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Abstract

We propose a Bayesian framework for recur-
sively estimating the classifier weights in online
learning of a classifier ensemble. In contrast with
past methods, such as stochastic gradient descent
or online boosting, our framework estimates the
weights in terms of evolving posterior distribu-
tions. For a specified class of loss functions, we
show that it is possible to formulate a suitably de-
fined likelihood function and hence use the poste-
rior distribution as an approximation to the global
empirical loss minimizer. If the stream of train-
ing data is sampled from a stationary process, we
can also show that our framework admits a supe-
rior rate of convergence to the expected loss min-
imizer than is possible with standard stochastic
gradient descent. In experiments with real-world
datasets, our formulation often performs better
than online boosting algorithms.

1. Introduction

The literature on online ensemble classification has stludie
recursive mechanisms to combine several weak classifier
when given labeled training datgx;,y;}._, that arrive
sequentially. Different approaches have been propose
including online extensions of boostin@£a & Russell
2001 Pelossof et a]2009 and stochastic gradient descent
based methods Babenko et a). 2009h Leistner et al.
2009 Grbovic & Vucetic 2011). Recently, Chen et
al. (2012 formulated a smoothed boosting algorithm base
on the analysis of regret from offline benchmarks.

a loss minimization problem with respect to the ensem-
ble weights, and propose an online ensemble classification
method that is not based on boosting or gradient descent.
The main idea is to recursively estimate a posterior distri-
bution of the ensemble weights in a Bayesian manner. We
show that, for a given class of loss functions, we can define
a likelihood function on the ensemble weights and, with an
appropriately formulated prior distribution, we can gener
ate a posterior mean that closely approximates the empiri-
cal loss minimizer.

Our proposed scheme is straightforward, but powerful in
two respects. First, it can approximate the global optimal
solution, in contrast with local methods such as stochas-
tic gradient descent (SGD). Second, assuming the training
data is sampled from a stationary process, our Bayesian
scheme possesses a rate of convergence to the expected loss
minimizer that is at least as fast as standard SGD. In fact,
our rate is faster unless the SGD step size is chosen op-
timally, which cannot be dona priori in the online set-
ting. We identify the class of loss functions where both of
the above properties are precisely satisfied. In expergnent
with real-world datasets, our formulation often performs
better than state-of-the-art online boosting algorithms.

Sy
2. Related Work

% number of past works focus on online learning with con-

cept drift Wang et al.2003 Kolter & Maloof, 2005 2007,
Minku, 2011, which differs from stationary online set-
tings. Given the technical difficulty, theoretical anay/&r

Gconcept drift seems to be underdeveloped. Kolter & Mal-

oof (2009 proved error bounds for their proposed method,
which appears to be the first such theoretical analysis, yet

In this paper, we pose the online ensemble problem asuch analysis is not easily generalized to other methods
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in this category. Other works, such as Schapie0()
and Cesa-Bianchi & LugosR003, obtained performance
bounds from the perspective of iterative games.
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Our work is more closely related to methods that operatén sequentially, one atatimeat=1,2,3, .. ..

in a stationary environment, most notably online boosting

methods. One of the first methods was proposed by Oz3.1. Loss Specification

& Russell 007, who showed asymptotic convergence to o ) -
batch boosting under certain conditions. However, the conYV€ first introduce a loss function at the weak classifier
vergence result only holds for some simple “lossless” weal€Vel: Given a training paitx, y) and an arbitrary weak
learners Qza, 2001, such as Naive Bayes. Other variants classifierh, we denotey := g(h(x),y) as a non-negative
of online boosting have been proposed, such as method@Ss funct.|0n. Eos&ble choices gfinclude the logistic
that employ feature selectioiGtabner & Bischof 200 0SS function, hinge loss, zero-one loss, etch I§ one of
Liu & Yu, 2007, semi-supervised learninGtabner eta). e given weak classifiers, we will denoteg(c; (x), ) as
2008, multiple instance learningabenko et a.20093, (% ¥), 0rt5|mplytgi Ior ease of noiatl?n_. Furthermore,
and multi-class learningSéffari et al, 2010. However, W€ defineg; := g(ci(x"), y") where(x", y’) is the training
most of these works consider the design and update oi@Mple and; the updated-th weak classifier at time To
weak learners beyond that 0D¢a 2003 and, thus, do SIMPlify notation, we usg := (g1, .. ., gm) totdenotetthe
not bear the convergence guarantee therein. Other metNECtOr of losses for the weak clas?!;l@é,::l(gl, x -;fgm)
ods employ the gradient descent framework, such as Onlin{ denote the losses at timeandg ™" := (g',...,g" ) to
GradientBoost I(eistner et al. 2009, Online Stochastic denote the losses up to tirfie

