BOSTON
UNIVERSITY

Differential Geometric Regularization for Supervised Learning of Classifiers

Qinxun Bai ${ }^{1}$, Steven Rosenberg ${ }^{2}$, Zheng Wu³, Stan Sclaroff ${ }^{1}$

${ }^{1}$ Computer Science, ${ }^{2}$ Mathematics \& Statistics, Boston University ${ }^{3}$ The Mathworks Inc.

Smoothness vs. Mean Curvature

Smoothness by functional norms:

- Not specifically tailored to measure local oscillation
- Overkill the hypothesis space
- Sculpturing with an axe? Need a sculptor's knife Mean Curvature of the hypersurface:
- In differential geometric sense
- A specific measure of the amount of local oscillation
- Generalizes to high dimensional space

Hypersurface deforms towards training data as if attracted by gravitational force due to point masses centered at training data

In the mean time, hypersurface remains as tight as possible as if in the presence of surface tension

Formal Setup

Learn a function $\boldsymbol{f}: x \rightarrow \Delta^{K}$ as an estimator of $P(y \mid x)$
The hypersurface associated with f : $\operatorname{graph}(f)=\left\{\left(x, f^{1}(x), \cdots, f^{K}(x)\right) \mid x \in X\right\} \in X \times \Delta^{K}$

Training point $\left(x_{i}, y_{i}\right)$ maps to $\left(x_{i}, \boldsymbol{z}_{i}\right)=\left(x_{i}, 0, \cdots, 1^{y^{\prime \prime \prime}} \cdots 0\right) \in X \times \Delta^{K}$

Regularized ERM Formulation
Minimize the regularized loss \mathcal{P} in functional space \mathcal{H}

$\min _{\boldsymbol{f} \in \mathcal{H}} \mathcal{P}(\boldsymbol{f})=\min _{\boldsymbol{f} \in \mathcal{H}}\{L(\boldsymbol{f})+\lambda \overline{G(\boldsymbol{f})}\}$
Data term penalize the error of \boldsymbol{f} in explaining the training data
Regularization term penalize the volume of graph (\boldsymbol{f})

Solve for $\min _{f \in \mathcal{H}} \mathcal{P}(f)$
Solve iteratively by gradient flow: $\frac{d f_{t}}{d t}=-\nabla \mathcal{P}$

- starting from neutral estimator $f_{0}=\left(\frac{1}{K}, \cdots, \frac{1}{K}\right)$
- evolve \boldsymbol{f}_{t} towards $-\nabla \mathcal{P}_{f_{t}}$
- \boldsymbol{f}_{t} will flow to a local minimum of \mathcal{P}

Computation of $\nabla \mathcal{P}=\nabla L+\lambda \nabla G$
Computing ∇L is easy

- e.g. back propagation for neural networks Computing ∇G : mean curvature flow
- $G(f)$ measures the volume of $\operatorname{graph}(f)$
$G(f)=\int_{\text {graph }(f)} d v o l=\int_{\text {graph }(f)} \sqrt{\operatorname{det}(\boldsymbol{g})} d x^{1} \cdots d x^{N}$
where \boldsymbol{g} is the Riemannian metric induced from \mathbb{R}^{N+K}
- Our Theorem:
need only $1^{\text {st }}$ and $2^{\text {nd }}$ partial derivatives of f, rest of computation is just matrix manipulations

The Gradient $\nabla \mathcal{P}_{f_{t}}$

$\nabla \mathcal{P}_{f_{t}}:$ tangent vector in $T_{f_{t}} \mathcal{H} \longleftrightarrow$ vector field on $\operatorname{graph}\left(\boldsymbol{f}_{t}\right)$
Geometric Foundation on \mathcal{H}
$\mathcal{H}=\operatorname{Maps}\left(X, \Delta^{K}\right), \mathcal{H}^{\prime}=\operatorname{Maps}\left(X, \mathbb{R}^{K}\right)$ Topology

- Frechet topology on \mathcal{H}^{\prime}, and the induced topology on \mathcal{H} Frechet topology on \mathcal{H}, and the induced topology on \mathcal{H}
i.e. two functions in \mathcal{H} are close if the functions and all their partial
derivatives are pointwise close Riemannian metric
- Restrict the L^{2} metric on \mathcal{H}^{\prime} to each tangent space $T_{f} \mathcal{H}$

$$
\left\langle\phi_{1}, \phi_{2}\right\rangle=\int_{x} \phi_{1}(x) \phi_{2}(x) d v o o_{x}
$$

where $\phi_{i} \in \mathcal{H}^{\prime}$ and $d v o l_{x}$ is the volume form of the induced Riemannian metric on $_{\text {graph }(f)}$

Experiments

RBF Representation
Represent \boldsymbol{f} as "softmax" output of RBFs

$$
f^{j}=\frac{\exp \left(h^{j}\right)}{\sum_{l=1}^{K} \exp \left(h^{l}\right)^{\prime}} h^{j}=\sum_{i=1}^{m} a_{i}^{j} \varphi_{i}(\boldsymbol{x}), \text { for } j=1, \cdots, K
$$

$$
\text { where } \varphi_{i}(x)=e^{-\frac{1}{c}\left\|x-x_{i}\right\|^{2}} \text { is the RBF centered at } x_{i}
$$

Gradient update for $\mathrm{A}=\left(a_{i}^{l}\right)$
$A \leftarrow A-\tau M^{-1}\left[\nabla \mathcal{P}_{\boldsymbol{h}}\left(\boldsymbol{x}_{1}\right), \cdots, \nabla \mathcal{P}_{\boldsymbol{h}}\left(\boldsymbol{x}_{m}\right)\right]^{T}$,
where $\nabla \mathcal{P}_{\boldsymbol{h}}\left(\boldsymbol{x}_{i}\right)=\left[\frac{\partial f}{\partial h}\right]_{x_{i}}^{T} \nabla \mathcal{P}_{f}\left(\boldsymbol{x}_{i}\right), \quad M_{i j}=\varphi_{j}\left(\boldsymbol{x}_{i}\right)$

Datasets from UCI Repository

- Four binary and four multiclass datasets
- Following the choice/setup of previous papers

Comparing with two groups of classifiers

- RBF + functional norm regularization: RBN, SVM, KLR
- RBF + existing geometric regularization: LLS, GLS, EE

Real-world datasets - comparing with baseline - Flickr Material Database (4096 dimensional feature) - MNIST handwritten digits (60,000 samples)

