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Abstract—Computer systems are increasingly driven by work-
loads that reflect large-scale social behavior, such as rapid
changes in the popularity of media items like videos. Capacity
planners and system designers must plan for rapid, massive
changes in workloads when such social behavior is a factor. In this
paper we make two contributions intended to assist in the design
and provisioning of such systems. We analyze an extensive dataset
consisting of the daily access counts of hundreds of thousands
of YouTube videos. In this dataset, we find that there are two
types of videos: those that show rapid changes in popularity,
and those that are consistently popular over long time periods.
We call these two types rarely-accessed and frequently-accessed
videos, respectively. We observe that most of the videos in our
data set clearly fall in one of these two types. In this work,
we study the frequently-accessed videos by asking two questions:
first, is there a relatively simple model that can describe its daily
access patterns? And second, can we use this simple model to
predict the number of accesses that a video will have in the near
future, as a tool for capacity planning? To answer these questions
we develop a framework for characterization and forecasting of
access patterns. We show that for frequently-accessed videos,
daily access patterns can be extracted via principal component
analysis, and used efficiently for forecasting.

I. INTRODUCTION

Video sharing is one of the most popular applications on the

Internet. The largest video sharing site is YouTube, owned by

Google Inc. According to [9], approximately 2 billion videos

are watched and hundreds of thousands of new videos are

uploaded every day. Today, Google generates 6 − 10% of all
Internet traffic and its largest contributor is YouTube [8]. This

level of demand makes system design and capacity planning

important issues for such sites.

Despite the importance of these issues, very little work has

characterized the dynamics of individual video accesses over

time. To help fill this gap, this paper makes two contributions.

First, we characterize a workload that consists of user accesses

to individual videos. Second, we show how to use these

characterizations to predict future demand.

To do so, we analyze a dataset consisting of the daily time

series of 100,000 YouTube videos. In this dataset, we find that

there are two types of videos: those that show rapid changes

in popularity, and those that are consistently popular over long

time periods. We call these two types of videos rarely-accessed

and frequently-accessed videos, respectively. We observe that

most of the videos in our data set fall clearly into one of

these two classes. In this work, using the frequently-accessed

dataset, we study two questions: first, is there a relatively

simple model that can describe the daily access patterns of

frequently-accessed videos? And second, can we use this

simple model to predict the number of accesses that a video

will have in the near future as a tool for capacity planning? For

the study on the rarely-accessed videos, we refer the reader

to [7].

Our results show that there is a small set of common patterns

that describe frequently-accessed videos. We also show how to

leverage this small set of common patterns in order to predict

future daily views for individual videos.

We show that common patterns can be extracted via prin-

cipal component analysis. We show that approximately 20

principal components are sufficient to summarize the most

popular 1000 videos. We then use these principal components

in order to efficiently predict future daily views for each

video using autoregressive models. In this way, we show how

to efficiently forecast next-day access counts for with low

absolute relative error.

The rest of the paper is organized as follows. We describe

our dataset in Section II. We then introduce two key methods

in Section III and present our main results in Section IV. In

Section V we review related work and we summarize our

contributions in Section VI.

II. DATASET

One of the strengths of our study derives from our dataset.

We obtained it directly from Google, and it represents a

global view of video accesses observed at YouTube servers.

In contrast to datasets used in YouTube characterization to

date, our data set is not restricted by video category (e.g.

entertainment or sports) nor by the recommendation system

of YouTube. The entire dataset is 326 GB in size and consists

of millions of videos. From this large dataset, we select a

subset consisting of the most popular 100,000 videos on April

1st, 2008. For each video, the available information is a one

year long time series of daily views (from February 25th 2008

to February 25th 2009) and a unique identifier that does not

reveal the video’s actual name or category. Hence, no metadata

on videos is available.

As already mentioned, we find two different behaviors in

video access time series: some videos are consistently popular

over long time periods, while the others show rapid changes

in terms of popularity and are viewed only on a small number

of days. Based on this observation we divide our dataset into

two categories: frequently-accessed videos and rarely-accessed

videos, respectively.