Boosting B_abenko et a).2009h and Incremental Boost- with the above notation, we lét(X; g*) be some ensem-
ing (Grbovic & Vucetic 201]). Many of these methods ple loss function at timeé, which depends on the ensemble

possess convergence results, which provide a basis fqfeights and the individual loss of each weak classifier. We
comparison with our framework. In fact, we show that ourthen define our cumulative ensemble loss as follows:
method compares favorably to gradient descent in terms of T

asymptotic convergence rate. Lastly, Chen et 201Q LA ghT) = fo(N) + Zét(A;gt) 1)
proposed an online boosting method with a theoretical et

bound on the error rate, with the novel design of a smoother

and more conservative update of the online weak classiwhereéo()‘) can be regarded as an initial loss, which be-

fiers comes negligible a%' progresses.
I_We make two sets of assumptions bi that are adapted

Our idea is related to, yet differs from, simulated anneal . .
y from Chen (983: one on the regularity conditions diy,

ing (Laarhoven et al.1987 and Bayesian model averag- J ;
ing (Hoeting et al, 1999. The former is a global optimiza- the other on the form of, 1o ensure eI|g|b|I|ty n applylng_
tion technique, typically conducted by defining a proba-°Ur Bayesian approach. We now specify these assumptions.
bility distribution that has the objective function thateon Assumption 1 (Regularity conditions) Assume that for
wants to minimize as an exponent, and running MonteeachT’, there exists &7 that minimizegl), and

Carlo to estimate the pea_k of f[his Qistribqtion. Simulated 1 «gcal optimality”: for each T, VL (A% gT) = 0
ann_eqllng, nevert_he!es; is primarily motivated for det_er andV2 Ly (\5; gT) is positive definite.

ministic global optimization, and should be contrastedhwit

the stochastic and also the sequential nature of our frame-2. “steepness™ the minimum eigenvalue of
work. Next, conventional Bayesian model averaging aims V2Lr(Ay;g"7) diverges tox asT — oo.

to combine several plausible models as a closer description3, “smoothness”: For any: > 0, there exists a positive

of the data. In contrast, our Bayesian framework does not  integer/N andd > 0 suchthatforany’ > N and@ ¢
focus on the actual model that generates the data, but is  Hs(AL) = {0 : |0 — X5z < 6}, V2L7(0;g5T)
instead motivated as a loss minimization algorithm. exists and satisfies

. | 1-A(0) < V*Lr(0:¢"") (VLA g™™)) < 1+A(0)
3. Bayesian Recursive Ensemble
for some positive semidefinite symmetric mattix

We denote the input feature byand its classification la- whose largest eigenvalue tends to Ocas+ 0, and
bel byy (1 or —1). We assume that we are givenbinary the inequalities above are matrix inequalities.
weak classifiergc;(x)},, and our goal is to find the best _ _ -
ensemble weightd = (\y, ..., \,,) where); > 0, to con- 4. “concentration”: for anyd > 0, there exists a positive
struct an ensemble classifier. For now, we do not impose  integer N and constantg, p > 0 such that for any
a particular form of ensemble method (we defer this untii 7' > N andf ¢ Hs(A7}), we have

Sectiond), although one example form s . \ic;(x). We Lr(0;g"T) — LNy gtT) <

focus on online learning, where training déta y) comes y . 1 .
day) ¢((6 - Xp)' V2L (N gT)(0 — A7)



