s) and Receiver(s) at various stages of the protocol.

‘ Symbol | Meaning ’

K The number of original data packets. Each receiver should receive K packets by the deadline
S Total number of senders

Sz’ Sender Sz

s Stretch factor of the Reed-Solomon-like encoding (e.g. IDA). Thus, the K original data

packets are encoded to obtain up to s * K packets.

u*x K The maximum number of packets transmitted by a sender, where u = s/S. In this paper
we take u = 2.

mazseqno; | The maximum sequence number of data to be transmitted by .S;

seqno; The sequence number of packet/probe sent by /received from S;

PTS; The number of packets yet-to-be-transmitted at the time S; sends a probe

RPC; The Received Packet Counter denotes the number of packets received thus far from S;

TRPC The Total Received Packet Counter (TRPC') denotes the total number of packets received
thus far

g Current number of groups to which a receiver is subscribed

D A receiver’s deadline

R; Estimated throughput from sender S;

L; Estimated loss rate on the path from sender S;

RTT The maximum Round-Trip Time between the sender and a receiver

Table 1: Notation used in our SomeCast-enabled protocol description

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 10

Sender: Start
SS.1 Each sender S; (1 = 0,1,---,8 — 1) sets its initial segqno; of its first packet and its
maxseqno; as follows:

seqno; = 22K
mazseqno; = 2K+ K -1

SS.2 If sender has receivers in its multicast group, it starts to transfer the first K data
packets.

SS.3 Concurrently with step SS.2,2 the sender applies coding to the first K data packets
to obtain 2K packets.

Sender: Probing

SP.1 Periodically, a sender transmits a probe piggy-backed on a data packet. The probe
consists of a time-stamp that identifies the time at which the probe is sent and PT'S;.

Namely,
PT'S; = mazseqno; — seqno;

where seqno; is the sequence number of the packet transmitted with the probe.

Sender: NACK Processing

SN.1 Upon receipt of a NACK, sender S; updates maxsegno; to the mazimum requested
by all receivers in response to the same probe, so as to make sure all receivers
subscribed to the multicast group of S; receive the additional packets they need by
their deadlines.

SN.2 Upon receipt of a NACK, sender S; also updates its estimate of the maximum Round
Trip Time (RTT).
SN.3 If sender S; does not receive NACK requests for 2 probing intervals to either increase

or decrease maxseqno;, then the bottleneck receiver which requested the current
maxseqno; may have left the multicast group of S;. S; then decreases maxsegno;
as follows:

mazseqno; = seqno; + (mazxseqno; — seqno;)/2
SN.4 While transmitting the last RT'T worth of packets, sender ignores NACK requests

for decreasing maxseqno; to avoid errors due to possible under-estimation of losses
in the last stage.

Sender: End
SE.1 Sender S; stops its transmission once all members (receivers) in its group leaves.

30ur protocol may overlap data transmission with encoding/decoding, hence dramatically reducing latency for all
receivers to receive the number of packets needed for recovering the original data by the deadline.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 11

Receiver: Packet Processing

RP.1

RP.2

RP.3

RP.3.1

RP.3.2

RP.3.3

RP.3.4

Whenever a receiver receives a packet from sender S;, it increases the Received
Packet Counter (RPC;) by one to keep track of the number of packets received from
S;. Tt also increments by one the Total Received Packet Counter (TRPC).

If TRPC is greater than or equal to K, the original data can be reconstructed from
the packets received so far. The receiver then decodes the received data and leaves
all multicast groups it is a member of.*Also, if the deadline has expired, receiver
leaves all multicast groups it is a member of after dropping all (useless) packets it
has received so far.

If TRPC is less than K and if the packet received is a probe, then the receiver
proceeds as follows:

Estimate the total number of packets, IV, that it expects to receive by the deadline
as follows:

S—1 g—1
N = > RPCi +) Ri x (D—t)
=0 =0

where § is the total number of senders, g is the current number of groups to which
the receiver is subscribed, D is the receiver’s deadline, ¢ is the current time, and R; is
the estimated throughput from sender S; (computed periodically by the receiver in
RE.3 below). The firm term in the right-hand side represents the number of packets
already received, and the second term represents the number of packets that the
receiver anticipates to receive by the deadline.

