
Discrete-Event Simulation

A. Udaya Shankar

Department of Computer Science
University of Maryland

College Park, Maryland 20742

January, 1991

1. Introduction

Discrete-event simulation is a powerful computing technique for understanding the behavior of systems. By a
system, we mean a collection of entities (e.g., people and machines) that interact over time. The particular nature of
the system and the properties we wish to understand can vary. Here are three examples:

• A natural scientist may be interested in a system of wolves and sheep, where the number of wolves changes
with a constant birth rate and a death rate that is inversely proportional to the number of sheep, and the number
of sheep changes with a constant birth rate and a death rate that is directly proportional to the number of
wolves. The scientist would like to know the following: Do the number of wolves and the number of sheep sta-
bilize in the long run, and if so to what values? Or do they vary cyclically, and if so with what period and
phase?

• A computer scientist may be interested in a system of jobs that circulate in a network of servers (e.g., CPU’s
and I/O devices). The computer scientist would like to know whether a particular server is a ‘‘bottleneck’’, i.e.,
in the long run, is that server always busy while the other servers are mostly idle.

• A classical system example is a queueing system with a single server. Here, customers arrive with certain ser-
vice requirements, get served in some order, say first-come-first-served, and depart when their service is com-
pleted. Note that a customer who arrives when the server is busy has to wait (in a queue). For this system, we
would like to determine the average waiting time for customers, the average number of customers in the sys-
tem, the fraction of time the server is busy, etc.

In general, to determine whether a system satisfies a property, we hav e to come up with a mathematical model
of the system. In discrete-event simulation, the models are restricted to so-calleddiscrete-event models. Here, a set
of system states is specified for the system, and the evolution of the system is viewed as a sequence of the form:

< s0, (e0, t0), s1, (e1, t1), s2, . . . >

where thesi ’s are system states, theei ’s are system events, and theti ’s are nonnegative numbers representing event
occurrence times. Informally, the above sequence means that the system started, say at time 0, in states0; then event
e0 occurred at timet0 taking the system to states1; then evente1 occurred at timet1 taking the system to states2;
and so on. Each event occurrence is assumed to take zero time. Theti ’s are required to be nondecreasing, i.e.,
ti ≤ ti+1 for everyi. (We cannot insist thatti < ti+1 because it is the case in discrete-event models that two unrelated
ev ents can occur at the same time. However, in the discrete-event models that we shall consider, there are at most a
finite number of transitions over any finite time interval.)

Given the evolution of a system, we can determine its properties (e.g., does it reach steady state, is it cyclic,
etc.) and evaluate appropriateperformance measures (e.g., the steady state values, the cycle period, etc.). Thus, our
objective is an efficient method to generate evolutions and evaluate properties and performance measures.

In general, there is a set of system parameters, referred to asinput parameters, that determines the evolution of
the system, and hence the properties and performance measures. For example, the input parameters to the queueing
system are the customer service requirements and arrival times. Typically, we want to describe the input parameters
of a systemstochastically (or probabilistically), instead of deterministically. That is, instead of fixing the input
parameter values deterministically, we let them berandom variables, taking values from some domain with some
probability distribution. Each set of input parameter values gives rise to a unique evolution. The objective is to
obtain performance measures averaged over all such evolutions.

-2-

There are two reasons for introducing random variables. First, for most real-life system, we do not have exact
characterizations of the input parameters. Hence, using probabilistic inputs makes the results of the analysis more
robust. Second, ev en if we do hav e an exact characterization of the input parameters, it is often computationally too
expensively or analytically intractable to take them into account.

Organization of the notes

In Section 2, we define some performance measures for the single-server queueing system. In Section 3, we
describe the general structure of event-driven simulators. In Section 4, we describe a deterministic simulator for the
single-server queue. In Section 5, we describe a stochastic simulator for the single-server queue. In Section 6, we
describe how to generate random variables of given distributions. In Section 7, we describe a simulation project.

2. Performance Measures for Queueing Systems

Consider the queueing system with a single server mentioned in Section 1. Let customern denote thenth cus-
tomer to arrive at the queueing system, forn = 1, 2,. . ..