A Bayesian Framework for Online Classifier Ensemble

Theorem 1. Under Assumptiond and 2, the Bayesian
In the situation wherd/; is separable in terms of each scheme in Algorithni produces a posterior distribution
component ofA, ie. 4(X;g) = 331 ri(Ai;g) and ) (A|g!T) satisfying the asymptotic normality property
lo(X) = >°1, si(\;) for some twice differentiable func-
tionsr;(-; g) ands;(+), the assumptions above will depend (V2Lr (N gl:T))1/2 (A1 — A5) 4 N(0,1) (4)
only on f;(A\;gT) == 21, ri(A;g?) + si()) for each
1. For example, Condition 3 in Assumptidnreduces to whereAr is interpreted as a random variable with distri-
merely checking uniform continuity of eagtf (; g'"). bution p(Algh?), and-% denotes convergence in distri-

Condition 1 in Assumptiod can be interpreted as the stan- Pution. Furthermore, under th? uniform integrability con-
dard first and second order conditions for the optimality ofdition sup,. B g7 [Ar — Np[[17° < oo for somee > 0,
A%, whereas Condition 3 in essence requires continuity oV ave

the Hessian matrix. Conditions 2 and 4 are needed for the 1

use of Laplace methodCpx & Hinkley, 1974, which, as |Expigur[AT] — A =0 (W) (5)
we will show later, stipulates that the posterior distribnt

O
eaks near the optimal solutioyy-. . .
P P o whereE , 1] denotes the posterior expectation ang

Assumption 2(Density interpretation) The loss functions s the minimum eigenvalue of the matii® L (A% g''T)
T .

¢, satisfy
/eflt(k:,z)dz -1 2) The idea_ behind 4) comes from a classical technique
in Bayesian asymptotics known as the Laplace method
fort =1,2,..., and/, satisfies (Cox & Hinkley, 1974. Theoreml states that given the
loss structure satisfying Assumptioisand 2, the poste-
/eflo(w)dw -1 A3) rior (jistribution of)\_ unqler our Bay_es_iar_1 update scheme
provides an approximation to the minimizkf. of the cu-

) ) o mulative loss at tim&", asT' increases, by tending to a nor-
In view of (1), £o does not contribute significantly to the ) gistribution peaked ax:. with shrinking variance. The
cumulative loss ag” increases, and it can be specified by 0 g) states that this posterior distribution can be sum-

the user on the basis of convenience. The conditio@)n (' marized using the posterior mean to give a point estimate of
is more crucial, and requires that the exponent of the Iosg\}_ Moreover, note thak is the global, not merely local,

function/;(A; -) behaves exactly as a probability density. - minimizer of the cumulative loss. This approximation of
_ global optimum highlights a key advantage of the Bayesian
3.2. A Bayesian Framework scheme over other methods such as stochastic gradient de-

Loss functiong; that satisfy Assumptions and2 can be ~ SC€Nt (SGD), which only find a local optimum.

used to defing:(g|A) = e~“(*#) as a likelihood function  The next theorem states another benefit of our Bayesian
for g, parametrized byA andp,(X) = e~*), as a prior  scheme over standard SGD. Supposing that SGD does in-
for the parameteA. Our update scheme forthen hinges  deed converge to the global optimum. Even so, it turns out
on calculating the posterior mean farat each step. A  that the Bayesian scheme converges faster than standard
summary of this algorithm is given in Algorithth SGD under the assumption of i.i.d. training samples.

Theorem 2. Suppose Assumptioisand 2 hold. Assume
also that/;(\;g) = ¢();g) are identical acrosg and g!

Algorithm 1 Bayesian Ensemble

Input: streaming samplef(x’, ")}/, are i.i.d., withE[((A; g)] < co and E[((A; g)?] < cc. The
online wgak_learnerﬁc;? (%)} _ Bayesian posterior mean produced by Algconverges to
~_ chosen likelihoogh(g|A) and priorp(A) argmin, E[¢(\; g)] strictly faster than standard SGD (sup-
Initialize: hyper-parameters for(g|) andp(X) posing it converges to the global minimum), given by
fort =1to7 do
Vi, computey! = g(ck(x'),y) Ari1 < Ar — 2 KVL(Ar; g") (6)

update for the posterior distribution af: . . .
P P in terms of the asymptotic variance, except when the step

t
p(Alght) o p(gf | N)p(Alghtt=1) oc TT p(g®|A)p(A)  sizee, and the matrixK is chosen optimally.
s=1

update the weak learners usit, y*) In Theorem2, by asymptotic variance we mean the fol-
end for lowing: it turns out that both the posterior mean and the
update from SGD possess versions of the central limit the-

Algorithm 1 offers the following desirable property. orem, in the formy/T(Ar — A*) 4 N(0,X) whereX* =
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argmin, E[¢(X; g)]. Our comparison is on the asymptotic Now, under conjugacy o8] and @), the posterior distribu-

variances: the smalle is, the smaller the multiplicative
constant in the rate of convergerice/T.

