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Abstract
We propose a Bayesian framework for recur-
sively estimating the classifier weights in online
learning of a classifier ensemble. In contrast with
past methods, such as stochastic gradient descent
or online boosting, our framework estimates the
weights in terms of evolving posterior distribu-
tions. For a specified class of loss functions, we
show that it is possible to formulate a suitably de-
fined likelihood function and hence use the poste-
rior distribution as an approximation to the global
empirical loss minimizer. If the stream of train-
ing data is sampled from a stationary process, we
can also show that our framework admits a supe-
rior rate of convergence to the expected loss min-
imizer than is possible with standard stochastic
gradient descent. In experiments with real-world
datasets, our formulation often performs better
than online boosting algorithms.

1. Introduction

The literature on online ensemble classification has studied
recursive mechanisms to combine several weak classifiers,
when given labeled training data{xt, yt}Tt=1 that arrive
sequentially. Different approaches have been proposed,
including online extensions of boosting (Oza & Russell,
2001; Pelossof et al., 2009) and stochastic gradient descent
based methods (Babenko et al., 2009b; Leistner et al.,
2009; Grbovic & Vucetic, 2011). Recently, Chen et
al. (2012) formulated a smoothed boosting algorithm based
on the analysis of regret from offline benchmarks.

In this paper, we pose the online ensemble problem as
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a loss minimization problem with respect to the ensem-
ble weights, and propose an online ensemble classification
method that is not based on boosting or gradient descent.
The main idea is to recursively estimate a posterior distri-
bution of the ensemble weights in a Bayesian manner. We
show that, for a given class of loss functions, we can define
a likelihood function on the ensemble weights and, with an
appropriately formulated prior distribution, we can gener-
ate a posterior mean that closely approximates the empiri-
cal loss minimizer.

Our proposed scheme is straightforward, but powerful in
two respects. First, it can approximate the global optimal
solution, in contrast with local methods such as stochas-
tic gradient descent (SGD). Second, assuming the training
data is sampled from a stationary process, our Bayesian
scheme possesses a rate of convergence to the expected loss
minimizer that is at least as fast as standard SGD. In fact,
our rate is faster unless the SGD step size is chosen op-
timally, which cannot be donea priori in the online set-
ting. We identify the class of loss functions where both of
the above properties are precisely satisfied. In experiments
with real-world datasets, our formulation often performs
better than state-of-the-art online boosting algorithms.

2. Related Work

A number of past works focus on online learning with con-
cept drift (Wang et al., 2003; Kolter & Maloof, 2005; 2007;
Minku, 2011), which differs from stationary online set-
tings. Given the technical difficulty, theoretical analysis for
concept drift seems to be underdeveloped. Kolter & Mal-
oof (2005) proved error bounds for their proposed method,
which appears to be the first such theoretical analysis, yet
such analysis is not easily generalized to other methods
in this category. Other works, such as Schapire (2001)
and Cesa-Bianchi & Lugosi (2003), obtained performance
bounds from the perspective of iterative games.
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Our work is more closely related to methods that operate
in a stationary environment, most notably online boosting
methods. One of the first methods was proposed by Oza
& Russell (2001), who showed asymptotic convergence to
batch boosting under certain conditions. However, the con-
vergence result only holds for some simple “lossless” weak
learners (Oza, 2001), such as Naive Bayes. Other variants
of online boosting have been proposed, such as methods
that employ feature selection (Grabner & Bischof, 2006;
Liu & Yu , 2007), semi-supervised learning (Grabner et al.,
2008), multiple instance learning (Babenko et al., 2009a),
and multi-class learning (Saffari et al., 2010). However,
most of these works consider the design and update of
weak learners beyond that of (Oza, 2001) and, thus, do
not bear the convergence guarantee therein. Other meth-
ods employ the gradient descent framework, such as Online
GradientBoost (Leistner et al., 2009), Online Stochastic
Boosting (Babenko et al., 2009b) and Incremental Boost-
ing (Grbovic & Vucetic, 2011). Many of these methods
possess convergence results, which provide a basis for
comparison with our framework. In fact, we show that our
method compares favorably to gradient descent in terms of
asymptotic convergence rate. Lastly, Chen et al. (2012)
proposed an online boosting method with a theoretical
bound on the error rate, with the novel design of a smoother
and more conservative update of the online weak classi-
fiers.