Let us represent the state of the system by the queue of customers in the system, in the order of their arrival.
For example, < 3, 4, 5 > means that customers 3, 4 and 5 are in the system. By convention, the head of the queue is
at the left. If the queue is not empty, then the customer at the head is being served. We use <> to denote an empty
queue.

Let the events of the system beArrival(n) denoting the arrival of customern, andDeparture(n) denoting the
departure of customern. (This assumes that if a customer completes service when other customers are waiting, then
the next customer’s service is started immediately; otherwise, we would need another event representing the start of
service.)

Let Sn denote the service time of customern; i.e., customern requires the server’s attention forSn seconds.
(Without loss of generality, we assume that time units are seconds.) LetTAn denote the arrival time of customern.

The following sequence represents an evolution of the system, assuming thatSn equals 2.0 seconds for alln,
and TAn equals 2. 5n − 2. 5 seconds for oddn and 2. 5n − 4 seconds for evenn (i.e., customers arrive at times
0. 0, 1. 0, 5. 0, 6. 0, 10. 0, 11. 0,. . .). For readability , each element of the evolution is listed on a new line. (Observe
that the system evolution is cyclic with a period of 5 seconds.)

States Event Occurrence time

< >
Arrival(1) 0.0

<1>
Arrival(2) 1.0

<1, 2>
Departure(1) 2.0

<2>
Departure(2) 4.0

< >
Arrival(3) 5.0

<3>
Arrival(4) 6.0

<3, 4>
Departure(3) 7.0

<4>
•
•
•

-3-

A queueing system has manyperformance measures of interest. We will look at some of them, namely, (1)
the average number of customers (also called average system size), (2) the average response time, (3) the average
waiting time, and (4) the throughput.

Av erage Number of Customers

Let N (t) denote the number of customers in the system at timet. N (t) is an integer-valued discontinuous
function that increases by 1 at each arrival and decreases by 1 at each departure. The following graph showsN (t)
versust.

0.0

cust 1
arr ives

1.0 2.0

cust1
depar ts

3.0 4.0

cust 2
depar ts

5.0

cust 3
arr ives

6.0

cust 4
arr ives

7.0

cust 3
depar ts

8.0 9.0

cust 4
depar ts

10.0

cust 5
arr ives

cust 2
arr ives

TIME

N(t)

1

2

Response time of cust 2

Response time of cust 1

For a giv en evolution, theaverage number of customers in the system, which we shall denote byN , is defined
to be the average ofN (t) over time for the evolution. Formally, if the time duration of the evolution isT seconds,
then

N =
1

T

T

0
∫ N (t)dt

To illustrate, let us consider the evolution of our queueing system until just after the departure of customer 2.

For this evolution, N equals 1.25. (It is obtained as follows. Customer 2 departs at time 4.
4

0
∫ N (t)dt (which is the

area underN (t) from time 0 to 4) equals 5. Thus, the average system size is
5

4
, which equals 1.25.)

In general, we want the ‘‘steady-state’’ value of N , i.e., N for extremely ‘‘long’’ evolutions. Formally, we
want

N =
T→∞
lim

1

T

T

0
∫ N (t)dt.

In the above queueing example, the steady-stateN equals 1.0. (We can obtain it easily by noting that the
ev olution repeats itself every 5 seconds. Thus, it is sufficient to obtainN for any contiguous 5 second interval, such

as [0, 5].
5

0
∫ N (t)dt equals 5. Thus, the average system size is

5

5
, which equals 1.0.)

Av erage Response Time

The response time of customern, denoted byRn, is the time spent by the customer in the system. For a giv en
ev olution, theaverage response time, which we shall denote byR, is the average of theRn ’s for the customers
departing in the evolution. Formally, ifK customers depart in the evolution, then

1

K

K

i=1
Σ Ri

-4-

To illustrate, let us consider the evolution of our queueing system until just after the departure of customer 2.
For this evolution, R equals 2.5. (It is obtained as follows. There are two departures in this simulation, namely cus-
tomers 1 and 2. The response time of customer 1 is 2.0 seconds. The response time of customer 2 is 3.0 seconds.

