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Ensemble Classifier Learning

Idea

 Learn a set of classifiers from a fixed training set

 Combine them together to form an ensemble classifier, 
most commonly linear combination

Representative methods

 bagging, boosting, random forest

Why it helps?

 bagging: reduce the variance by averaging

 boosting: several perspectives, but not completely 
understood yet
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Online Ensemble Learning

Training sample (𝒙𝑡 , 𝑦𝑡) comes in sequentially, update the model 

by processing each training sample once “on arrival”



Online Ensemble Learning

Our focus

 Given weak classifiers (𝐶1
𝑡
, 𝐶2
𝑡
, … , 𝐶𝑛

(𝑡)
) at each time 

step, find the optimal weight vector (𝜆1
𝑡
, 𝜆2
𝑡
, … , 𝜆𝑛
(𝑡)
)

…𝑪𝟏
(1)

𝝀𝟏
(𝟏)

 𝑖 𝜆𝑖
(1)
𝑪𝑖
(1)
(𝒙1)

(𝒙1, 𝒚𝟏)

…

…  …  … (𝒙𝒕, 𝒚𝒕)

…
𝑪𝒏
(1)

𝝀𝒏
(𝟏)

𝑪𝟏
(𝑡)

𝝀𝟏
(𝒕)

 𝑖 𝜆𝑖
(𝑡)
𝑪𝑖
(𝑡)
(𝒙𝑡)

…
𝑪𝒏
(𝑡)

𝝀𝒏
(𝒕)

…

…  …  … (𝒙𝑻, 𝒚𝑻 )

𝑪𝟏
(𝑇)

𝝀𝟏
(𝑻)

 𝑖 𝜆𝑖
(𝑇)
𝑪𝑖
(𝑇)
(𝒙𝑻)

…
𝑪𝒏
(𝑇)

𝝀𝒏
(𝑻)

…
…



Loss Minimization Setup

𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝝀𝐸𝑝(𝒙,𝑦)𝑙 𝝀; 𝒙, 𝑦

𝑝(𝒙, 𝑦) unknown, solve for 𝑚𝑖𝑛𝝀 𝒕=𝟏
𝑻 𝑙 𝝀; 𝒙(𝑡), 𝑦(𝑡)

 𝑔𝑖
𝑡
: = 𝑔 𝐶𝑖 𝒙

(𝑡) , 𝑦(𝑡) : individual loss of 𝐶𝑖 at step 𝑡

 𝒈 𝑡 = 𝑔1
𝑡
, 𝑔2
𝑡
, … , 𝑔𝑛

𝑡
: weak classifier losses at step 𝑡

 𝑙 𝝀; 𝒈 𝑡 : ensembled loss w.r.t. 𝝀 at step 𝑡, e.g.  𝑖 𝜆𝑖 𝑔𝑖
𝑡

 𝐿𝑇(𝝀; 𝒈
(1:𝑇)) = 𝑙0 𝝀 +  𝑡=1

𝑇 𝑙 𝝀; 𝒈 𝑡 : cumulative loss up 
to 𝑇



Main Results

A Bayesian scheme for online classifier ensemble

 Formulate as a stochastic optimization problem and 
estimate the ensemble weights through a recursive 
Bayesian procedure

 Under some regularity conditions, converges to global 
optimum, in contrast with many local methods

 Convergence rate superior to standard stochastic 
gradient descent, in terms of asymptotic variance

 Promising performance in real-world data experiments



A Recursive Bayesian Scheme

Two classical results in Bayesian statistics

 The Bayesian posterior distribution tends to peak at the 
MLE of the same likelihood function (Chen 1985)

 MLE minimizes the expected negative log-likelihood



A Recursive Bayesian Scheme

Two classical results in Bayesian statistics

 The Bayesian posterior distribution tends to peak at the 
MLE of the same likelihood function (Chen 1985)

 MLE minimizes the expected negative log-likelihood

Our idea

 Above results hold regardless of whether the likelihood 
actually describes the data generating process or not

 Derive an artificial likelihood from a predefined loss 
function and run the recursive Bayesian procedure



Algorithm

To solve:  𝑚𝑖𝑛𝝀 𝑙0 𝝀 +  𝑡=1
𝑇 𝑙 𝝀; 𝒈 𝑡

 prior: 𝑝0(𝝀) = 𝑒
−𝑙0(𝝀)

 likelihood: 𝑝𝑙(𝒈|𝝀) = 𝑒
−𝑙(𝝀;𝒈)



Algorithm

To solve:  𝑚𝑖𝑛𝝀 𝑙0 𝝀 +  𝑡=1
𝑇 𝑙 𝝀; 𝒈 𝑡

 prior: 𝑝0(𝝀) = 𝑒
−𝑙0(𝝀)

 likelihood: 𝑝𝑙(𝒈|𝝀) = 𝑒
−𝑙(𝝀;𝒈)

for 𝑡 = 1 to 𝑇 do

 For sample (𝒙𝑡 , 𝑦𝑡), compute 𝑔𝑖
(𝑡)

for all weak classifiers

 Update the “posterior distribution” of 𝝀

𝑝(𝝀|𝒈 1:𝑡 ) ∝ 𝑝𝑙 (𝒈
𝑡 |𝝀) ∙ 𝑝(𝝀|𝒈 1:𝑡−1 )