Our idea is related to, yet differs from, simulated anneal-
ing (Laarhoven et al., 1987) and Bayesian model averag-
ing (Hoeting et al., 1999). The former is a global optimiza-
tion technique, typically conducted by defining a proba-
bility distribution that has the objective function that one
wants to minimize as an exponent, and running Monte
Carlo to estimate the peak of this distribution. Simulated
annealing, nevertheless, is primarily motivated for deter-
ministic global optimization, and should be contrasted with
the stochastic and also the sequential nature of our frame-
work. Next, conventional Bayesian model averaging aims
to combine several plausible models as a closer description
of the data. In contrast, our Bayesian framework does not
focus on the actual model that generates the data, but is
instead motivated as a loss minimization algorithm.

3. Bayesian Recursive Ensemble

We denote the input feature byx and its classification la-
bel byy (1 or−1). We assume that we are givenm binary
weak classifiers{ci(x)}mi=1, and our goal is to find the best
ensemble weightsλ = (λ1, . . . , λm) whereλi ≥ 0, to con-
struct an ensemble classifier. For now, we do not impose
a particular form of ensemble method (we defer this until
Section4), although one example form is

∑

i λici(x). We
focus on online learning, where training data(x, y) comes

in sequentially, one at a time att = 1, 2, 3, . . ..

3.1. Loss Specification

We first introduce a loss function at the weak classifier
level. Given a training pair(x, y) and an arbitrary weak
classifierh, we denoteg := g(h(x), y) as a non-negative
loss function. Possible choices ofg include the logistic
loss function, hinge loss, zero-one loss, etc. Ifh is one of
the given weak classifiersci, we will denoteg(ci(x), y) as
gi(x, y), or simply gi for ease of notation. Furthermore,
we definegti := g(cti(x

t), yt) where(xt, yt) is the training
sample andcti the updatedi-th weak classifier at timet. To
simplify notation, we useg := (g1, . . . , gm) to denote the
vector of losses for the weak classifiers,g

t := (gt1, . . . , g
t
m)

to denote the losses at timet, andg1:T := (g1, . . . ,gT ) to
denote the losses up to timeT .

With the above notation, we letℓt(λ;gt) be some ensem-
ble loss function at timet, which depends on the ensemble
weights and the individual loss of each weak classifier. We
then define our cumulative ensemble loss as follows:

LT (λ;g
1:T ) = ℓ0(λ) +

T
∑

t=1

ℓt(λ;g
t) (1)

whereℓ0(λ) can be regarded as an initial loss, which be-
comes negligible asT progresses.

We make two sets of assumptions onLT that are adapted
from Chen (1985): one on the regularity conditions onLT ,
the other on the form ofℓt to ensure eligibility in applying
our Bayesian approach. We now specify these assumptions.

Assumption 1 (Regularity conditions). Assume that for
eachT , there exists aλ∗

T that minimizes(1), and

1. “local optimality”: for eachT , ∇LT (λ
∗
T ;g

1:T ) = 0
and∇2LT (λ

∗
T ;g

1:T ) is positive definite.

2. “steepness”: the minimum eigenvalue of
∇2LT (λ

∗
T ;g

1:T ) diverges to∞ asT →∞.

3. “smoothness”: For anyǫ > 0, there exists a positive
integerN andδ > 0 such that for anyT > N andθ ∈
Hδ(λ

∗
T ) = {θ : ‖θ − λ∗

T ‖2 ≤ δ}, ∇2LT (θ;g
1:T )

exists and satisfies

I−A(ǫ) ≤ ∇
2
LT (θ;g

1:T )
(

∇
2
LT (λ

∗

T ;g
1:T )

)

−1

≤ I+A(ǫ)

for some positive semidefinite symmetric matrixA
whose largest eigenvalue tends to 0 asǫ → 0, and
the inequalities above are matrix inequalities.