Thus, the average response time is
2. 0+ 3. 0

2
, which equals 2.5.)

In general, we want the ‘‘steady-state’’ R, i.e., for extremely ‘‘long’’ evolutions. That is, we want

R =
K→∞
lim

1

K

K

i=1
Σ Ri

For the above queueing example,Rn equals 2.0 seconds for oddn and 3.0 seconds for evenn. Thus, the
steady-stateR equals 2.5 seconds per customer.

Av erage Waiting Time

The waiting time of customern, denoted byWn, is defined byWn = Rn − Sn. For an evolution, the average
waiting time, denotedW , is the average of theWn ’s for the customers departing in the evolution. (For the above
ev olution, the steady-stateW equals 0.5 seconds per customer.)

Throughput

For an evolution, the throughput, denoted byX , indicates the number of departures over the total time of the
ev olution. (For the above evolution, the steady-stateX equals 0.4 customers per second.)

General comments

Note thatR andW are customer averages, whereasN andX are time averages. In general, when we refer to a
performance measure we mean its steady-state value, unless otherwise mentioned. Note that the steady-state aver-
ages do not always exist. For example in the above queueing system, ifSn were greater than 2.5, thenR, W , and N
would not exist.

The input parameters of the above queueing system are{Sn} and {TAn}. In the above description, we have
described them deterministically. As mentioned in Section 1, we typically want to describe them probabilistically.
For example, instead of havingSn equal 2.0 seconds for alln, we may wantSn to be a value between 1.7 to 2.3 sec-
onds, such that each value in the range is chosen with uniform probability and successive values ofSn are chosen
independently. We will see how to do this in Sections 5 and 6.

Observe that the above values forN , R andX satisfy the following:

N = R × X

This is not a coincidence. In fact, this is a very important relationship, calledLittle’s Law. It holds forany general
system in steady-state!

3. Event-Driven Simulators

In this section, we describe a classical method to generate evolutions and evaluate performance measures. The
method does not store the evolution it generates; it only stores sufficient information to evaluate the desired perfor-
mance measures. It proceeds in iterations. In each iteration, one event occurrence is simulated.

The following variables are used in the simulator:

Simulation Clock
Nonnegative real number. At the start of each iteration, it indicates the time of the last event occurrence
that has been simulated. Initially 0.

Event List
A sequence of tuples of the form (e, t), wheree is an event andt is a nonnegative real number not less than
Simulation Clock. Each (e, t) tuple represents an event occurrence that is yet to be simulated. (Typically,

-5-

the tuples in the list are sorted according tot.) Initially, the list contains one or more event occurrence pairs
to trigger the simulation (e.g. a customer arrival at time 0).

State Variables
At the start of each iteration, these variables indicate the state of the system after the last simulated event
occurrence. Initially indicates an initial system state.

Performance Indicators
At the start of each iteration, these variables contain sufficient information to (1) evaluate the performance
measures for the evolution that has been simulated, and (2) evaluate new values of the performance indica-
tors if the evolution is extended by an event occurrence. Initially set to values corresponding to an empty
ev olution.

We next define procedures used in the simulator. For each evente of the system, the simulator has a proce-
dure referred to as theev ent handler of e, and denoted byRoutine(e, t). Here,t is a parameter representing an
occurrence time.Routine(e, t) specifies the effect on the system due to an occurrence of evente at time t. It can
update the system state and performance indicators, cause events to occur in the future (referred to asscheduling
events), and cause scheduled events to not occur (i.e. unschedule them). The statements ofRoutine(e, t) can do the
following:

• Access (read and write)State Variables andPerformance Indicators.

• ReadSimulation Clock (the value may be needed to update the performance indicators).

• Make calls to the proceduresSchedule(f , s) andRemove(f , s), defined as follows, wheref is an event ands is
a nonnegative real number strictly greater thant:

Schedule(f, s) = Enter the tuple (f, s) into Event List.