Figure 1 illustrates the number of days a video has at least

one view. Based on Figure 1, we separate videos into two

categories: those that have at least one access on more than

half of the days in the year (frequently-accessed) and those that
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Fig. 1: Histogram of the number of days that have nonzero

views.

are accessed on less than half of the days in the year (rarely-

accessed). Figure 2 shows some examples illustrating the

difference between frequently-accessed and rarely-accessed

videos.

III. METHODS

In this section, we briefly introduce the methods used for

characterization and forecasting video time series.

A. Singular Value Decomposition (SVD)

For any m × n real matrix X , there exists a factorization

of the following form:

X = UΣV T =

min(m,n)
∑

i=1

σiuiv
T
i

where U and V are orthonormal matrices such that UUT = I

and V V T = I . Let ui and vi be the ith columns of U and

V respectively. Matrix Σ is a m × n diagonal matrix where

each diagonal entry is a singular value, σi. The matrix Σ is
arranged in such a way that σi ≥ σi+1. This factorization is

called the Singular Value Decomposition (SVD) of X .

One of the most popular applications of SVD is matrix

approximation, i.e. approximating a matrix X with another

matrix X̃ of lower rank r. To find a matrix X̃ with rank r

that minimizes ||X − X̃||F , once can use the SVD of X as

follows:1

X̃ = U Σ̃V T =
r

∑

i=1

σiuiv
T
i

There are two pre-processing steps that may be applied on

matrix X prior to SVD. The first one is mean centering, i.e.

subtracting the column mean from each entry. The second is

to normalize each entry by the l2-norm of its column.

B. Autoregressive Moving Average Model

An Autoregressive Moving Average (ARMA) model is one

of the most popular methods for modeling and predicting

1 The Frobenius norm of an m × n matrix M is ||M ||F =
q

Pm
i=1

Pn
j=1

M2

ij
.

future values of a time series [1]. It consists of two parts:

an Autoregressive (AR) model and a Moving Average (MA)

model. Given a time series Y , an AR model of order p is

defined as:

Yt =

p
∑

i=1

αiYt−i + ǫ (1)

where α1, ..., αp are the parameters of the model and ǫ is a

white noise error term. An MA model of order q is defined

as follows:

Yt = ǫt +

q
∑

j=1

θjǫt−j (2)

where θ1, ..., θq are the parameters of the model and ǫt, ..., ǫ1
are again white noise error terms. Combining Equations (1)

and (2), an ARMA model of order (p, q) is written as follows:

Yt =

p
∑

i=1

αiYt−i + ǫt +

q
∑

j=1

θjǫt−j (3)

The error terms, ǫt, are generally assumed to be Gaussian i.i.d.

random variables with zero mean and constant variance.

IV. FREQUENTLY ACCESSED VIDEOS

With these tools in hand, we can now describe our main

results. As mentioned above, frequently-accessed videos are

those that are continuously popular during the year, i.e. viewed

almost every day. For this analysis, we concentrate on the most

popular 1000 videos as measured by the total number of views.

A. Characterization

Our characterization focuses on (1) understanding common

patterns in data, and (2) using that understanding as an aid to

prediction.

We observe that there are temporal correlations in our

frequently-accessed data set. By employing SVD, we decom-

pose the time series into their main constituents. Let X be

a 366 × 1000 matrix, where each column of X is a 366-

day time series of a video. Prior to SVD, we mean center

and normalize X as explained in Section III-A. Figure 3a

demonstrates the magnitudes of the singular values of X . In

this figure, it is seen that there is a knee around the 20th

singular value. To be more accurate, 88% of energy level is
achieved by largest 20 singular values, where total energy is
defined as a function of singular values, σ, of X as follows:
∑366

i=1 σ2
i . This suggests that there is a considerable structure

and only 20 principal components are enough to approximate
our collection of videos.

The largest three principal components are presented in the

top row of Figure 4. The first principal component shows a

steady increase during the year. The second principal com-

ponent shows increase until the middle of the year and then

decrease. The third component shows two fluctuations during

the year. One common behavior in these principal components

is that they all show distinct 7-day fluctuations.