4. “concentration”: for anyδ > 0, there exists a positive
integerN and constantsc, p > 0 such that for any
T > N andθ 6∈ Hδ(λ

∗
T ), we have

LT (θ;g
1:T )− LT (λ

∗
T ;g

1:T ) <

c
(

(θ − λ∗
T )

′∇2LT (λ
∗
T ;g

1:T )(θ − λ∗
T )
)p
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In the situation whereℓt is separable in terms of each
component ofλ, i.e. ℓt(λ;g) =

∑m
i=1 ri(λi;g) and

ℓ0(λ) =
∑m

i=1 si(λi) for some twice differentiable func-
tionsri(·;g) andsi(·), the assumptions above will depend
only on fi(λ;g

1:T ) :=
∑T

t=1 ri(λ;g
t) + si(λ) for each

i. For example, Condition 3 in Assumption1 reduces to
merely checking uniform continuity of eachf ′′

i (·;g1:T ).

Condition 1 in Assumption1 can be interpreted as the stan-
dard first and second order conditions for the optimality of
λ∗
T , whereas Condition 3 in essence requires continuity of

the Hessian matrix. Conditions 2 and 4 are needed for the
use of Laplace method (Cox & Hinkley, 1974), which, as
we will show later, stipulates that the posterior distribution
peaks near the optimal solutionλ∗

T .

Assumption 2(Density interpretation). The loss functions
ℓt satisfy

∫

e−ℓt(λ;z)dz = 1 (2)

for t = 1, 2, . . ., andℓ0 satisfies
∫

e−ℓ0(w)dw = 1. (3)

In view of (1), ℓ0 does not contribute significantly to the
cumulative loss asT increases, and it can be specified by
the user on the basis of convenience. The condition in (2)
is more crucial, and requires that the exponent of the loss
functionℓt(λ; ·) behaves exactly as a probability density.

3.2. A Bayesian Framework

Loss functionsℓt that satisfy Assumptions1 and2 can be
used to definept(g|λ) = e−ℓt(λ;g) as a likelihood function
for g, parametrized byλ andp0(λ) = e−ℓ0(λ), as a prior
for the parameterλ. Our update scheme forλ then hinges
on calculating the posterior mean forλ at each step. A
summary of this algorithm is given in Algorithm1.

Algorithm 1 Bayesian Ensemble

Input: streaming samples{(xt, yt)}Tt=1

online weak learners{cti(x)}mi=1

chosen likelihoodp(g|λ) and priorp(λ)
Initialize: hyper-parameters forp(g|λ) andp(λ)
for t = 1 to T do
∀i, computegti = g(cti(x

t), yt)

update for the posterior distribution ofλ :

p(λ|g1:t) ∝ p(gt|λ)p(λ|g1:t−1) ∝
t
∏

s=1
p(gs|λ)p(λ)

update the weak learners using(xt, yt)
end for

Algorithm 1 offers the following desirable property.

Theorem 1. Under Assumptions1 and 2, the Bayesian
scheme in Algorithm1 produces a posterior distribution
pT (λ|g1:T ) satisfying the asymptotic normality property

(

∇2LT (λ
∗
T ;g

1:T )
)1/2

(λT − λ∗
T )

d→ N(0, 1) (4)

whereλT is interpreted as a random variable with distri-

butionpT (λ|g1:T ), and
d→ denotes convergence in distri-

bution. Furthermore, under the uniform integrability con-
dition sup

T
EλT |g1:T ‖λT − λ∗

T ‖1+ǫ
1 <∞ for someǫ > 0,

we have

|EλT |g1:T [λT ]− λ∗
T | = o

(

1

σ
1/2
T

)

(5)

whereEλT |g1:T [·] denotes the posterior expectation andσT

is the minimum eigenvalue of the matrix∇2LT (λ
∗
T ;g

1:T ).

The idea behind (4) comes from a classical technique
in Bayesian asymptotics known as the Laplace method
(Cox & Hinkley, 1974). Theorem1 states that given the
loss structure satisfying Assumptions1 and2, the poste-
rior distribution ofλ under our Bayesian update scheme
provides an approximation to the minimizerλ∗

T of the cu-
mulative loss at timeT , asT increases, by tending to a nor-
mal distribution peaked atλ∗

T with shrinking variance. The
bound (5) states that this posterior distribution can be sum-
marized using the posterior mean to give a point estimate of
λ∗
T . Moreover, note thatλ∗

T is the global, not merely local,
minimizer of the cumulative loss. This approximation of
global optimum highlights a key advantage of the Bayesian
scheme over other methods such as stochastic gradient de-
scent (SGD), which only find a local optimum.