Remove(f, s) = Remove the tuple (f, s) from Event List.
(Remove(f, s) assumes that (f, s) is in Event List.)

To complete the description of the simulator, we now define a procedure, referred to asSimulate, representing
the ‘‘main program’’:

Simulate =
while ‘‘simulation not over’’ do
begin

Pick up an (e, t) tuple with minimumt from Event List;
Call Routine(e, t);

(updates system state and performance indicators, and
perhaps schedules new event occurrences and removes scheduled event occurrences)

Simulation Clock ← t
end

Many particular conditions can be used for the generic ‘‘simulation not over’’ in the above procedure. For
example,Simulation Clock≥ 10000 seconds, orNumber of events simulated≥ 1000. It may depend on the particular
system being simulated. For example, in simulating a queueing system, we can useNumber of Departures ≥ 10000.
If we know that the queueing system eventually reaches steady state, we may use the conditionStandard Deviation
of Throughput ≤ 0. 001× Average Throughput. (The variablesNumber of events simulated, Number of Departures,
Standard Deviation of Throughput, andAverage Throughput, would be performance indicators.)

Given a simulator of a system, we refer to theState Variables, Performance Indicators, and the event handlers
as thesimulation model of the system. Note that the simulation model is the only system-specific part of the simu-
lator.

Stochastic simulation models

-6-

Above, we hav e described deterministic simulation models. Recall that we typically want to simulate stochas-
tic models. To do this, when we schedule an event to occur at timet, we allow t to be a random variable with some
distribution.

For a distributionF , let Random(F) denote a function that returns a random number distributed according to
F . Successive calls toRandom(F) return numbers that are statistically independent. We allow event handlers to
contain Schedule(f, s) statements wheres is an expression involvingRandom(F)’s, rather than just deterministic
functions. (Later, we will describe how to obtainRandom(F).)

4. A Deterministic Simulator for the Single-Server Queue

In this section, we obtain a deterministic simulation model of the single-server queueing system described in
Section 2. This, together with the ‘‘main program’’Simulate, forms a complete simulator.

Let us assume thatSn andTAn are some arbitrary deterministic functions ofn.1 Let us also assume that the
queueing system is initially empty. We hav e the following variables; the comments associated with the variables
hold whenever control comes to the start of the while loop in the main programSimulate:

Q: queue of (CustomerId, ArrivalTime). Initially <>.
The queue of customers in the system in order of arrival, along with their arrival times.

NumDepartures: integer. Initially 0.
The number of departures in the system since beginning of simulation.

SystSize: integer. Initially 0.
The number of customers in the system.

AccumSystSize1: real. Initially 0.
Integral ofSystSize with respect to time. Sufficient to obtain the meanSystSize.

AccumSystSize2: real. Initially 0.
Integral ofSystSize2 with respect to time. Sufficient to obtain the second moment ofSystSize.

AccumResponseTime1: real. Initially 0.
Sum of the response times of all departed customers. Sufficient to obtain the mean response time.

AccumResponseTime2: real. Initially 0.
Sum of the squares of the response times of all departed customers. Sufficient to obtain the second moment
of the response time.

This completes the description of the variables of the simulator.Q is the only state variable. All the other
variables are performance indicators. Observe that the system state here is different from that in Section 2. There,
we identified customern by the integern, whereas here we also add the arrival timeTAn. We need this information
to compute the response time.

The set of events of the system is{Arrival(n): for n = 1, 2,. . .} ∪ {Departure }. We next define the event
handlers:

1For example in Section 2,Sn equals 2.0 seconds for alln, andTAn equals 2. 5n − 2. 5 seconds for oddn and 2. 5n − 4 seconds for
ev enn.