Compute mazsegno; for each sender S; the receiver is listening to (i.e., receiver is
currently a member of S;’s multicast group) as follows:

R.
mazxseqno; = min(seqno; + 1 ZL x (D-t),2(+1) K — 1)
— L

where seqno; is the sequence number of S;’s probe, L; is the estimated loss rate
on the path from sender S;, and ¢ is the current time. Thus, the term 1§L— X
(D — t) represents the number of additional packets S; needs to send so that the
receiver receives the number of packets it expects from S; by the deadline. Note
that mazsegno; can not exceed (2 (i + 1) K — 1) since each sender is assumed to
hold 2K encoded packets.

If (seqno; + PT'S; < maxseqno;), then the forthcoming packets from S; are not
enough to recover the original data. The receiver sends a NACK that includes the
new lower bound on mazsegno; calculated in step RP.3.2.

If (seqno; + PT'S; > mazseqno;) and (seqno; + PTS;) equals a mazsegno; the
receiver had sent to S; in a previous NACK, then the receiver was the bottleneck
and is now uneccessarily requiring S; to send more packets than needed. The receiver
sends a NACK that includes the new lower mazsegno; calculated in step RP.3.2.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 12

Receiver: Periodic Estimation
RE.1 Periodically, a receiver updates its estimates of its loss rate I; on the path from
sender S; to which it is subscribed as follows:?

li = 1—(ARPC;/Aseqno;)

where Asegno; is the difference in sequence numbers of packets received from sender
S; at the beginning and end of the update time interval. ARPC; is the number
of packets received from S; during the update interval. Thus, the ratio I; gives the
current proportion of S; packets lost.

RE.2 Periodically, a receiver also updates its throughput r; from sender S; as follows:

r, = ARPCZ'/At

where At is the length of the update interval.
RE.3 Based on /; and r;, a receiver maintains exponential moving averages and deviations
of the loss rate and throughput for each sender S;. Specifically,

AvgR; = (1—a) AvgR; + ar;
DevR; (1=96) | — AvgR; | + 6 DevR;
R, = AvwgR; + v DevR;

where R; is the estimated throughput from sender S;. AvgR; and DevR; are the
moving average and deviation, respectively.5
Similarly, the loss rate L; from sender S; is estimated.

RE.4 The receiver decides whether it should join or leave multicast groups based on N
computed as in RP.3.1, i.e. the total number of packets that the receiver expects to
receive by its deadline from all groups to which it is currently subscribed. If N is less
than K, then the receiver joins as many groups as needed for N to exceed K +relazx.
relaz is a protocol parameter chosen to ensure that N is well beyond K.7On the
other hand, if N exceeds K + relax, then the receiver unsubscribes from higher
numbered groups for N to be just beyond K + relax and thus avoid unnecessary
transmissions.

Figure 3 shows the pseudo-code for the sender and receiver agents.

4By allowing receivers to leave multicast groups once they receive the K packets needed, we significantly reduce
the bandwidth consumed over the network.

5In our experiments, we take the update period to be 0.2 seconds.

5In our experiments, we take o = § = 0.5, and we set 7 to 1. v could be set to higher values to account for high
variability in the case of stringent deadlines.

"In our experiments, we take relaz to be 20 packets for K = 1000 packets.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 13

4.3 Sender Probing and RTT Estimation

During data transmission, sender S; transmits probes periodically. A probe packet includes the
number of packets to be sent (PT'S;) and time-stamp for when the packet is sent. The purpose of
using probes is two-fold: First, a probe is used to trigger NACKs from receivers. Upon receiving
the probe containing PT'S;, a receiver makes a local decision whether this is enough to sustain its
current loss rate as we described earlier in RP.3. Second, a probe is used to estimate the round-trip
time (RTT). When a receiver responds with a NACK, it sends the time-stamp for when the NACK
is sent. The time-stamps are used to calculate RT'T in the same manner as in [28]: the sender
sends a probe at time ¢1, and a receiver receives the probe at time ¢5. If the receiver sends a NACK
at time t3, it includes (¢1,A), where A = t3 — t2. Once the sender receives the NACK at time ¢4,
it computes RTT as RTT = t4 — t1 — A.

