CS480/CS680 Linear Algebra Self-Assessment

Due: September 8 at 11:00

For related review, see: Appendix A1-A5 in Hearn & Baker textbook

- (a) Given points p₁ = (1, 6, 5) and p₂ = (-2, 2, 5), solve for v₁ the vector from p₁ to p₂.
 (b) Given a third point p₃ = (0, 6, 5), solve for v₂ the vector from p₁ to p₃.
- 2. (a) Find the value for the magnitude of v₁.
 (b) Find the value for the magnitude of v₂.
- 3. (a) Solve for the unit vector in the direction of v₁.
 (b) Solve for the unit vector in the direction of v₂.
- 4. (a) Solve for the vector (cross) product v₁ × v₂.
 (b) Solve for v₂ × v₁.
- 5. Solve for the scalar (dot) product $\mathbf{v}_2 \cdot \mathbf{v}_1$.
- 6. If two vectors $\mathbf{u}, \mathbf{v} \in \Re^n$ are orthogonal, what is the value of their scalar (dot) product?
- 7. Which of the following are unit vectors?

$$(\frac{1}{2}, -\frac{1}{2}, 0)$$
 (0, -1, 0) $\frac{1}{25}(-3, 0, 4)$

- 8. We are given two non-zero vectors $\mathbf{u}, \mathbf{v} \in \Re^3$. Assume the angle between \mathbf{u} and \mathbf{v} satisfies $0 < \theta < \frac{\pi}{2}$. Use dot products and/or cross products of \mathbf{u} and \mathbf{v} to give expressions for:
 - (a) $\cos \theta$
 - (b) $\sin \theta$
 - (c) A vector perpendicular to both \mathbf{u} and \mathbf{v}
- 9. Given three square matrices $\mathbf{Q}, \mathbf{R}, \mathbf{S} \in \Re^{n \times n}$, which statements are true in general?
 - (a) $(\mathbf{QRS})^{-1} = \mathbf{S}^{-1}\mathbf{R}^{-1}\mathbf{Q}^{-1}$ (b) $\mathbf{QR} = \mathbf{RQ}$ (c) $(\mathbf{QRS})^T = \mathbf{Q}^T\mathbf{R}^T\mathbf{S}^T$ (d) $\mathbf{Q}(\mathbf{R} + \mathbf{S}) = \mathbf{QS} + \mathbf{QR}$
- 10. Given a square matrix $\mathbf{A} \in \Re^{n \times n}$ whose columns form an orthonormal basis
 - (a) What is the dot product of any pair of columns in A?
 - (b) What is the inverse of A?