-7-

Routine(Arrival(n), t) =
Append (n, t) to the tail ofQ;
Schedule(Arrival(n + 1), TAn+1);
if SystSize = 0 thenSchedule(Departure(n), t + Sn);
UpdateStatePerformanceIndicators;
SystSize ← SystSize + 1;

end procedure

Routine(Departure, t) =
(AssumesQ is not empty)
u ← Head(Q). ArrivalTime;
Remove the element at the head ofQ;
if SystSize ≥ 2

then begin
m ← Head(Q).CustomerId;
Schedule(Departure(m), t + Sm)
end;

UpdateStatePerformanceIndicators;
NumDepartures ← NumDepartures + 1;
SystSize ← SystSize − 1;
AccumResponseTime1← AccumResponseTime1 + (t − u);
AccumResponseTime2← AccumResponseTime2 + (t − u)2;

end procedure

where

UpdateStatePerformanceIndicators =
AccumSystSize1← AccumSystSize1 + (t − Simulation Clock) × SystSize;
AccumSystSize2← AccumSystSize2 + (t − Simulation Clock) × (SystSize2);

end procedure

At the end of the simulation (i.e., when procedureSimulate has finished execution) or at any point during the
simulation, the following performance measures can be computed:

AverageResponseTime =
AccumResponseTime1

NumDepartures

Standard Deviation of Response Time = (
AccumResponseTime2

NumDepartures
− AverageResponseTime2)

1

2

AverageSystemSize =
AccumSystSize1

Simulation Clock

Standard Deviation of System Size = (
AccumSystSize2

Simulation Clock
− AverageSystemSize2)

1

2

5. A Stochastic Simulator for the Single-Server Queue

We now obtain a stochastic simulation model of the single-server queueing system. Define the interarrival
time An = TAn − TAn−1. (It turns out to be more convenient to describe interarrival times than arrival times.) Let the
interarrival times{An} to be random variables that are independent and identically distributed with the distribution
F A. Let the service times{Sn} be random variables that are independent and identically distributed with the distri-
butionFS .

The simulation model has the following variables:

Q: queue ofArrivalTime. Initially <>.
The queue of customers in the system in order of arrival. Each customer is identified only by its arrival time

-8-

(this turns out to be adequate).

NumDepartures, SystSize, AccumSystSize1, AccumSystSize2, AccumResponseTime1, andAccumResponseTime2
are defined as in the deterministic model above.

For the stochastic model, it is sufficient to consider only two events:Arrival andDeparture. The event han-
dlers are as follows:

Routine(Arrival, t) =
Appendt to the tail ofQ;
Schedule(Arrival, t + Random(F A));
if SystSize = 0 thenSchedule(Departure, t + Random(FS));
UpdateStatePerformanceIndicators;
SystSize ← SystSize + 1;

end procedure

Routine(Departure, t) =
(AssumesQ is not empty)
u ← Head(Q);
Remove the element at the head ofQ;
if SystSize ≥ 2 thenSchedule(Departure, t + Random(FS));
UpdateStatePerformanceIndicators;
NumDepartures ← NumDepartures + 1;
SystSize ← SystSize − 1;
AccumResponseTime1← AccumResponseTime1 + (t − u);
AccumResponseTime2← AccumResponseTime2 + (t − u)2;

end procedure

whereUpdateStatePerformanceIndicators is defined as in the deterministic model.

An example execution

The above state variables and event handlers define the simulation model. This, together with the main pro-
gram— i.e. the variablesSimulation Clock andEvent List, and the procedureSimulate— make up the simulator.

To help the reader understand how the simulator works, we trace the execution of the simulator for a few event
occurrences. In the trace, we give the simulation state (i.e. the values of the variables) each time that control comes

to statementwhile simulation not over in the main program.2 Between successive states, we briefly describe the
execution of the relevant event handler. While going through the trace, the reader may find it convenient to plotN (t)
versust as the simulation proceeds.

Initial simulation state
Simulation Clock = 0.0
Event List = < (Arrival, 0. 0) >
Q = <>
NumDepartures = 0
SystSize = 0
AccumSystSize1 = 0.0
AccumResponseTime1 = 0.0

Handle next event occurrence
Remove the next event occurrence fromEvent List and execute the appropriate event handler. In this case, the

2For brevity, we omit indicating the values ofAccumSystSize2 andAccumResponseTime2.