In other reliable multicast protocols such as SRM [15] and SHARQFEC [20], the estimation of
RTT is very critical for NACK suppression and repair. However, in our protocol, the RTT value
is not critical. The sender only needs an estimate of the maximum RTT from receivers to set the
period of probing. As more data is transmitted, the feedback from receivers about their losses in
response to probes becomes more critical. Therefore, it is desirable to set the period of probing to
be large at first, and then gradually decrease it. However, the period of probing should be at least
equal to RTT to avoid sending duplicate probes.®

5 Performance Evaluation

In this section we present the results of our prototype implementation and performance evaluation
of our SomeCast-enabled protocol.

5.1 Simulation Model

To evaluate the performance of SomeCast, Unicast and ManyCast, we set up a simulated multicast
network using the 19-node tree topology depicted in Figure 4. In this topology, a CBR (Constant
Bit Rate) data source is attached to each of nodes 14 to 17 (the primary sender Sy is attached
to node 14). All other nodes (i.e. nodes 0 to 13) act as receivers. In our simulations, the packet
interarrival time for the CBR source is set to 0.01 seconds. Each link in the network is subjected to
a maximum of 32 on-off cross connections generated by a UDP-based agent. This UDP-based agent
generates connections with an inter-arrival time uniformly distributed between 0 and 0.1 second.
Each connection is an on-off source with Pareto distributed “on” and “off” periods with average
durations of 0.1 second and 0.9 second, respectively. The Pareto distribution has a skew parameter
of 1.35. During the “on” periods, packets are generated at a rate of 1000Kbps. This cross-traffic
resulted in up to 30% loss rates observed at receivers. The bandwidth of the links in our simulated
topology are set to 1.5Mbps. All links have a propagation delay of 15ms. The packet size is 1KB.
We take K = 1000 packets, so the size of the data is 1IMB.

8In our simulations, sender S; sends the first probe after sending the first K/5 packets, then the probing frequency
is increased by sending one probe every RTT'.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 14

initialize mazseqno; <+ K — 1;
while seqno; < mazxsegno;
transmit packet;

encode data into 2K packets;

if seqno; = next probe then
if no NACK arrived in last 2RTT then
marseqno; <— seqno;+
(mazxsegqno; — seqno;)/2;
PTS; < mazxseqno; — seqno;;
send probe with data;
else

send data;

if NACK with new mazsegno; arrives then

update mazseqno;;

(a) Sender algorithm

initialize TRPC < 0;
if data packet is received then
TRPC < TRPC + 1,

if TRPC < K and t < D then
if probe arrived then

compute loss rate L; and throughput R;;

estimate maxseqno; needed from sender S;;

if PT'S; + seqno;, < maxseqno; then

// receiver needs more additional packets
send NACK to S; with new mazseqno;;

else if PT'S; + seqno; equals maxseqno;
of last probe then
// receiver is the bottleneck and
// now needs less additional packets
send NACK to S; with new

lower maxseqno;;

else // TRPC > K ort > D
leave multicast group;

decode the received packets if t < D

(b) Receiver algorithm

Figure 3: Pseudo Code for the SomeCast-enabled Protocol

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 15

ns Prototype Implementation of SomeCast-enabled Protocol: We prototyped an im-
plementation of our SomeCast-enabled protocol using the UCB/LBNL/VINT network simulator,
ns-2.1b4 [30]. A new agent, called scast, is created as a subclass of AgentClass and defined in
scast.cc and scast.h. This agent implements the SomeCast-enabled protocol. The primary
sender starts transmitting data at time 25.0 (a warm-up period during which cross traffic at all
links are generated). Other senders start transmitting as soon as one or more receivers join their
multicast groups. The simulation run is stopped once all receivers receive by the deadline the
needed packets to recover the original data, or whenever the simulation clock exceeds the deadline.
In the latter case, one or more receivers had missed their deadline.