The next theorem states another benefit of our Bayesian
scheme over standard SGD. Supposing that SGD does in-
deed converge to the global optimum. Even so, it turns out
that the Bayesian scheme converges faster than standard
SGD under the assumption of i.i.d. training samples.

Theorem 2. Suppose Assumptions1 and2 hold. Assume
also thatℓt(λ;g) = ℓ(λ;g) are identical acrosst andgt

are i.i.d., withE[ℓ(λ;g)] <∞ andE[ℓ(λ;g)2] <∞. The
Bayesian posterior mean produced by Alg.1 converges to
argmin

λ
E[ℓ(λ;g)] strictly faster than standard SGD (sup-

posing it converges to the global minimum), given by

λT+1 ← λT − ǫTK∇ℓ(λT ;g
T ) (6)

in terms of the asymptotic variance, except when the step
sizeǫT and the matrixK is chosen optimally.

In Theorem2, by asymptotic variance we mean the fol-
lowing: it turns out that both the posterior mean and the
update from SGD possess versions of the central limit the-

orem, in the form
√
T (λT − λ∗)

d→ N(0,Σ) whereλ∗ =
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argmin
λ
E[ℓ(λ;g)]. Our comparison is on the asymptotic

variancesΣ: the smallerΣ is, the smaller the multiplicative
constant in the rate of convergence1/

√
T .

The result follows from first comparing central limit theo-
rems for the minimizer of cumulative lossλ∗

T and the stan-
dard SGD update in (6), and secondly, from the relation
(5), which states that the difference between the posterior
mean andλ∗

T decreases at a rate faster than the central limit
theorem, and hence is asymptotically negligible.

4. Loss Functions, Likelihoods and Priors

We first discuss in depth a simple and natural choice of
loss function and its corresponding likelihood function and
prior, which are also used in our experiments in Section5.
Then we briefly give examples of other loss functions that
also fit into our framework.

4.1. Exponential Likelihood and Gamma Prior

For anyt, consider

ℓt(λ;g) = θ

m
∑

i=1

λigi −
m
∑

i=1

logλi (7)

The motivation for (7) is straightforward: it is the sum of
individual loss each weighted byλi. The extra termlogλi

preventsλi from approaching zero, the trivial minimizer
for the first term. The parameterθ specifies the trade-off
between the importance of the first and the second term.
This loss function satisfies Assumptions1 and2. In par-
ticular, the Hessian ofLT turns out to not depend ong1:T ,
therefore all conditions of Assumption1 can be verified
easily. For Assumption2, the exponent of the negation of
the loss function in (7), plus a constant termm log θ, which
does not affect the loss minimization, integrates to 1.

Using the discussion in Section3.2, we choose the expo-
nential likelihood

p(g|λ) =
m
∏

i=1

(θλi)e
−θλigi (8)

To facilitate computation, we employ the Gamma prior:

p(λ) ∝
m
∏

i=1

λα−1
i e−βλi (9)

whereα andβ are the hyper shape and rate parameters.
Correspondingly, we pickℓ0(λ) = β

∑m
i=1 λi − (α −

1)
∑m

i=1 logλi. To be concrete, the cumulative loss in (1)
(disregarding the constant terms) is

β

m
∑

i=1

λi−(α−1)
m
∑

i=1

logλi+

T
∑

t=1

(

θ

m
∑

i=1

λig
t
i −

m
∑

i=1

log λi

)

Now, under conjugacy of (8) and (9), the posterior distribu-
tion ofλ aftert steps is given by the Gamma distribution

p(λ|g1:t) ∝
m
∏

i=1

(λi)
α+t−1e−(β+θ

∑
t
s=1 gs

i )λi

Therefore the posterior mean for eachλi is

α+ t

β + θ
∑t

s=1 g
s
i

(10)

We use the following prediction rule at each step:

y =







1 if
m
∑

i=1

λigi(x, 1) ≤
m
∑

i=1

λigi(x,−1)
−1 otherwise

(11)

where eachλi is the posterior mean given by (10). For this
setup, Algorithm1 can be cast as Algorithm2 below, which
is to be implemented in the numerical section.