In the next section, we show that this compact representation

helps efficiently predict the daily accesses that videos receive

in the future.
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Fig. 2: Example time series of video accesses: frequently-accessed (the figures on the left and the center) and rarely-accessed

(the figure on the right). The x axis is time (in days) and the y axis is the number of daily views.
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Fig. 3: Video access characterization and forecasting accuracy.

B. Forecasting

As described in Section III-B, one of the most popular

techniques for modeling and predicting time series is ARMA

modeling. To assess the utility of ARMA modeling for our

data, we first apply this method on each video individually.

To set the order of the model (p, q), we use one-day-ahead
ARMA predictions with order values ranging from (4, 4) to
(12, 12). We find that (7, 7) is the smallest order that yields
good results. This suggests that using observations of one week

past is sufficient for modeling the behavior of the next day. In

fact, this is understandable in light of the weekly fluctuations

seen in our time series.

For each time series, we use the first half of the year as the

training set for generating an ARMA model. Then for each of

the remaining 183 days, we forecast one day ahead.2

To define an error metric, let Xij be the true view count and

X̂ij be the predicted view count on day i for video j. Then,

average absolute relative error is defined as 1
N

∑N

j=1
|X̂ij−Xij |

Xij

and average root mean squared error (RMSE) is defined as

1
N

√

∑N

j=1 (X̂ij − Xij)
2
, where N is the number of videos.

We find that ARMA modeling works successfully for fore-

casting future daily accesses. The dashed line in Figure 3b and

Figure 3c illustrate average absolute relative error, and average

2 Note that forecasting more than one day ahead is possible, albeit with
less accuracy. We omit this analysis for lack of space.

RMSE, respectively. Errors are averaged over all videos from

day 184 to 366. The average absolute relative error is below
0.15 and RMSE is below 200 for most days.

While this method shows good accuracy, its computational

cost is unfortunately high, and scales with the number of

videos to forecast, because it requires generating a model for

each video separately. Our strategy for making cost managable

combines the two observations made so far: approximation

via PCA and forecasting with ARMA models. Our approach

is to apply ARMA modeling on the principal components of

the data instead of the individual time series. In other words,

instead of directly forecasting the individual time series, we

forecast the principal components, an approach we call PC

forecasting. Just as for individual time series forecasting, in

PC forecasting we use the first 183 days as the training
set to generate ARMA models with order (7, 7) and predict
one-day ahead for the rest of the year. The bottom row

of Figure 4 shows the ARMA predictions of the first three

principal components. As can be seen, ARMA (7, 7) models
can accurately forecast the principal components.

However, our main goal is predicting not the principal

components but the original daily views. This requires trans-

forming PC forecasts into the individual forecasts. Let X1:t

be the rows of X from day 1 to day t and X̃1:t be the pre-

processed form of X1:t prior to SVD (see Section III-A).

X̃1:t is decomposed into its U1:t, Σ′, and V ′ after SVD is
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Fig. 4: The largest three principal components (upper) and their ARMA predictions (lower). The x axis is the time (in days)

and the y axis is the magnitude of the principal component.
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Fig. 5: Examples of one-day ahead PC forecasting. Dashed lines are actual time series and solid lines are PC forecasts.

applied. The columns of U1:t are the principal components of

matrix X̃1:t and Ũ1:t represents the first 20 columns of U1:t.

Initially, an ARMA model is generated for each column of

Ũ1:183. Then, by using these models, on any day t, Ũt+1 can

be computed. At this point, we can approximate X̃1:t+1 as

the product of Ũ1:t+1Σ
′V ′T . The last step is to reverse the

pre-processing prior to SVD, by converting X̃1:t+1 to X1:t+1.

Figure 5 shows some examples of time series and their PC

forecasts. It shows that PC forecasting can be very successful

in predicting the next day’s accesses. To obtain a sense of

overall error, Figures 3b and 3c compare the performance of

PC forecasting and individual forecasting. In both figures, the

dashed line represents the day by day error in individual fore-

casting and the solid line represents error in the PC forecasting.