The details of our SomeCast-enabled protocol were described in Section 4.2. In our experiments,
we take the total number of senders/groups to be 5. Each sender is assumed to have 2K encoded
packets. We consider two variations of our protocol: (1) SomeCast-1 where a receiver starts
by joining the multicast group of primary sender Sy and then joins other groups as needed; and
(2) SomeCast-5 where a receiver starts by joining all multicast groups of all 5 senders and then
leaves groups as needed as long as it is able to receive by the deadline the number of packets it
needs for full recovery.

ns Prototype Implementation of ManyCast and Unicast Protocols: To compare against
SomeCast, we also simulated the two special cases of ManyCast and UniCast. ManyCast is the
same as SomeCast except that joins and leaves are static, i.e. every receiver is subscribed to all
multicast groups all the time. In Unicast, there is only one sender, the primary one, that every
receiver joins.

4 18

14 12

Figure 4: The network topology used in our simulations

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 16

5.2 Performance Measures

To compare our SomeCast protocol to the ManyCast and UniCast based protocols, we consider the
following performance metrics:

Percentage Guaranteed: Percentage of receivers which successfully receive by the deadline (D)
all packets (K) needed for full recovery.

Goodput: Ratio of the total number of (useful) packets received by D and used for full recovery
at all receivers to the total number of packets sent by all senders.

Average Number of Groups Joined: Average number of multicast groups that a receiver joins.

In our simulations, we assume (for simplicity) that all receivers are subject to the same deadline.
We define the lazity to be the ratio between the requested deadline and the most stringent deadline
that can be met (i.e. when there are no losses and when every receiver joins the multicast groups
of all 5 senders).

5.3 Simulation Results

We present our performance measures as a function of laxity. Figures 5 through 7 show Percentage
Guaranteed, Goodput and Average Number of Groups Joined that were defined in Section 5.2.

Since in our SomeCast protocol, a receiver adjusts dynamically the number of groups to which it
subscribes, SomeCast strikes a good balance between Percentage Guaranteed and Goodput since a
receiver joins the minimum number of groups needed to receive K packets by the deadline. UniCast,
where every receiver only joins the primary sender, yields the lowest Percentage Guaranteed, but
the highest Goodput. Finally, ManyCast, where every receiver joins all 5 groups, yields the highest
Percentage Guaranteed at the expense of lower Goodput. Observe that at lower laxities, ManyCast
has the highest Goodput as it is able to make use of transmissions from all 5 senders to satisfy the
requested deadline at many receivers. Other protocols suffer from lower Goodput as many receivers
fail to meet their deadlines and transmissions, albeit from fewer senders, are wasted.

Figures 8 through 10 compare SomeCast-1 and SomeCast-5, where a receiver starts from 1
sender and 5 senders, respectively. Starting from 5 senders, a receiver in SomeCast-5 gradually
unsubscribes from senders as long as it can receive K packets by the deadline. As expected,
SomeCast-5 has a higher Percentage Guaranteed, i.e. it can meet more stringent deadlines than
SomeCast-1. This is at the expense of lower Goodput as SomeCast-5 attempts to overcome not
only losses due to cross traffic, but also losses due to interference among multiple senders over
common links.

Figure 10 shows that for higher laxities, under SomeCast-5, receivers tend to join more multicast
groups on average. This is because at first, a receiver unsubscribes from some of the 5§ groups to
which it initially subscribes, which is expected especially when deadlines are not tight. However,
this increases the time taken to receive the K packets. This delay increases the chance of losses
due to interference among multiple senders over common links, which in turn causes receivers to
join more groups so as to meet their deadlines, thus resulting in degradation in goodput. Note

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta

Percentage Guaranteed

Percentage Guaranteed vs Laxity

1 T

08

06

04 +

02 r /

Figure 5: Percentage Guaranteed versus Laxity.

Goodput versus Laxity

Figure 6: Goodput versus Laxity.