The result follows from first comparing central limit theo-

rems for the minimizer of cumulative logs,. and the stan-
dard SGD update in6j, and secondly, from the relation

tion of X aftert steps is given by the Gamma distribution

p(Alg™) oc JT Ayt~ e (B0 Zams gD

=1

Therefore the posterior mean for eachs

(5), which states that the difference between the posterior
mean and\’. decreases at a rate faster than the central limit a+t (10)

theorem, and hence is asymptotically negligible.

4. Loss Functions, Likelihoods and Priors

B+ 19
We use the following prediction rule at each step:

We first discuss in depth a simple and natural choice of ,, — Loif Z Aigi(x,1) < Z Aigi(x, =1) (11)

loss function and its corresponding likelihood functioman
prior, which are also used in our experiments in Sechion

=1 =1
-1 otherwise

Then we briefly give examples of other loss functions thatwhere each; is the posterior mean given b§@. For this

also fit into our framework.

4.1. Exponential Likelihood and Gamma Prior

For anyt, consider

G(Xig) =03 Xigi— > logAi @)
=1 i=1

The motivation for 7) is straightforward: it is the sum of
individual loss each weighted by;. The extra termiog A,

prevents)\; from approaching zero, the trivial minimizer
for the first term. The parametérspecifies the trade-off

between the importance of the first and the second term.

This loss function satisfies Assumptiohsand?2. In par-
ticular, the Hessian of - turns out to not depend a7,
therefore all conditions of Assumptioh can be verified
easily. For Assumptio, the exponent of the negation of
the loss function in%), plus a constant term log 6, which
does not affect the loss minimization, integratesto 1.

Using the discussion in Sectid2, we choose the expo-
nential likelihood

p(glA) = [J(0x)e e ®)

i=1

To facilitate computation, we employ the Gamma prior:

A) o [T e 9)

setup, Algorithml can be cast as Algorithéhbelow, which
is to be implemented in the numerical section.

Algorithm 2 Closed-form Bayesian Ensemble

Input: streaming samplef(x‘, y* }t_
online weak learnersct(x) }1
Initialize: parameterd for likelihood (8) and parame-
tersa, g for prior (9)
fort =1to 7T do
Vi, computeg! = g(ct(x?),y'), whereg is logistic
loss function

update the posterior mean Afby (10)

update the weak learners according to the particular
choice of online weak learner

make prediction byX1) for next incoming sample
end for

The following bound provides further understanding of the
loss function 7) and the prediction rulel(l), by relating
their use with a guarantee on the prediction error:

Theorem 3. Suppose thag’ are i.i.d., so that\}. con-
verges toA* := argmin, E[¢(\; g)] for ¢ defined in(7).
The prediction error using rul€11) with A* is bounded by

1 i3 X -
Pix,yy(€rmor) <mv | Ex ) (Z Elgi(x,v)] )

(12)
foranyp > 1.

wherea and 5 are the hyper shape and rate parameters.

Correspondingly, we picko(A) = 8> A — (a —
1) >~ log A;. To be concrete, the cumulative loss ) (
(disregarding the constant terms) is

m m T m m
B> Ai—(a=1) loghi+» (9 > Aigh = log )\1-)
i=1 i=1 t=1 i=1 i=1

The proof, given in the Appendix, provides a bound for
the long-run prediction error under stationary environ-
ment. To make sense of this result, note that the quantity
mgi(x, —y) can be interpreted as a performance in-
dicator of each weak classifier, i.e. the larger it is, the bet
ter the weaker classifier is, since a good classifier should
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have a small los®[g;(x,

y)] and correspondingly a large N ilogf(ai) B iai log

gi(x, —y). As long as there exists some good weak classi-
fiers among then choices,> " 2:5=Y) il be large,

i=1 Flg;(x,y)]

which leads to a small error bound 2. with the following Gamma likelihood

Finally, in correspondence to Theoréinthe SGD for 7) W .

is written as p(gla, B H g% te i

t+1 _ yt _ t_ 1 =
AT =N t (99Z )\§> (13) A conjugate prior is available fax and3 jointly

where~ is a parameter that controls the step size. The fol- m 16*51“1

lowing result is a consequence of Theor2r(a proof for ~ e -

this particular case appears in the Appendix). i D) 87"

Theorem 4. Suppose thatg’ are iid., and0 < wherep, g, r, s are hyper parameters.