Algorithm 2 Closed-form Bayesian Ensemble

Input: streaming samples{(xt, yt)}Tt=1

online weak learners{cti(x)}mi=1

Initialize: parametersθ for likelihood (8) and parame-
tersα, β for prior (9)
for t = 1 to T do
∀i, computegti = g(cti(x

t), yt), whereg is logistic
loss function

update the posterior mean ofλ by (10)

update the weak learners according to the particular
choice of online weak learner

make prediction by (11) for next incoming sample
end for

The following bound provides further understanding of the
loss function (7) and the prediction rule (11), by relating
their use with a guarantee on the prediction error:

Theorem 3. Suppose thatgt are i.i.d., so thatλ∗
T con-

verges toλ∗ := argmin
λ
E[ℓ(λ;g)] for ℓ defined in(7).

The prediction error using rule(11) withλ∗ is bounded by

P(x,y)(error) ≤ m
1
p



E(x,y)





(

m
∑

i=1

gi(x,−y)
E[gi(x, y)]

)
−1
p−1









p−1
p

(12)
for anyp > 1.

The proof, given in the Appendix, provides a bound for
the long-run prediction error under stationary environ-
ment. To make sense of this result, note that the quantity

1
E[gi(x,y)]

gi(x,−y) can be interpreted as a performance in-
dicator of each weak classifier, i.e. the larger it is, the bet-
ter the weaker classifier is, since a good classifier should
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have a small lossE[gi(x, y)] and correspondingly a large
gi(x,−y). As long as there exists some good weak classi-
fiers among them choices,

∑m
i=1

gi(x,−y)
E[gi(x,y)]

will be large,
which leads to a small error bound in (12).

Finally, in correspondence to Theorem2, the SGD for (7)
is written as

λt+1
i = λt

i −
γ

t

(

θgti −
1

λt
i

)

(13)

whereγ is a parameter that controls the step size. The fol-
lowing result is a consequence of Theorem2 (a proof for
this particular case appears in the Appendix).

Theorem 4. Suppose thatgt are i.i.d., and 0 <
E(x,y)[gi(x, y)] < ∞ andV ar(x,y)(gi(x, y)) < ∞. For
eachλi, the posterior mean given by(10) alwayshas a
rate of convergence at least as fast as the SGD update(13)
in terms of asymptotic variance. In fact, it is strictly better
in all situations except when the step size parameterγ in
(13) is set optimallya priori.

In Section5 we will see that this simple choice of loss func-
tion and Bayesian update scheme lead to superior empirical
performance compared with other methods.

4.2. Other Examples

Note that while our simple choice of (7) can be directly
minimized, this is not true in general. We now give a few
other examples of acceptable ensemble loss functions.

1. The loss function

ℓt(λ;g) =
m
∑

i=1

(1− λi) log gi + θ
m
∑

i=1

gi

+

m
∑

i=1

log Γ(λi)− (log θ)

m
∑

i=1

λi

whereθ > 0 is a parameter, corresponds to the prod-
uct of Gamma likelihood given by

p(g|λ) =
m
∏

i=1

θλi

Γ(λi)
gλi−1
i e−θgi

A conjugate prior forλ is available, in the form

p(λ) ∼
m
∏

i=1

aλi−1θcλi

Γ(λi)b

wherea, b, c > 0 are hyper parameters.

2. We can generalize the ensemble weights to include
two parametersλi = (αi, βi). In this case, we may
define the loss function as

ℓt(α,β;g) =

m
∑

i=1

βigi +

m
∑

i=1

(1− αi) log gi

+

m
∑

i=1

log Γ(αi)−
m
∑

i=1

αi log βi

with the following Gamma likelihood

p(g|α,β) =

m
∏

i=1

βαi

i

Γ(αi)
gαi−1e−βigi

A conjugate prior is available forα andβ jointly

p(α,β) ∼
m
∏

i=1

pαi−1e−βiq

Γ(αi)rβ
−αis
i

wherep, q, r, s are hyper parameters.

5. Experiments

We report two sets of experiments on binary classification
benchmark datasets1. In the first set of experiments, we
evaulate our scheme’s performance vs. three baseline meth-
ods, given static pre-trained weak learners. In the second
set of experiments, we compare with leading online bosting
methods, following the setup of (Chen et al., 2012).