17

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 18

Avg # of Groups Joined vs Laxity

6 T T T T T T
5 -]
g SomeCast-1 -+
3 4F ManyCast -------- 4
Q AnyCast ——
S 3
¢§7 [Ay - T - |
¢ PP
< Sl
1
O | | | | | |
0 1 2 3 4 5 6
Laxity

Figure 7: Average No of Groups versus Laxity.

that additional losses due to traffic from multiple senders can be reduced if the senders to which
a receiver chooses to subscribe are chosen intelligently based on the tightness of the delay bound
(laxity) and the loss rates on the paths from different senders. We will investigate this in a future

paper.

6 Conclusion

Summary: We have proposed SomeCast—a novel paradigm for the reliable multicast of real-time
data to a large set of receivers over the Internet. SomeCast enables receivers to adapt dynamically
to the unpredictability of network conditions. This adaptation enables receivers to meet specific
real-time QoS constraints. We have presented an instance of a SomeCast-enabled protocol, which
we have prototyped under the UCB/LBNL/VINT network simulator (ns-2.1b4). We have presented
simulation results that show the superiority of SomeCast when compared to the previously proposed
ManyCast and AnyCast paradigms.

Future Work: In this paper we have not exploited the ability of receivers to choose the subset
of multicast groups to which they subscribe. We are currently evaluating novel multicast group
selection algorithms, which take into consideration knowledge of static network topology (e.g. based
on distance between receiver and sender or closest router carrying the multicast group) or dynamic
network conditions (e.g. whether or not paths to two multicast groups share a common congestion).

One of the salient features of the SomeCast paradigm is that it delegates the responsibility
of QoS management to the receivers. As we indicated in this paper, such delegation is attractive

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 19

Percentage Guaranteed vs Laxity
1 T T T ,I,,77,/”;_.,_,,.0-—--"
/ g 0 ’
08 | |
-g /// ‘
5 06 |
: /
O ///
% ///
g 04t Y |
o B
02l v somecax1 e |
s SomeCast-5 --------
o -
0 ik L 1 [| |
Laxity

Figure 8: Guaranteed Ratio versus Laxity.

Goodput versus Laxity

1 | I I I I
SomeCast-1 -+
0g | SomeCast-b |
> P B 4
g 06 | _
<
: 4
@]
O 04t ‘ |
o _________________
02} - _
e
p=
i B | I | |
15 2 2.5 3 35 y r:
Laxity

Figure 9: Goodput versus Laxity.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 20

Avg # of Groups Joined vs Laxity

B SomeCast-5 -
=
S 4 }
8
=
— 3 - /,” -
2
% o1 o .
e S R]

(=)
= B S *
<

1F .

O | | | | |

Laxity

Figure 10: Average No of Groups versus Laxity.

because it boosts the scalability of the system by making the overhead incurred by senders in-
dependent of the number of receivers and/or the diverse characteristics of paths between senders
and receivers. Another advantage of delagating the management of real-time QoS constraints to
receivers is that it enables senders to respond to network congestion conditions without risking the
violation of QoS constraints at the receivers (since receivers can recover from a reduction in the
rate at which a sender transmits data on its multicast group). We are currently investigating such
techniques, whereby SomeCast senders manage congestion by adopting TCP-friendly transmission
policies (as opposed to the constant-bit-rate policy adopted in this paper).

Acknowledgments: We would like to thank John Byers for the many discussions on Tornado
codes and Digital Fountains. This work was supported in part by NSF research grants ESS CCR-
9706685, CAREER ANIR-9701988, and MRI EIA-9871022.

References

[1] Akamai Technologies. Freeflow Content Delivery System. http://www.akamai.com.

[2] K. Almeroth, M. Ammar, and Z. Fei. Scalable Delivery of Web Pages Using Cyclic Best-Effort (UDP)
Multicast. In Proceedings INFOCOM ’98.

[3] Azer Bestavros. AIDA-based Real-Time Fault-Tolerant Broadcast Disks. In Proceedings of RTAS’96:
The 1996 IEEE Real-Time Technology and Applications Symposium, Boston, Massachusetts, May
1996.