The x-axis starts from day 184, since we start forecasting on
day 183. In Figure 3b, for both individual and PC forecasting,

the absolute relative error is quite low. The mean absolute

relative error is around 0.12 for individual forecasting and
0.14 for PC forecasting. Figure 3c shows the RMSE on each
day. The mean RMSE is about 130 for individual forecasting
and 117 for PC forecasting. These values are low given that
the daily views of the videos range between the scale of 104

- 107.

While the increase in error due to PC forecasting is small,

the improvement in scalability is large. PC forecasting requires

training only 20 ARMA models, a number that is not expected

to change significantly as the number of videos modeled

grows. Even for only 1000 videos, this is a considerable saving

in running time. For example, on a four processor 2.66GHz

Intel with 4GB of RAM, running 64-bit Linux, individual

forecasting takes 844 seconds, whereas PC forecasting takes
150 seconds to finish. Thus, for our set of 1000 videos, PC



forecasting is about 5.5 times faster than individual forecast-
ing.

In sum, we see that exploiting the structure inherent in the

data means that, instead of constructing thousands of ARMA

models, one only needs to construct a small number of models.

This provides a significant improvement in scalability, with

very little penalty in accuracy.

V. RELATED WORK

Our works relates to a broad spectrum of topics, from

workload characterization to compact representation of large

data streams. In this section, we briefly mention related work

on these topics.

A number of studies have examined the characteristics of

user-generated video sharing systems. Among these studies,

some specifically focus on YouTube [2], [3], [4], [6]. In [2],

Cha et al. analyze the popularity distribution of YouTube

videos and how users’ requests are distributed across popular

and unpopular videos. They also analyze the popularity evo-

lution of videos, i.e., the change in popularity as the videos

get older. They show that an unpopular video is unlikely

to get popular as it ages. Based on these observations, they

suggest that future popularity of videos could be predicted

but do not provide a way doing so. In [3], Cheng et al.

study statistical properties of YouTube videos such as the

distribution across different video categories (e.g. music, sports

etc.), video lengths, active life span of videos, and growth trend

in uploading new videos. One finding in that paper related to

ours is that most videos have a short active life span. This is

consistent with the fact that almost 50% of the videos in our
dataset are in the rarely accessed category. In [6], Gill et al.

characterize YouTube usage from an edge network perspective

by studying characteristics such as file size, video durations,

video bit rates and usage patterns within a campus network.

Our work differs from these works in several aspects.

First, we use a complete and global dataset observed at

YouTube servers. Our collection of videos is not biased by the

recommendation system of YouTube, a specific group of users,

or video categories (e.g. entertainment or sports). Second, our

work does not depend on meta information, such as how long it

has been since the video was uploaded, its rankings, etc. Most

importantly, these previous studies do not propose a framework

that can be used for quantitative forecasting.

There are also studies that focus on the social networking

aspects of YouTube. In [4] Cheng et al. propose a peer-to-peer

short video sharing framework that leverages social networks.

In [5], Crane et al. investigate how a social system responds

to bursts of exogenous and endogenous activity by using the

time series of daily views of YouTube videos, and they find

four different shapes for bursts. Their models are relatively

simple compared to our clustering-based results, which reveal

more complex shapes.

Finally, another set of related work concerns representing

large data streams with smaller-sized approximations. This

is a well studied topic with wide application in the field of

data mining. Two typical examples are [10] in which Korn

et al. use SVD for data compression of large data sets, and

[11] in which Papadimitriou et al. summarize the key trends

in data streams by extracting their principal components. In

both cases, however, these results are not used as tool for

forecasting, but rather as a general form of data compression.

VI. CONCLUSION

In this paper, we have analyzed a large dataset consisting

of daily access counts of hundreds of thousands of YouTube

videos. We find that there are two types of videos: those

showing rapid changes in popularity, and those that are consis-

tently popular over long time periods. Our study shows that,

for consistently popular videos, there is a relatively simple

model that can describe the daily access patterns and this

simple model can be effectively used to predict the number

of accesses that a video will have in the near future. We

show that for frequently-accessed videos, daily access patterns

can be extracted via principal component analysis, and used

efficiently for forecasting via autoregressive models. Keeping

in mind the importance of video-sharing as a traffic driver

and workload type in today’s Internet, our results represent

a useful step towards efficient and effective forecasting for

video-sharing sites.
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