Ex,y)[9i(x,9)] < oo and Varxy)(gz(x y)) < oo. For
each i, the posterior mean given b§L0) alwayshas a
rate of convergence at least as fast as the SGD upd&)e 5. Experiments

in terms of asymptotic variance. In fact, itis strictly B8t e report two sets of experiments on binary classification

in all situations except when the step size paramet#r  penchmark dataséts In the first set of experiments, we
(13) is set optimallya priori. evaulate our scheme’s performance vs. three baseline meth-

In Section5 we will see that this simple choice of loss func-
tion and Bayesian update scheme lead to superior empiric
performance compared with other methods.

4.2. Other Examples

Note that while our simple choice o¥) can be directly
minimized, this is not true in general. We now give a few

ods, given static pre-trained weak learners. In the second
Set of experiments, we compare with leading online bosting
methods, following the setup ofChen et al.2012).

Following (Chen et al.2012, we report experiments using
two different weak learners: Perceptron and Naive Bayes.
In every trial, each ensemble method is given 100 weak
learners and the average error rate is reported over 5 ran-
dom trials of different orders of each dataset.

other examples of acceptable ensemble loss functions.

1. The loss function

In all experiments, we have set the hyperparameters of our
methoda = § = 1 andf = 0.1. From the expression

m m of posterior meanl(0), the prediction ruleX1) is unrelated
li(Xg) = Z(l — X)) loggi + GZgi to the values ofy, 5 andd in long term. In experiments,
i=1 i=1 we also find that our method achieves stable results with re-
m m spect to settings of these parameters. However, the stochas
+ ) logT(\;) — (log6) Y A tic gradient descent baseline (SGIBY is sensitive tod;
’ =1 therefore, use the same valie- 0.1 in our method.

wheref > 0 is a parameter, corresponds to the prod-

uct of Gamma likelihood given by 5.1. Comparison with Baseline Methods
B “1 g We compare our online ensemble method with three base-
)= H (X)) ¢ line methods, using two different weak learnererRRER
=t TRON and NalvE BAYES. The first baseline is a single
A conjugate prior for\ is available, in the form Perceptron/Naive Bayes classifier. The second baseline
o N—1geA (VOTING) is the uniform ensemble of weak learners. The

) ~ 11

wherea, b, ¢ > 0 are hyper parameters.

third baseline (SGD) is the ensemble method with ensem-
ble weights estimated by stochastic gradient desd)t (
OuRs is our proposed Bayesian ensemble method. The
same static weak learners are shared by all ensemble meth-

INOVL

=1

2. We can generalize the ensemble weights to includeds. Each data set is split into training and testing sets for

two parameters,;, =

(a4, Bs). In this case, we may each random trial, where a training set contains no more

define the loss function as than10% of the total amount of data. In order to make

Et ((1

weak learners divergent, a weak learner uses a randomly

191 + 1-—- Q5 10 i I —
; & ;( Jlogg http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/daéas/
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Table 1.Error rate for our method vs baselines, using online Pergefifaive Bayes weak learners.