-9-

next event occurrence is (Arrival, 0. 0). From the body ofRoutine(Arrival, 0. 0), we see that it schedules a
new arrival at time 0. 0+ Random(F A) and a departure at time 0. 0+ Random(FS) (the departure is because the
system was empty prior to this arrival event). Let us assume thatRandom(F A) returned 2.1 andRandom(FS)
returned 1.8. The resulting simulation state is given below. (Note that the state would be different if
Random(F A) had returned a smaller value thanRandom(FS).)

Resulting simulation state
Simulation Clock = 0.0
Event List = < (Departure, 1. 8) , (Arrival, 2. 1) >
Q = < (0. 0) >
NumDepartures = 0
SystSize = 1
AccumSystSize1 = 0. 0+ 0 × 0. 0= 0. 0
AccumResponseTime1 = 0.0

Handle next event occurrence
The next event occurrence inEvent List is (Departure, 1. 8). From the body ofRoutine(Departure, 1. 8), we
see that no event is scheduled (because the system is empty after this departure event). The resulting simulation
state is given below.

Resulting simulation state
Simulation Clock = 1.8
Event List = < (Arrival, 2. 1) >
Q = <>
NumDepartures = 1
SystSize = 0
AccumSystSize1 = 0. 0+ 1 × (1. 8− 0. 0)= 1. 8
AccumResponseTime1 = 0. 0+ (1. 8− 0. 0)= 1. 8

Handle next event occurrence
The next event occurrence is (Arrival, 2. 1). Its ev ent handler schedules a new arrival at time
2. 1+ Random(F A) and a departure at time 2. 1+ Random(FS). Let us assume thatRandom(F A) returned 1.7
andRandom(FS) returned 3.1.

Resulting simulation state
Simulation Clock = 2.1
Event List = < (Arrival, 3. 8) > , (Departure, 5. 2) >
Q = < (2. 1) >
NumDepartures = 1
SystSize = 1
AccumSystSize1 = 1. 8+ 0 × (2. 1− 1. 8)= 1. 8
AccumResponseTime1 = 1. 8

Handle next event occurrence
The next event occurrence is (Arrival, 3. 8). Its ev ent handler schedules a new arrival at time
3. 8+ Random(F A) (note that it does not schedule a departure because the server was busy prior to this arrival
ev ent). Let us assume thatRandom(F A) returned 1.1.

-10-

Resulting simulation state
Simulation Clock = 3.8
Event List = < (Arrival, 4. 9) > , (Departure, 5. 2) >
Q = < (2. 1) , (3. 8) >
NumDepartures = 1
SystSize = 2
AccumSystSize1 = 1. 8+ 1 × (3. 8− 2. 1)= 3. 5
AccumResponseTime1 = 1. 8

Handle next event occurrence
The next event occurrence is (Arrival, 4. 9). Its ev ent handler schedules a new arrival at time
4. 9+ Random(F A). Let us assume thatRandom(F A) returned 2.6.

Resulting simulation state
Simulation Clock = 4.9
Event List = < (Departure, 5. 2) > , (Arrival, 7. 5) >
Q = < (2. 1) , (3. 8) , (4. 9) >
NumDepartures = 1
SystSize = 3
AccumSystSize1 = 3. 5+ 2 × (4. 9− 3. 8)= 5. 7
AccumResponseTime1 = 1. 8

Handle next event occurrence
The next event occurrence is (Departure, 5. 2). It schedules a new departure at time 5. 2+ Random(FS). Let us
assume thatRandom(FS) returned 1.1.

Resulting simulation state
Simulation Clock = 5.2
Event List = < (Departure, 6. 3) > , (Arrival, 7. 5) >
Q = < (3. 8) , (4. 9) >
NumDepartures = 2
SystSize = 2
AccumSystSize1 = 5. 7+ 3 × (5. 2− 4. 9)= 6. 6
AccumResponseTime1 = 1. 8+ (5. 2− 2. 1)= 4. 9

Handle next event occurrence
The next event occurrence is (Departure, 6. 3). It schedules a new departure at time 6. 3+ Random(FS). Let us
assume thatRandom(FS) returned 1.5.