[4] Sanjoy Baruah and Azer Bestavros. Real-Time Mutable Broadcast Disks. In Azer Bestavros and
Victor Fay-Wolfe, editors, Real-Time Database and Information Systems: Research Advances,
chapter 1, pages 3-22. Kluwer Academic Publishers, Norwell, Massachusetts, 1997.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 21

[5]

Azer Bestavros. An Adaptive Information Dispersal Algorithm for Time-critical Reliable
Communication. In Ivan Frisch, Manu Malek, and Shivendra Panwar, editors, Network Management
and Control, Volume II, chapter 6, pages 423-438. Plenum Publishing Corporation, New York, New
York, 1994.

Azer Bestavros and Gitae Kim. TCP Boston: A Fragmentation-tolerant TCP Protocol for ATM
Networks. In Proceedings of Infocom’97: The IEEE International Conference on Computer
Communication, Kobe, Japan, April 1997.

J. Byers, Luby, and Mitzenmacher. A Digital Fountain Approach to Reliable Distribution of Bulk
Data (Tornado). In Proceedings of ACM SIGCOMM ’98, Vancouver, September 1998.

John W. Byers, Michael Luby, and Michael Mitzenmacher. Accessing Multiple Mirror Sites in Parallel:
Using Tornado Codes to Speed Up Downloads. In Proceedings of IEEE INFOCOM ’99, pages 27583,
March 1999.

Robert L. Carter and Mark E. Crovella. Dynamic Server Selection using Bandwidth Probing in Wide
Area Networks. In Proceedings of Infocom ’97, the Sixteenth Annual Joint Conference of the IEEE
Computer and Communication Societies, April 1997.

Mark Crovella and Azer Bestavros. Self-Similarity in World Wide Web Traffic: Evidence and Possible
Causes. IEEE/ACM Transactions on Networking, 5(6):835-846, December 1997.

S. Deering. Multicast Routing in a Datagram Internetwork. Tech. Rep. No. STAN-CS-92-1415,
Stanford University, California, Dec. 1991.

A. Feldmann, A. C. Gilbert, and W. Willinger. Data Networks as Cascades: Investigating the
Multifractal Nature of Internet WAN traffic. In Proceedings of SIGCOMM ’98, pages 42-55, October
1998.

A. Feldmann, P. Huang, A. C. Gilbert, and W. Willinger. Dynamics of IP traffic: A Study of the Role
of Variability and the Impact of Control. In Proceedings of SIGCOMM ’99, September 1999.

Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel Server Selection Technique for
Improving the Response Time of a Replicated Service. In Proceedings of INFOCOM ’98, San
Francisco, CA, April 1998.

S. Floyd, V. Jacobson, L. Ching-Gung, S. McCanne, and L. Zhang. A Reliable Multicast Framework
for Light-weight Sessions and Application Level Framing. In Proceedings of ACM SIGCOMM ’95, pp.
342-356, Aug. 1995.

M. Furini, D. Towsley. Real-Time Traffic Transmission over the Internet. Available as UMass
CMPSCI Technical Report 99-73.

C. Huitema. The Case for Packet Level FEC. In Proceedings of IFIP 5th International Workshop on
Protocols for High Speed Networks (PfHSN’96), France, October, 1995.

Inktomi Corporation. Content Distributor.
http://www.inktomi.com/products/network/cds/distributor.html.

S. Kasera, G. Hjalmtysson, D. Towsley, J. Kurose. Scalable Reliable Multicast Using Multiple
Multicast Channels. In ACM SIGMETRICS ’97, Seattle, WA, June 1997.

R. Kermode. Scoped Hybrid Automatic Repeat Request with Forward Error Correction
(SHARQFEC). In ACM SIGCOMM ’98, September 1998, Vancouver, Canada.

Jia Rhu Li, Sungwon Ha, and Vaduvur Varghavan. Supporting heterogeneous packet flows in the
Internet. BU/NSF Workshop on Internet Measurement Instrumentation and Characterization. Boston
University, Boston, August 1999.