Following (Chen et al., 2012), we report experiments using
two different weak learners: Perceptron and Naive Bayes.
In every trial, each ensemble method is given 100 weak
learners and the average error rate is reported over 5 ran-
dom trials of different orders of each dataset.

In all experiments, we have set the hyperparameters of our
methodα = β = 1 andθ = 0.1. From the expression
of posterior mean (10), the prediction rule (11) is unrelated
to the values ofα, β andθ in long term. In experiments,
we also find that our method achieves stable results with re-
spect to settings of these parameters. However, the stochas-
tic gradient descent baseline (SGD) (13) is sensitive toθ;
therefore, use the same valueθ = 0.1 in our method.

5.1. Comparison with Baseline Methods

We compare our online ensemble method with three base-
line methods, using two different weak learners: PERCEP-
TRON and NAIVE BAYES. The first baseline is a single
Perceptron/Naive Bayes classifier. The second baseline
(VOTING) is the uniform ensemble of weak learners. The
third baseline (SGD) is the ensemble method with ensem-
ble weights estimated by stochastic gradient descent (13).
OURS is our proposed Bayesian ensemble method. The
same static weak learners are shared by all ensemble meth-
ods. Each data set is split into training and testing sets for
each random trial, where a training set contains no more
than10% of the total amount of data. In order to make
weak learners divergent, a weak learner uses a randomly

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Table 1.Error rate for our method vs baselines, using online Perceptron/Naive Bayes weak learners.

PERCEPTRON WEAK LEARNER NAÏVE BAYES WEAK LEARNER

DATA SET # EXAMPLES PERCEPTRON VOTING SGD OURS NAÏVE BAYES VOTING SGD OURS

HEART 270 0.287 0.275 0.261 0.249 0.249 0.214 0.216 0.210
BREAST-CANCER 683 0.062 0.052 0.051 0.041 0.048 0.044 0.043 0.039
AUSTRALIAN 693 0.212 0.209 0.167 0.143 0.248 0.241 0.240 0.225
DIABETES 768 0.356 0.339 0.321 0.293 0.299 0.284 0.283 0.278
GERMAN 1000 0.359 0.337 0.334 0.323 0.348 0.327 0.315 0.312
SPLICE 3175 0.393 0.371 0.331 0.317 0.169 0.174 0.169 0.160
MUSHROOMS 8124 0.120 0.104 0.102 0.078 0.032 0.049 0.047 0.026
IONOSPHERE 351 0.279 0.260 0.257 0.249 0.199 0.207 0.201 0.190
SONAR 208 0.414 0.400 0.392 0.388 0.306 0.305 0.304 0.300
SVMGUIDE3 1284 0.385 0.437 0.414 0.332 0.311 0.299 0.281 0.240

sampled subset of data features as input for both training
and testing. The first baseline always uses all the features.

Classifier error rates for this experiment are shown in Ta-
ble1. Our proposed method consistently performs the best
for all datasets. Its superior performance against the voting
baseline is consistent with the asymptotic convergence re-
sult given by Theorem1. Its superior performance against
the SGD baseline is consistent with the convergence rate
analysis given by Theorem4. To better see this conver-
gence rate difference, we produced plots of the error rate
between our method and the SGD baseline, as online learn-
ing progresses (see supplemental material).

5.2. Comparison with Online Boosting Methods

We further compare our method with three representa-
tive online boosting methods: OZABOOST(Oza & Russell,
2001), OGBOOST is the online GradientBoost method pro-
posed by (Leistner et al., 2009), and OSBOOST is the on-
line Smooth-Boost proposed by Chen et al. (2012). Our
method is trained and compared following their setup.
However, we discard the “Ijcnn1” and “Web Page” datasets
from the tables of (Chen et al., 2012), because they are
highly biased with portions of positive samples around0.09
and0.03 respectively, and even a naive “always negative”
classifier achieves a comparable performance.

The error rates for this experiment are shown in Tables2
and 3. Our method consistently outperforms competing
methods for the Perceptron weak learner and performs
among the best for the Naive Bayes weak learner. It is
worth noting that our method is the only one that outper-
forms the baseline in all data sets, which further confirms
the effectiveness of the proposed ensemble scheme.