 Update weak classifiers using (𝒙𝑡 , 𝑦𝑡)



A Specific Example

Choice of loss

𝑙 𝝀; 𝒈 = 𝜃 

𝑖=1

𝑚

𝜆𝑖𝑔𝑖 − 

𝑖=1

𝑚

log 𝜆𝑖

  𝑖=1
𝑚 𝜆𝑖𝑔𝑖: weighted sum of individual loss

  𝑖=1
𝑚 log 𝜆𝑖: regularizer, prevents the trivial 

minimizer 𝜆𝑖=0 for all 𝑖

 𝜃: trade-off parameter



A Specific Example

Exponential likelihood 

𝑝𝑙(𝒈|𝝀) = 

𝑖=1

𝑚

(𝜃𝜆𝑖)𝑒
−𝜃𝜆𝑖𝑔𝑖

Gamma prior 

𝑝(𝝀) ∝ 

𝑖=1

𝑚

𝜆𝑖
𝛼−1 𝑒−𝛽𝜆𝑖

Conjugacy the posterior is again Gamma

𝑝(𝝀|𝒈(1:𝑡)) ∝ 

𝑖=1

𝑚

𝜆𝑖
𝛼+𝑡−1 𝑒−(𝛽+𝜃  𝑠=1

𝑡 𝑔𝑖
𝑠)𝜆𝑖



A Specific Example

Posterior mean for each 𝜆𝑖

 𝜆𝑖 =
𝛼 + 𝑡

𝛽 + 𝜃 𝑠=1
𝑡 𝑔𝑖
𝑠

Ensemble loss based prediction rule

𝑦 =
1 𝑖𝑓  

𝑖=1

𝑚

 𝜆𝑖𝑔𝑖(𝑥, 1) ≤ 

𝑖=1

𝑚

 𝜆𝑖𝑔𝑖(𝑥, −1)

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We derived an error bound for this prediction rule



Theoretical Guarantees

Global Convergence 

 The posterior distribution of 𝝀 converges to the 
cumulative loss minimizer 𝝀𝑇

∗ under asymptotic normality

 The posterior mean provides a tight approximation to 𝝀𝑇
∗

 𝝀𝑇
∗ is the global optimum (no convexity is required)!

 Under some regularity conditions on the loss function



Theoretical Guarantees

Global Convergence 

 The posterior distribution of 𝝀 converges to the 
cumulative loss minimizer 𝝀𝑇

∗ under asymptotic normality

 The posterior mean provides a tight approximation to 𝝀𝑇
∗

 𝝀𝑇
∗ is the global optimum (no convexity is required)!

Convergence Rate

 Our method converges strictly faster than standard SGD, 
except when the step size and Hessian matrix are chosen 
optimally for SGD. 



Real World Experiments

Our method vs. three SGD baselines

 Standard SGD, Polyak Averaging and Stochastic Averaging

 Consistently outperforms all three baselines

Our method vs. online boosting algorithms

 Compare with three representative online boosting 
algorithms

 Often compares favorably



Error Rate Behavior vs. Baselines

SGD:  Standard SGD

SGD-avg:  Polyak Averaging

SAG:  Stochastic Averaging 



Summary

A Bayesian scheme for online classifier ensemble

 Straightforward and easy to implement

 For a specified class of loss functions, possesses 
strong theoretical guarantees: 

 global convergence

 superior convergence rate compared with standard SGD

 Promising performance in practice



Likelihood interpretation

A likelihood function derived in this way is not 
necessarily a proper distribution, our theorems work 
for either cases. The convergence analysis relies on the 
Laplace method, which is non-probabilistic in nature.

Not all likelihood function allows a closed form 
Bayesian update, but for the linear ensemble loss 
function in our problem, we obtained closed form 
update by choosing a conjugate prior.

Backup slides



Why superior convergence rate

• The error between our estimate of the weights and 
the true optimum can be decomposed as: error 
between MLE and true optimum + error between 
Bayesian posterior mean and MLE. The fact is that MLE 
enjoys superior asymptotic property (so-called 
efficient estimator, in the sense that its asymptotic 
variance, which controls the convergence rate, is the 
best possible). And we show that the error between 
Bayesian posterior mean and MLE is of order less than 
the first error component. Hence the result.

Backup slides



Conditions for 𝐿𝑇(𝝀; 𝒈
1:𝑇)

Regularity conditions

 “local optimality”: 𝛻𝐿𝑇 𝝀𝑇
∗ ; 𝒈 1:𝑇 = 0 and 

𝛻2𝐿𝑇 𝝀𝑇
∗ ; 𝒈 1:𝑇 is positive definite

 “steepness”:  minimum eigenvalue of  𝛻2𝐿𝑇 𝝀𝑇
∗ ; 𝒈 1:𝑇

diverges to ∞

 “smoothness”: continuity of the 𝛻2𝐿𝑇 𝝀𝑇
∗ ; 𝒈 1:𝑇

 “concentration”: tail of the 𝐿𝑇 𝝀𝑇
∗ ; 𝒈 1:𝑇 can be ignored 

asymptotically

 “Integrability”:  𝑒−𝐿𝑇(𝝀;𝒈
1:𝑇 )𝑑𝝀 < ∞

Backup slides