Resulting simulation state
Simulation Clock = 6.3
Event List = < (Arrival, 7. 5) > , (Departure, 7. 8) >
Q = < (4. 9) >
NumDepartures = 3
SystSize = 1
AccumSystSize1 = 6. 6+ 2 × (6. 3− 5. 2)= 8. 8
AccumResponseTime1 = 4. 9+ (6. 3− 3. 8)= 7. 4

If we stop the simulation at this point, then theAverageSystemSize would be
8. 8

6. 3
= 1. 39 and theAverageRe-

sponseTime would be
7. 4

3
= 2. 47. Of course, typically we would continue the simulation for (at least) hundreds of

departures.

-11-

6. Generating Random Numbers

Before describing how to generate the random numbers needed for your project, we will first give some back-
ground. If you do not understand the background, don’t worry. Just make sure you understand the procedures given
in the last part of this section.

Random variables are defined by their distribution functions. There are two kinds of distribution functions:
discrete andcontinuous.

A discrete distribution function has a subset of the integers as its domain, e.g.,{0, 1}, {0, 1,. . .}. If a random
variableR has a discrete distributionF , then it means the following:

Probability(R = n) = F(n) for everyn in the domain ofF

A continuous distribution function has the real numbers as its domain. If a random variableR has a continu-
ous distributionF , then it means the following:

δ→0
lim Probability(R ∈ (x, x + δ]) = F(x)δ for every realx

In this project, we will be concerned with one discrete distribution, namely theBernoulli, and two continuous
distributions, namely theUniform and theExponential. We now define them:

• The Bernoulli distribution has a real-valued parameter, sayp, where 0≤ p ≤ 1, and a domain of two values, say
{0, 1}. A Bernoulli distributionF with parameterp is defined by

F(n) =




p

1 − p

n = 0

n = 1

• The Uniform distribution has two real-valued parameters, saya andb, wherea < b. A uniform distributionF
with parametersa andb is defined by

F(x) =







1

b − a
0

x ∈ [a, b]

x ∈/ [a, b]

• The Exponential distribution has one real-valued parameter, says, wheres > 0. An exponential distributionF
with parameters is defined by

F(x) =







1

s
exp(−

x

s
)

0

x ≥ 0

x < 0

Most computer systems have a function, sayRandom, that returns a random variable of uniform distribution
with parameters 0, 1. UsingRandom, we can obtain random number generators for other distributions.

• The following procedure returns a random variable that has a Bernoulli distribution with parameterp:

Bernoulli(p) =
if Random < p then return(1) else return(0)

end procedure

• The following procedure returns a random variable that has a Uniform distribution with parametersa andb:

Uniform(a, b) =
return (a + (b − a) × Random)

end procedure

• The following procedure returns a random variable that has an Exponential distribution with parameters
(below,Ln stands for the natural logarithm):

-12-

Exponential(s) =
return (− s × Ln(Random))

end procedure

7. Project

Your project involves the simulation of a closed network of (single-server) queues. By ‘‘closed network’’, we
mean that (1) there are no external arrivals, and (2) when a customer leaves one queue, it joins another queue.
Closed networks are very useful for modeling jobs in a multi-programming system, packets in a communication net-
work, etc.

Your project will simulate a network with 3 queues, as shown in the following figure:

queue 3

queue 2queue 1

2/3

1/3
1/3

1/3
1/3

1/2

1/2

As indicated in the figure, a customer that departs from queue 1 joins queue 2 with probability 1/2 and joins
queue 3 with probability 1/2. A customer that departs from queue 2 joins queue 3 with probability 1/3, joins queue
1 with probability 1/3, and returns to queue 2 with probability 1/3. A customer that departs from queue 3 joins
queue 1 with probability 1/3 and joins queue 2 with probability 2/3. Each departure from a queue is routed accord-
ing to a Bernoulli distribution. Successive departures from a queue are routed independently.

