
Differential Geometric Regularization 
for Supervised Learning of Classifiers 

Qinxun Bai 

Boston University 

1 



Visual Recognition 

2 

Cat 
⋮ 

Dog 
⋮ 

Backpack 
⋮ 

? 

Supervised learning of classifiers 

 State-of-the-art on ImageNet Challenge 

Human level: classification error < 4% 
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Counter-Intuitive Properties 
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Fool DNN by hardly perceptible perturbation [Szegedy et al. 2013] 
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Geometric Idea: Minimal Surfaces 



Physical Model 
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Physical Model 

Initial hyper-surface 
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Formal Setup 

Learn a function 𝒇:𝒳 ⟶△𝐾 as an estimator of 𝑃 𝑦 𝒙  

 

15 

input feature 
space 

output probabilistic 
simplex for 𝐾 classes 
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Formal Setup 

Learn a function 𝒇:𝒳 ⟶△𝐾 as an estimator of 𝑃 𝑦 𝒙  

Hyper-surface associated with 𝒇: 

 𝑔𝑟𝑎𝑝ℎ 𝒇 = { 𝒙, 𝑓1 𝒙 ,⋯ , 𝑓𝐾 𝒙 |𝒙 ∈ 𝒳} ∈ 𝒳 ×△𝐾 
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△𝐾 

exploit the geometry 
of this hyper-surface! 
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Regularization Scheme 

Minimize the regularized loss 𝒫 in functional space ℋ  

min
𝒇∈ℋ
 𝒫 𝒇 = min

𝒇∈ℋ
 𝐿 𝒇 + λ𝐺 𝒇  
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Regularization term 
penalize the volume 
of 𝑔𝑟𝑎𝑝ℎ 𝒇  

Data term 
penalize the error of 𝒇 in 
explaining the training data  
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Effect of Regularization 

Optimization perspective 

min
𝑓∈ℋ
𝐿 𝑓 + λ𝐺 𝑓 ⇔ min

𝑓∈ℋλ
𝐿 𝑓  

 

 

 

 imposing 𝐺 𝑓  ⇔ shrinking ℋ →ℋλ 

 properly-shrink is the key for generalization 

 sculpturing: λ is your hand, 𝐺 𝑓  is the knife! 

functional space that 
the algorithm works in 

shrunk functional space 
ℋλ = {𝑓 ∈ ℋ,𝐺 𝑓  bounded} 
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Shrink the Search Space ℋ 

Decomposition of excess error:  
𝑅 𝑓 − 𝑅 𝑓∗ = 𝑅 𝑓 − 𝑅 ℋ + (𝑅 ℋ − 𝑅(𝑓∗)) 

Bayes risk 
(optimal) 

optimal risk 
achievable in ℋ 

generalization 
      risk 
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Shrink the Search Space ℋ 

Decomposition of excess error:  
𝑅 𝑓 − 𝑅 𝑓∗ = 𝑅 𝑓 − 𝑅 ℋ + (𝑅 ℋ − 𝑅(𝑓∗)) 

 

Concerning estimation error: 

smaller ℋ, smaller estimation error 

Concerning approximation error: 

larger ℋ, smaller approximation error  

estimation error approximation error 

A subtle trade-off: proper shrinking of ℋ, ideally: 

𝐺 𝑓  precisely encodes our prior & cross-validation on λ 
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Functional-norms: Smoothness 

Functional perspective 

 penalizing functional norm ⟶ smoothness 

Smoothness of different kinds:  

 not specifically tailored to measure the amount of 
local oscillation 

 overkill the hypothesis space 

 Sculpturing with an axe? Need a sculptor’s knife! 
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Our Argument: Mean Curvature 

Geometric perspective:  

 𝒙, 𝒇 𝒙 |𝒙 ∈ 𝒳 : a submanifold in 𝒳 ×△𝐾 

Mean Curvature of this submanifold:  

 in differential geometric sense 

 a specific measure of the amount of local oscillation 

 generalizes to high dimensional space 

 handles binary and multiclass uniformly 
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On geometry of the marginal distribution 𝑃(𝒙) 

 manifold regularization (Belkin et al. 2006) 

