Differential Geometric Regularization for Supervised Learning of Classifiers

> Qinxun Bai Boston University

Visual Recognition

Supervised learning of classifiers

State-of-the-art on ImageNet Challenge

Human level: classification error < 4%

Summary

Counter-Intuitive Properties

Fool DNN by hardly perceptible perturbation [Szegedy et al. 2013]

Rapid Local Oscillation

Rapid Local Oscillation

Geometric Idea: Minimal Surfaces

soap film

image credit: Google image search

Initial hyper-surface

hyper-surface deforms towards training data as if attracted by gravitational force due to point masses

hyper-surface deforms towards training data as if attracted by gravitational force due to point masses

hyper-surface remains as tight as possible as if in the presence of surface tension

hyper-surface remains as tight as possible as if in the presence of surface tension

hyper-surface remains as tight as possible as if in the presence of surface tension

hyper-surface remains as tight as possible as if in the presence of surface tension

Formal Setup

Formal Setup

Learn a function $f: \mathcal{X} \to \Delta^K$ as an estimator of $P(y|\mathbf{x})$

Hyper-surface associated with *f*:

 $graph(\boldsymbol{f}) = \{ \left(\boldsymbol{x}, f^{1}(\boldsymbol{x}), \cdots, f^{K}(\boldsymbol{x}) \right) | \boldsymbol{x} \in \mathcal{X} \} \in \mathcal{X} \times \Delta^{K}$

exploit the geometry of this hyper-surface!

Regularization Scheme

Minimize the regularized loss ${\mathcal P}$ in functional space ${\mathcal H}$

$$\min_{f \in \mathcal{H}} \mathcal{P}(f) = \min_{f \in \mathcal{H}} \{L(f) + \lambda G(f)\}$$
Data term
penalize the error of *f* in
explaining the training data
$$\operatorname{Regularization term}_{penalize the volume}_{penalize the volume}_{penali$$

Effect of Regularization

- imposing $G(f) \Leftrightarrow \text{shrinking } \mathcal{H} \to \mathcal{H}_{\lambda}$
- properly-shrink is the key for generalization
- sculpturing: λ is your hand, G(f) is the knife!

Shrink the Search Space ${\mathcal H}$

Decomposition of excess error:

$$\underbrace{R(f) - R(f^*)}_{(\mathcal{H})} = \left(R(f) - R(\mathcal{H})\right) + \left(R(\mathcal{H}) - R(f^*)\right)$$

generalization Bayes risk risk (optimal) optimal risk achievable in ${\mathcal H}$

Shrink the Search Space ${\mathcal H}$

Functional-norms: Smoothness

- **Functional perspective**
 - penalizing functional norm → smoothness

Smoothness of different kinds:

- not specifically tailored to measure the amount of local oscillation
- overkill the hypothesis space
- Sculpturing with an axe? Need a sculptor's knife!

Our Argument: Mean Curvature

Geometric perspective:

• $\{(x, f(x)) | x \in \mathcal{X}\}$: a submanifold in $\mathcal{X} \times \Delta^{K}$

Mean Curvature of this submanifold:

- in differential geometric sense
- a specific measure of the amount of local oscillation
- generalizes to high dimensional space
- handles binary and multiclass uniformly

Existing Geometric Regularization

On geometry of the marginal distribution P(x)

manifold regularization (Belkin *et al.* 2006)

On geometry of the decision boundary in ${\mathcal X}$

level set based regularization

Cai & Sowmya 2007; Varshney & Willsky 2010

Euler's Elastica based regularization
 Lin *et al.* 2012; 2015

The small local oscillation of $\eta(x)$ is Not captured

Solve for $\min_{f \in \mathcal{H}} \mathcal{P}(f)$

Solving it directly is too difficult!

Solve iteratively by gradient flow: $\frac{df_t}{dt} = -\nabla \mathcal{P}$

- starting from neutral estimator $f_0 = \left(\frac{1}{\kappa}, \dots, \frac{1}{\kappa}\right)$
- evolve f_t towards $-\nabla \mathcal{P}$
- f_t will flow to a local minimum of \mathcal{P}

Algorithm (binary & multiclass)

Input: training data, trade-off λ , step-size τ

Initialize:
$$f(x_i; w) = \left(\frac{1}{K}, \cdots, \frac{1}{K}\right), M = \frac{\partial f}{\partial w}$$

For t = 1 to T

Evaluate gradient vector PP at every training point x_i

•
$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \tau M^{-1} [\nabla \mathcal{P}(\boldsymbol{x}_1), \cdots]^T$$

Solid math Simple algorithm Parallelizable!

Output: class probability f

Geometric Foundation on $\mathcal H$

$$\mathcal{H} = Maps(\mathcal{X}, \Delta^{K}), \mathcal{H}' = Maps(\mathcal{X}, \mathbb{R}^{K})$$

Topology

Frechet topology on H', and the induced topology on H
 i.e. two functions in H are close if the functions and all their partial derivatives are pointwise close

Riemannian metric

• Restrict the L^2 metric on \mathcal{H}' to each tangent space $T_f \mathcal{H}$

$$\langle \phi_1, \phi_2 \rangle = \int_{\mathcal{X}} \phi_1(\mathbf{x}) \phi_2(\mathbf{x}) dvol_{\mathbf{x}}$$

where $\phi_i \in \mathcal{H}'$ and $dvol_x$ is the volume form of the induced Riemannian metric on graph(f).