PERCEPTRON WEAK LEARNER NATVE BAYES WEAK LEARNER
DATA SET # EXAMPLES PERCEPTRON‘ VOTING ‘ SGD ‘ OuRs || NAIVE BAYES ‘ VOTING ‘ SGD ‘ OURS
HEART 270 0.287 0.275 | 0.261| 0.249 0.249 0.214 | 0.216| 0.210
BREAST-CANCER 683 0.062 0.052 | 0.051| 0.041 0.048 0.044 | 0.043| 0.039
AUSTRALIAN 693 0.212 0.209 | 0.167| 0.143 0.248 0.241 | 0.240| 0.225
DIABETES 768 0.356 0.339 | 0.321] 0.293 0.299 0.284 | 0.283] 0.278
GERMAN 1000 0.359 0.337 | 0.334| 0.323 0.348 0.327 | 0.315] 0.312
SPLICE 3175 0.393 0.371 | 0.331| 0.317 0.169 0.174 | 0.169| 0.160
MUSHROOMS 8124 0.120 0.104 | 0.102| 0.078 0.032 0.049 | 0.047| 0.026
IONOSPHERE 351 0.279 0.260 | 0.257| 0.249 0.199 0.207 | 0.201| 0.190
SONAR 208 0.414 0.400 | 0.392| 0.388 0.306 0.305 | 0.304| 0.300
SVMGUIDE3 1284 0.385 0.437 | 0.414] 0.332 0.311 0.299 | 0.281] 0.240

sampled subset of data features as input for both trainingiven that our method only focuses on optimizing the en-
and testing. The first baseline always uses all the featuressemble weights, each incoming sample is treated equally in
. . . . the update of all weak learners, while all three online boost
Classifier error rates for this experiment are shown in Ta-

ble 1. Our proposed method consistently performs the best'd methods adopt more sophisticated weighted update of

for all datasets. Its superior performance against thegoti weak learners, where the sample weight is dynamically ad-

baseline is consistent with the asymptotic convergence relySted during each round of update. Secondly, in order to

. . . make weak learners different from each other, our weak
sult given by Theoren. Its superior performance against

S . . learners use only a subset of input features, while weak
the SGD baseline is consistent with the convergence rat :
L . earners of competing methods use all features and update
analysis given by Theored To better see this conver-

: them differently. As a result, the weak learners used by
gence rate difference, we produced plots of the error rat%ur method are actually weaker than in competing meth-
between our method and the SGD baseline, as online learn- y pelng
: . ods. Nevertheless, our method often compares favorably.
ing progresses (see supplemental material).

5.2. Comparison with Online Boosting Methods 6. Future Work

We further compare our method with three representalhis work can be viewed as an initial attempt to ex-
tive online boosting methods: 22BoosT(Oza & Russe|l ~ plore the proposed Bayesian framework in the context
2001), OGBoosTis the online GradientBoost method pro- Of online learning of classifier ensembles. Potential fol-
posed by eistner et al. 2009, and OSBoOsTis the on-  lowup works include the analysis of sequential Monte
line Smooth-Boost proposed by Chen et 8019. Our Carlo (Doucet & Johansen2009 for non-closed-form
method is trained and compared following their setup.Bayesian update, the extension of our analysis to non-
However, we discard the “licnn1” and “Web Page” datasetsstationary environments, the application of our framework
from the tables of Chen et al. 2012, because they are to more general ensemble rules, and comparison studies
highly biased with portions of positive samples aroori) ~ between our method and some more sophisticated SGD-
and0.03 respectively, and even a naive “always negative”based schemes, such as Polyak-Ruppert averaging.

classifier achieves a comparable performance. Acknowledgment: This work was supported in part by US

The error rates for this experiment are shown in TaBles NSF Grants 0910908 and 0965579.
and 3. Our method consistently outperforms competing

methods for the Perceptron weak learner and performa  Appendix

among the best for the Naive Bayes weak learner. It is

worth noting that our method is the only one that outper-A.1. Proof of Theorem1

forms the baseline in all data sets, which further confirm

: *Proof. The convergence 4] follows from Theorem 2.1
the effectiveness of the proposed ensemble scheme.

in (Chen 1985. The first condition in Assumptiod is

We also note that despite our best efforts to align both the&quivalent to conditions (P1) and (P2) therein, while the
weak learner construction and experiment setup with comsecond and third conditions correspond to (C1) and (C2).
peting methodsGhen et al.2012 Chen 2013, there are  The last condition is equivalent to (C3.1), which then im-

inevitably differences in weak learner construction. fijys  plies (C3) there to invoke its Theorem 2.1 to concludle (
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Table 2.Error rate using online Perceptron weak learner, for ouhotkt/s methods as reported i@Hen et al.2012).

