CS480/CS680 Linear Algebra Self-Assessment

Due: September 8 at 11:00

For related review, see: Appendix A1-A5 in Hearn \& Baker textbook

1. (a) Given points $\mathbf{p}_{1}=(1,6,5)$ and $\mathbf{p}_{2}=(-2,2,5)$, solve for \mathbf{v}_{1} the vector from \mathbf{p}_{1} to \mathbf{p}_{2}.
(b) Given a third point $\mathbf{p}_{3}=(0,6,5)$, solve for \mathbf{v}_{2} the vector from \mathbf{p}_{1} to \mathbf{p}_{3}.
2. (a) Find the value for the magnitude of \mathbf{v}_{1}.
(b) Find the value for the magnitude of \mathbf{v}_{2}.
3. (a) Solve for the unit vector in the direction of \mathbf{v}_{1}.
(b) Solve for the unit vector in the direction of \mathbf{v}_{2}.
4. (a) Solve for the vector (cross) product $\mathbf{v}_{1} \times \mathbf{v}_{2}$.
(b) Solve for $\mathbf{v}_{2} \times \mathbf{v}_{1}$.
5. Solve for the scalar (dot) product $\mathbf{v}_{2} \cdot \mathbf{v}_{1}$.
6. If two vectors $\mathbf{u}, \mathbf{v} \in \Re^{n}$ are orthogonal, what is the value of their scalar (dot) product?
7. Which of the following are unit vectors?
$\left(\frac{1}{2},-\frac{1}{2}, 0\right) \quad(0,-1,0) \quad \frac{1}{25}(-3,0,4)$
8. We are given two non-zero vectors $\mathbf{u}, \mathbf{v} \in \Re^{3}$. Assume the angle between \mathbf{u} and \mathbf{v} satisfies $0<\theta<\frac{\pi}{2}$. Use dot products and/or cross products of \mathbf{u} and \mathbf{v} to give expressions for:
(a) $\cos \theta$
(b) $\sin \theta$
(c) A vector perpendicular to both \mathbf{u} and \mathbf{v}
9. Given three square matrices $\mathbf{Q}, \mathbf{R}, \mathbf{S} \in \Re^{n \times n}$, which statements are true in general?
(a) $(\mathbf{Q R S})^{-1}=\mathbf{S}^{-1} \mathbf{R}^{-1} \mathbf{Q}^{-1}$
(b) $\mathbf{Q R}=\mathbf{R Q}$
(c) $(\mathbf{Q R S})^{T}=\mathbf{Q}^{T} \mathbf{R}^{T} \mathbf{S}^{T}$
(d) $\mathbf{Q}(\mathbf{R}+\mathbf{S})=\mathbf{Q S}+\mathbf{Q R}$
10. Given a square matrix $\mathbf{A} \in \Re^{n \times n}$ whose columns form an orthonormal basis
(a) What is the dot product of any pair of columns in \mathbf{A} ?
(b) What is the inverse of \mathbf{A} ?