The Gradient $\nabla \mathcal{P}_{f_t}$

 $\nabla \mathcal{P}_{f_t}$: tangent vector in $T_{f_t} \mathcal{H} \longrightarrow \text{vector field on } graph(f_t)$

Computation of $\nabla \mathcal{P} = \nabla L + \lambda \nabla G$

Computing ∇L is easy

• *e.g.* back propagation for neural networks

Computing ∇G : mean curvature flow

• Our Theorem:

need only 1^{st} and 2^{nd} partial derivatives of f, rest of computation is just matrix manipulations

Empirical Data Term

Quadratic loss

$$L(\boldsymbol{f}) = \sum_{i=1}^{m} \|f(\boldsymbol{x}_i) - \boldsymbol{z}_i\|^2$$

Cross-entropy loss

$$L(\boldsymbol{f}) = -\sum_{i=1}^{m} \sum_{l=1}^{K} z_{i}^{l} \log f^{l}(\boldsymbol{x}_{i})$$

computation of $\nabla L(x_i)$ is trivial for both losses

Geometric Regularization Term

Volume penalty

$$G(\boldsymbol{f}) = \int_{graph(\boldsymbol{f})} dvol = \int_{graph(\boldsymbol{f})} \sqrt{\det(\boldsymbol{g})} dx^1 \cdots dx^N$$

g is the Riemanian metric on graph(f) induced from the standard dot product on \mathbb{R}^{N+K}

Geometric Regularization Term

Gradient vector field of G(f)

 $-\nabla G = \mathrm{Tr}\mathrm{II}^K$

$$= (g^{-1})^{ij} (f_{ji}^1 - (g^{-1})^{rs} f_{rs}^l f_i^l f_j^1, \cdots, f_{ji}^K - (g^{-1})^{rs} f_{rs}^l f_i^l f_j^K)$$

where f_i^l , f_{ij}^l denote partial derivatives of f^l

given 1st and 2nd partial derivatives the computation involves only matrix manipulations

Example Formulation: RBFs

Represent *f* as "softmax" output of RBFs

$$f^{j} = \frac{\exp(h^{j})}{\sum_{l=1}^{K} \exp(h^{l})}, h^{j} = \sum_{i=1}^{m} a_{i}^{j} \varphi_{i}(\mathbf{x}), \text{ for } j = 1, \cdots, K$$

where $\varphi_{i}(\mathbf{x}) = e^{-\frac{1}{c} ||\mathbf{x} - \mathbf{x}_{i}||^{2}}$ is the RBF centered at \mathbf{x}_{i}

Gradient update for $A = (a_i^l)$

 $A \leftarrow A - \tau M^{-1} [\nabla \mathcal{P}_{h}(\boldsymbol{x}_{1}), \cdots, \nabla \mathcal{P}_{h}(\boldsymbol{x}_{m})]^{T},$

where
$$\nabla \mathcal{P}_{h}(\boldsymbol{x}_{i}) = \left[\frac{\partial f}{\partial h}\right]_{\boldsymbol{x}_{i}}^{T} \nabla \mathcal{P}_{f}(\boldsymbol{x}_{i}), \quad M_{ij} = \varphi_{j}(\boldsymbol{x}_{i})$$

Experiments – RBF Representation

Datasets from UCI Repository

- Four binary and four multiclass datasets
- Following the choice/setup of previous papers

Comparing with two groups of classifiers

- RBF + functional norm regularization: RBN, SVM, KLR
- RBF + existing geometric regularization: LLS, GLS, EE

UCI Datasets – Interesting pairs

KLR vs. Ours-CE

- same: RBF-based, cross-entropy loss
- diff regularizer: RKHS norm vs geometry on class probability

GLS vs. Ours-CE/Ours-Q

- same: RBF-based, volume based geometric regularizer
- diff geometry: on decision boundary vs on class probability

EE vs. Ours-Q

- same: RBF-based, quadratic loss
- diff geometric regularizer:

sophisticated on decision boundary vs on class probability

Results on UCI Datasets

Experiments – RBF Representation

Real-world datasets – comparing with baseline

- Flickr Material Database (4096 dimensional feature)
- MNIST handwritten digits (60,000 samples)

Flickr Material Database

MNIST handwritten digits

Results on Real-world Datasets

Flickr Material Database

MNIST handwritten digits

Summary

- New geometric perspective on overfitting
- First regularization approach that exploits the geometry of a class probability estimator for classification
- Unified framework for both binary and multiclass cases
- Compares favorably to existing regularization methods

Collaborators

Steven Rosenberg Mathematics, BU

Stan Sclaroff Computer Science, BU

Zheng Wu Mathworks Inc.