DATA SET # EXAMPLES | PERCEPTRON| OzABoOST | OGBoosT | OSBoosT | OuRS
HEART 270 0.2489 0.2356 0.2267 0.2356 0.2134
BREAST-CANCER 683 0.0592 0.0501 0.0445 0.0466 0.0419
AUSTRALIAN 693 0.2099 0.2012 0.1962 0.1872 0.1655
DIABETES 768 0.3216 0.3169 0.3313 0.3185 0.3098
GERMAN 1000 0.3256 0.3364 0.3142 0.3148 0.3105
SPLICE 3175 0.2717 0.2759 0.2625 0.2605 0.2584
MUSHROOMS 8124 0.0148 0.0080 0.0068 0.0060 0.0062
ADULT 48842 0.2093 0.2045 0.2080 0.1994 0.1682
CoD-RNA 488565 0.2096 0.2170 0.2241 0.2075 0.1934
COVERTYPE 581012 0.3437 0.3449 0.3482 0.3334 0.3115

Table 3.Error rate using online Naive Bayes weak learner, for ouhm@t/s methods as reported @DHen et al.2012). For “Cod-RNA”
our implementation of the Naive Bayes baseline was unaldepdcate the reported result; ours gave 0.2555 instead.

DATA SET #EXAMPLES | NAIVE BAYES | OzAB0OOST | OGBoosT | OSBoosT | OURS

HEART 270 0.1904 0.2570 0.3037 0.2059 0.1755
BREAST-CANCER 683 0.0474 0.0635 0.1004 0.0489 0.0408
AUSTRALIAN 693 0.1751 0.2133 0.2826 0.1849 0.1611
DIABETES 768 0.2664 0.3091 0.3292 0.2622 0.2467
GERMAN 1000 0.2988 0.3206 0.3598 0.2730 0.2667
SPLICE 3175 0.2520 0.1563 0.1863 0.1370 0.1344
MUSHROOMS 8124 0.0076 0.0049 0.0229 0.0029 0.0054
ADULT 48842 0.2001 0.1912 0.1878 0.1581 0.1658
CoD-RNA 488565 0.2206x 0.0796 0.0568 0.0581 0.2552
COVERTYPE 581012 0.3518 0.3293 0.3732 0.3634 0.3269

To show the bounds) we take expectation o) to get Then Theorem 5.9 inRasupathy & Kim2011) stipulates

thatvT' (A% — A*) 5 N(0, %), where

(V2Lr(Asi g57))? (Exyigrr[Ar] — A5) = 0 (14)
% = (V22(N) " War(Ve(h g))(V22(A) L (15)

which is valid because of the uniform integrability condi- _ _
tion supy Ex . jgur || A — )\;HH“ < oo (Durrett 2010. andVar(-) denotes the covariance matrix.

Therefore Ex . g1:r [Ar] =A% = (VLA g5T)) wr  Now sinceV2Lr (A ghT) = 321 (V20(A5; ¢t)) and

wherewy = o(1) by (14). But then LS (V2N 8Y) — E[V2U(A*;g)] by law of large
, S numbers Durrett 2010, we haveV2Lr (N5 gh?) =
|(P2Lr (i) we | O(T). Then the bound ir) implies that Ex, g1+ [Ar] —
_1 * | 1 .
< H(VQLT()\*T;gl:T)) | wels Al =o (ﬁ> In other words, the difference between
! posterior mean and. is of smaller scale than/v/T.
c _ 1 By Slutsky Theorem Serfling 2009, this implies that
> 1/2”WTHl =0\ 12 d
oy o VT(Expgrr[Ar] — A*) 5 N(0, %) also.
where||-||; when applied to matrix is the inducéd-norm. ~ On the other hand, for SGD6) it is known
This shows §). O  (e.g. Asmussen & Glynn2007) that the optimal step size
parameter value is, = 1/T and K = V2z(\), in which
A.2. Proof of Theorem2 case the central limit theorem for the update will be

Proof. The proof follows by combining5) with estab-  given by vT(Ar -9 4 N(0,%) whereX is exactly
lished central limit theorems for sample average approx{(15). For other choices of step size, either the convergence
imation (Pasupathy & Kim 2011 and stochastic gradient rate is slower than orddr/v/T or the asymptotic variance,
descent (SGD) algorithms. First, let\) := —E[((X\;g)],  denoted by, is such thak — X is positive definite. There-
and\* := argmin, z(\). The quantity\’. can be viewed fore, by comparing the asymptotic variance, the posterior
as the minimizer of- Z;fﬂ ¢(x: gt) (the initial loss func-  Mean always has a faster convergence unless the step size
tion can be argued to be negligible after dividing By. N SGD is chosen optimally. [
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A.3. Proof of Theorem3