On geometry of the decision boundary in 𝒳 

 level set based regularization 

Cai & Sowmya 2007; Varshney & Willsky 2010 

 Euler’s Elastica based regularization 

Lin et al. 2012; 2015 

 

Existing Geometric Regularization 
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The small local oscillation of 𝜼(𝒙) is Not captured 
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Solve for  min
𝒇∈ℋ
𝒫(𝒇) 

Solving it directly is too difficult!  

Solve iteratively by gradient flow:  
𝑑𝒇𝑡

𝑑𝑡
= −𝛻𝒫 

 starting from neutral estimator 𝒇0 =
1

𝐾
, ⋯ ,
1

𝐾
 

 evolve 𝒇𝑡 towards −𝛻𝒫 

 𝒇𝑡 will flow to a local minimum of 𝒫 
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Input: training data, trade-off 𝜆, step-size 𝜏 

Initialize: 𝒇 𝒙𝑖; 𝒘 =
1

𝐾
, ⋯ ,
1

𝐾
, 𝑀 =

𝜕𝒇

𝜕𝒘
 

For 𝑡 = 1 to 𝑇 

 Evaluate gradient vector 𝛻𝒫 at every 
training point 𝒙𝑖 

 𝒘 ← 𝒘− 𝜏𝑀−1 𝛻𝒫 𝒙1 , ⋯
𝑇 

Output: class probability 𝒇 

Algorithm (binary & multiclass) 
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Motivation Proposed approach Experiments 

Solid math 
Simple algorithm 
    Parallelizable! 

Summary 



Geometric Foundation on ℋ 

ℋ = 𝑀𝑎𝑝𝑠 𝒳,△𝐾 , ℋ′ = 𝑀𝑎𝑝𝑠 𝒳,ℝ𝐾  

Topology  
 Frechet topology on ℋ′, and the induced topology on ℋ 

i.e. two functions in ℋ are close if the functions and all their 
partial derivatives are pointwise close 

Riemannian metric 
 Restrict the 𝐿2 metric on ℋ′ to each tangent space 𝑇𝒇ℋ 

𝜙1, 𝜙2 =  𝜙1 𝒙 𝜙2 𝒙 𝑑𝑣𝑜𝑙𝒙
𝒳

 

where 𝜙𝑖 ∈ ℋ′ and 𝑑𝑣𝑜𝑙𝒙 is the volume form of the induced 
Riemannian metric on 𝑔𝑟𝑎𝑝ℎ(𝒇). 
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vector field on 𝑔𝑟𝑎𝑝ℎ 𝒇𝑡  

The Gradient 𝛻𝒫𝒇𝑡  
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tangent vector in 𝑇𝒇𝑡ℋ 

𝑇𝒇𝑡ℋ 

𝒇𝑡 

ℋ 

𝛻𝒫𝒇𝑡 

△2⊂ ℝ2 

𝛻𝒫𝒇𝑡: 
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Computation of 𝛻𝒫 = 𝛻𝐿 + 𝜆𝛻𝐺 

Computing 𝛻𝐿 is easy 

 e.g. back propagation for neural networks 

Computing 𝛻𝐺: mean curvature flow 

 Our Theorem:  

need only 1st and 2nd partial derivatives of 𝒇, rest of 
computation is just matrix manipulations 
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Empirical Data Term 

Quadratic loss 

𝐿(𝒇) = 𝑓 𝒙𝑖 − 𝒛𝑖
2

𝑚

𝑖=1

 

Cross-entropy loss 

𝐿 𝒇 = −  𝑧𝑖
𝑙 log 𝑓𝑙(𝒙𝑖)

𝐾

𝑙=1

𝑚

𝑖=1
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computation of 𝛻𝐿 𝒙𝑖  is trivial for both losses 
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Geometric Regularization Term 