John C. Lin and S. Paul. RMTP: A Reliable Multicast Transport Protocol. In IEEE INFOCOM ’96,
March 1996, pp. 1414-1424.

SOMECAST: A Paradigm for Real-Time Adaptive Reliable Multicast—Yoon, Bestavros, and Matta 22

23]

24]

[25]

[26]

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman. Practical Loss Resilient Codes. In
Proceedings of the 29" ACM Symposium on Theory of Computing, 1997.

M. Luby, M. Mitzenmacher, A. Shokrollahi. Analysis of Random Processes via And-Or Tree
Evaluation. In Proceedings of the 9" Annual ACM-SIAM Symposium on Discrete Algorithms,
January, 1998.

Yuh-Dauh Lyuu. Fast Fault-Tolerant Parallel Communication and On-Line Maintenance using
Information Dispersal. Technical Report TR-19-1989, Harvard University, Cambridge, Massachusetts,
October, 1989.

Jamshid Mahdavi and Sally Floyd. The TCP Friendly Web Site. Technical note sent to the
end2end-interest mailing list, January 8, 1997.

A. McAuley. Reliable Broadband Communication Using a Burst Erasure Correcting Code. In ACM
SIGCOMM ’90, Sep. 1990, Philadelphia, pp. 297-306.

D. Mills. Network Time Protocol (version 3). Request For Comments, RFC 1305, March 1992.

J. Nonnenmacher, E. Biersack, D. Towsley. Parity-Based Loss Recovery for Reliable Multicast
Transmission. In Computer Communications Review ACM SIGCOMM, vol. 27, No. 4, 1997.

UCB/LBNL/VINT Network Simulator, ns, URL: http://www-mash.cs.brekeley.edu/ns.

Padhye, J. Kurose, D. Towsley, R. Koodli. A Model Based TCP-Friendly Rate Control Protocol.
Proc. IEEE NOSSDAV’99 (Basking Ridge, NJ, June 1999). An Extended Abstract of an earlier
version appeared in Proc. ACM SIGMETRICS’99 (Atlanta, GA, May 1999).

Kihong Park, Gitae Kim, and Mark E. Crovella. On the Effect of Traffic Self-Similarity on Network
Performance. In Proceedings of SPIE International Conference on Performance and Control of
Network Systems, November 1997.

Request For Comments, RFC 2117. Protocol Independent Multicast - Sparse Mode (PIM-SM):
Protocol Specification. June 1997.

Michael O. Rabin. Efficient Dispersal of Information for Security, Load Balancing and Fault
Tolerance. Journal of the Association for Computing Machinery, 36(2):335-348, April 1989.

Irving S. Reed and Gustave Solomon. Polynomial Codes over Certain Finite Fields. Journal of the
Society for Industrial and Applied Mathematics, 1960.

L. Rizzo. Effective Erasure Codes for Reliable Computer Communication Protocols. In ACM
Computer Communications Review, vol. 27, n.2, Apr. 1997, pp. 24-36.

L. Rizzo and L. Vicisano. A Reliable Multicast data Distribution Protocol based on software FEC
techniques. In Proceedings of the Fourth IEEE, HPCS’97 Workshop, Chalkidiki, Greece, June 1997.

D. Rubenstein, J. Kurose, D. Towsley. Real-Time Reliable Multicast Using Proactive Forward Error
Correction. In NOSSDAV ’98, Cambridge, UK, July, 1998.

Digital Island (formerly known as SandPiper Networks). Sandpiper’s Content Distribution Network.
http://www.sandpiper.com.

StarBurst Software. One-To-Many Content Distribution in an Enterprise Environment. A white
paper. Available from http://www.strburst.com.

W. Strayer, B. Dempsey, and A. Weaver. XTP: The Xpress Transfer Protocol. Addison-Wesley, URL:
http://hegschool.aw.com/cseng/authors/dempsey/xtp /xtp.nclk.

R. Yavatkar, J. Griffioen, and M. Sudan. A Reliable Dissemination Protocol for Interactive
Collaborative Applications. In Proceedings of the ACM Multimedia ’95 Conference, November 1995.