Proof. Suppose\ is used in the strong classifietk). De-
notel(-) as the indicator function. Consider

szgz x y] /[szgz x,1)

Py =1Jx) + Z Aigi(x

i=1

Exy)

~DP(y = 15| dP(x)

> /{I (Z Aigi(x,1) > Z)\igi(x,—l)> 'Z/\i
i=1 i=1 i=1
9i(x, )Py = 1|x) + I(ZAigl-(x, D<o
X _1 ) ZAzgz - _1|X):|dP(X)
> /{I (Z Aigi(x,1) > Z)\igi(x 1)) Z/\z
gi(X,—l)P Yy = 1|X (i 191 X, 1 < Z/\
(x,—1) ) Z/\ZQZ x,1)P(y = —1|x)}dP(x)
= E(x,y) I(error)Z)\igi(x, —y)]
i=1
—(p—1)
>

P(erron? (E(x,y) [(Z Aigi(x, —?/)) : ])

the last inequality holds by reverse Holder inequality

(Hardy et al, 1952. So

Z )\igi (X, y)] ) p

i=1

: (E(w) [(Z Aigi(x

and the result ¥2) follows by plugging in \; =
for eachi, the minimizer of E[¢(X;g)],

O

P(erron < <E(x7y)

HE(x y) [g‘b (X y
which can be solved directly whetis in the form 7).

A.4. Proof of Theorem4

Proof. Since for eachi, ¢! are i.i.d., the sample mean
(1/T) Zt , & follows a central limit theorem. It can be
argued using the delta methdsigffling 2009 that the pos-
terior mean 10) satisfies

a+T _ 1
B+0" gt 0E[gi(x,y)]

Var(gi(x,9)) )
T02(Elgi (%, y)))*

For the stochastic gradient descent schetg {t would be
useful to cast the objective functionag\;) = E[0)\;g; —
log A;]. Let Af = argmin,z;(\) Which can be directly
solved asgr+. Thenz”(/\*) = )\*2 = 02(Egi(x,9)])>.

If the step sizey > 22,,— the update schemégd) will

generate\! that sat|sf|es the following central limit theo-
rem (Asmussen & Glynn2007 Kushner & Yin, 2003

— N (0 (16)

VT(AT = A7) 5 N(0,02) (17)
where
o0 " * 1
o} = / U =22 D)2y (99i(x, y) — )\*) ds
0
(18)

andfg;(x,y) — AL is the unbiased estimate of the gra-
dient at the point)\* On the other hand)! — \f =
wp( T) if v < 5 ,,(k 7. i.e. the convergence is slower

than (7) asymptotlcally and so we can disregard this
case Asmussen & Glynn2007). Now substitute\! =

ﬁ[q] into (18) to obtain
op = 9272Var(9i(xay))/ =234
0
0242V ar(gi(x,y)) _ 0%+*Var(gi(x,9))
2v/ N — 1 270%(Elgi(x, y)])? — 1

) and lety = 7/6%, we get
o FVar(gi(x,y))

o

T 02(23(Elgi(x, )2 -

3 (19)
if 5 2z”0()\:f) =

1
2(Elg: (x,9)])*”

We are now ready to compare the asymptotic variance in
(16) and (19), and show that for alfy, the one in 16) is
smaller. Note that this is equivalent to showing that

Var(gi(x,y)) V2Var(gi(x,y))
02(Elgi(x,y))* ~ 62(27(Elgi(x,)])* —
Eliminating the common factors, we have
1 o
(Elgi(x,y)])? ~ 27 = 1/(Elgi(x,y)])?
and by re-arranging the terms, we have

1)

1 2
- - >0
(Elgi(x, y)])Q)
which is always true. Equality holds iff W

which corresponds tg = W.Therefore, the
asymptotic variance inl@) is always smaller tharl@), un-
less the step sizgis chosen optimally. O

<MMme@—

— @
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