Volume penalty  

𝐺 𝒇 =  𝑑𝑣𝑜𝑙
𝑔𝑟𝑎𝑝ℎ 𝒇

=  det (𝒈)𝑑𝑥1⋯𝑑𝑥𝑁

𝑔𝑟𝑎𝑝ℎ 𝒇

 

𝒈 is the Riemanian metric on 𝑔𝑟𝑎𝑝ℎ 𝒇  induced from the 
standard dot product on ℝ𝑁+𝐾  
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Geometric Regularization Term 

Gradient vector field of 𝐺 𝒇  

 −𝛻𝐺 = TrII𝐾 

 = 𝑔−1 𝑖𝑗(𝑓𝑗𝑖
1 − 𝑔−1 𝑟𝑠𝑓𝑟𝑠

𝑙 𝑓𝑖
𝑙𝑓𝑗
1, ⋯ , 𝑓𝑗𝑖

𝐾 − 𝑔−1 𝑟𝑠𝑓𝑟𝑠
𝑙 𝑓𝑖
𝑙𝑓𝑗
𝐾) 

 where 𝑓𝑖
𝑙 , 𝑓𝑖𝑗
𝑙  denote partial derivatives of 𝑓𝑙 
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given 1st and 2nd partial derivatives  
the computation involves only matrix manipulations 
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Example Formulation: RBFs 

Represent 𝒇 as “softmax” output of RBFs 

𝑓𝑗 =
exp (ℎ𝑗)

 exp (ℎ𝑙)𝐾
𝑙=1

,  ℎ𝑗 =  𝑎𝑖
𝑗
𝜑𝑖(𝒙)

𝑚
𝑖=1 ,  for 𝑗 = 1,⋯ , 𝐾 

where 𝜑𝑖 𝒙 = 𝑒
−
1

𝑐
𝒙−𝒙𝑖

2

 is the RBF centered at 𝒙𝑖 
 

Gradient update for A = (𝑎𝑖
𝑙) 

𝐴 ← 𝐴 − 𝜏𝑀−1 𝛻𝒫𝒉 𝒙1 , ⋯ , 𝛻𝒫𝒉 𝒙𝑚
𝑇, 

where 𝛻𝒫𝒉 𝒙𝑖 =
𝜕𝒇

𝜕𝒉 𝒙𝑖

𝑇
𝛻𝒫𝒇 𝒙𝑖 ,  𝑀𝑖𝑗 = 𝜑𝑗(𝒙𝑖) 
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Experiments – RBF Representation 

Datasets from UCI Repository 

 Four binary and four multiclass datasets 

 Following the choice/setup of previous papers 

Comparing with two groups of classifiers  

 RBF + functional norm regularization: RBN, SVM, KLR 

 RBF + existing geometric regularization: LLS, GLS, EE 
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UCI Datasets – Interesting pairs 

KLR vs. Ours-CE 

 same: RBF-based, cross-entropy loss 

 diff regularizer: RKHS norm vs geometry on class probability 

GLS vs. Ours-CE/Ours-Q 

 same: RBF-based, volume based geometric regularizer 

 diff geometry: on decision boundary vs on class probability 

EE vs. Ours-Q 

 same: RBF-based, quadratic loss 

 diff geometric regularizer:   

sophisticated on decision boundary vs on class probability 
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Results on UCI Datasets 
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Experiments – RBF Representation 

Real-world datasets – comparing with baseline 

 Flickr Material Database (4096 dimensional feature) 

 MNIST handwritten digits (60,000 samples) 

 

 

36 

Motivation Proposed approach Experiments 

Flickr Material Database MNIST handwritten digits 

Summary 



Results on Real-world Datasets 
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Summary 



 New geometric perspective on overfitting 

 First regularization approach that exploits the geometry 
of a class probability estimator for classification 

 Unified framework for both binary and multiclass cases 

 Compares favorably to existing regularization methods 

Summary 
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Motivation Proposed approach Summary Experiments 
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