Queues 1 and 2 use FCFS (first-come-first-served) discipline, as in the single-server examples of Section 2.
Queue 3 uses LCFS-PR (last-come-first-serve preemptive resume) discipline. Here, if a customerA arrives when
another customerB is being served, customerB is preempted and put on a stack of preempted customers, and cus-
tomer A’s service starts immediately. When the server completes service of a customer, it resumes service of the
customer at the top of the stack. (Make sure you understand the LCFS-PR discipline.)

Develop a simulator for the above network, with input and output specifications as described below.

Input Specification

Your program should prompt for the following inputs, in the order given below. For each prompt, the user
should type in one of the allowed inputs; below, we use ‘‘or’’ to separate different types of inputs for the same
prompt. Begin each prompt on a new line. Each input ends with a new line.

• Prompt: Maximum Simulation time:
Input: x

x is the maximum time for which the simulation should be run. i.e., stop the simulation whenSimulation
Clock > x.

• Prompt: Number of customers.
Input: n

n is an positive integer indicating the number of customers in the system. Initially, let all the customers be
in queue 1.

• Prompt: Service distribution at 1.
Input: U a b or E s

-13-

The service distribution at server 1. The first input, Ua b, indicates a uniform distribution with parame-
ters a and b. The second input, Es, indicates an exponential distribution with parameters. For each
input, the first value is a character while the other(s) are reals.

• Prompt: Service distribution at 2.
Input: U a b or E s

• Prompt: Service distribution at 3.
Input: U a b or E s

• Prompt: Trace?
Input: Y or N

The input is a character, indicating whether the output trace feature is to be on (Y) or off (N).

Output Specification

Your program should output the following, in the order given below. Begin each output on a new line.

• Output: Maximum simulation time =x

x equals the maximum simulation time.

• Output: Number of customers =x

x equals the number of customers.

• Output: Average Service Time at queue 1 =x

x equals the mean of the service times actually generated during your simulation. This should be close to,
but not necessarily exactly the same as, the mean of the distribution that was input. For example, if server
1 was exponentially distributed with parameters, then x ≈ s. If server 1 was uniformly distributed with

parametersa andb, thenx ≈
a + b

2
.

• Output: Standard Deviation of the Service Time at queue 1 =x

x equals the standard deviation of the service times actually generated during your simulation.

• Output: Average System Size at queue 1 =x

x equals the mean number of customers in queue 1.

• Output: Standard Deviation of the System Size at queue 1 =x

x equals the standard deviation of the number of customers in queue 1.

• Output: Average Response Time at queue 1 =x

x equals the mean of the response times experienced by the customers in queue 1.

• Output: Standard Deviation of the Response Time at queue 1 =x

x equals the standard deviation of the response times experienced by the customers in queue 1.

• Output: Throughput of queue 1 =x

x equals the throughput of queue 1, i.e., number of customers who exited queue 1 divided by the total
time.

• Output: Average Service Time at queue 2 =x

-14-

• Output: Standard Deviation of the Service Time at queue 2 =x

• Output: Average System Size at queue 2 =x

• Output: Standard Deviation of the System Size at queue 2 =x

• Output: Average Response Time at queue 2 =x

• Output: Standard Deviation of the Response Time at queue 2 =x

• Output: Throughput of queue 2 =x

• Output: Average Service Time at queue 3 =x

• Output: Standard Deviation of the Service Time at queue 3 =x

• Output: Average System Size at queue 3 =x

• Output: Standard Deviation of the System Size at queue 3 =x

• Output: Average Response Time at queue 3 =x

• Output: Standard Deviation of the Response Time at queue 3 =x

• Output: Throughput of queue 3 =x

• Output: Average System Cycle Time =x

Time between successive departures of a given customer from queue 1, averaged over all customers.

• Output: Standard Deviation of System Cycle Time =x

x equals the standard deviation of the time between successive departures of a given customer from queue
1, averaged over all customers.

• Output: Trace = sequence of (i, j, t) tuples.

Each (i, j, t) tuple means that a customer left queuei and joined queuej at time t. The tuples in the
sequence are in the order generated in the simulation. This output should be done if and only if the input
Trace? flag was set to Y.