We also note that despite our best efforts to align both the
weak learner construction and experiment setup with com-
peting methods (Chen et al., 2012; Chen, 2013), there are
inevitably differences in weak learner construction. Firstly,

given that our method only focuses on optimizing the en-
semble weights, each incoming sample is treated equally in
the update of all weak learners, while all three online boost-
ing methods adopt more sophisticated weighted update of
weak learners, where the sample weight is dynamically ad-
justed during each round of update. Secondly, in order to
make weak learners different from each other, our weak
learners use only a subset of input features, while weak
learners of competing methods use all features and update
them differently. As a result, the weak learners used by
our method are actually weaker than in competing meth-
ods. Nevertheless, our method often compares favorably.

6. Future Work

This work can be viewed as an initial attempt to ex-
plore the proposed Bayesian framework in the context
of online learning of classifier ensembles. Potential fol-
lowup works include the analysis of sequential Monte
Carlo (Doucet & Johansen, 2009) for non-closed-form
Bayesian update, the extension of our analysis to non-
stationary environments, the application of our framework
to more general ensemble rules, and comparison studies
between our method and some more sophisticated SGD-
based schemes, such as Polyak-Ruppert averaging.
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A. Appendix

A.1. Proof of Theorem1

Proof. The convergence in (4) follows from Theorem 2.1
in (Chen, 1985). The first condition in Assumption1 is
equivalent to conditions (P1) and (P2) therein, while the
second and third conditions correspond to (C1) and (C2).
The last condition is equivalent to (C3.1), which then im-
plies (C3) there to invoke its Theorem 2.1 to conclude (4).
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Table 2.Error rate using online Perceptron weak learner, for our method vs methods as reported in (Chen et al., 2012).

DATA SET # EXAMPLES PERCEPTRON OZABOOST OGBOOST OSBOOST OURS

HEART 270 0.2489 0.2356 0.2267 0.2356 0.2134
BREAST-CANCER 683 0.0592 0.0501 0.0445 0.0466 0.0419
AUSTRALIAN 693 0.2099 0.2012 0.1962 0.1872 0.1655
DIABETES 768 0.3216 0.3169 0.3313 0.3185 0.3098
GERMAN 1000 0.3256 0.3364 0.3142 0.3148 0.3105
SPLICE 3175 0.2717 0.2759 0.2625 0.2605 0.2584
MUSHROOMS 8124 0.0148 0.0080 0.0068 0.0060 0.0062
ADULT 48842 0.2093 0.2045 0.2080 0.1994 0.1682
COD-RNA 488565 0.2096 0.2170 0.2241 0.2075 0.1934
COVERTYPE 581012 0.3437 0.3449 0.3482 0.3334 0.3115

Table 3.Error rate using online Naive Bayes weak learner, for our method vs methods as reported in (Chen et al., 2012). For “Cod-RNA”
our implementation of the Naive Bayes baseline was unable toduplicate the reported result; ours gave 0.2555 instead.

DATA SET # EXAMPLES NAIVE BAYES OZABOOST OGBOOST OSBOOST OURS

HEART 270 0.1904 0.2570 0.3037 0.2059 0.1755
BREAST-CANCER 683 0.0474 0.0635 0.1004 0.0489 0.0408
AUSTRALIAN 693 0.1751 0.2133 0.2826 0.1849 0.1611
DIABETES 768 0.2664 0.3091 0.3292 0.2622 0.2467
GERMAN 1000 0.2988 0.3206 0.3598 0.2730 0.2667
SPLICE 3175 0.2520 0.1563 0.1863 0.1370 0.1344
MUSHROOMS 8124 0.0076 0.0049 0.0229 0.0029 0.0054
ADULT 48842 0.2001 0.1912 0.1878 0.1581 0.1658
COD-RNA 488565 0.2206∗ 0.0796 0.0568 0.0581 0.2552
COVERTYPE 581012 0.3518 0.3293 0.3732 0.3634 0.3269

To show the bound (5) we take expectation on (4) to get
(

∇2LT (λ
∗
T ;g

1:T )
)

1
2 (EλT |g1:T [λT ]− λ∗

T )→ 0 (14)

which is valid because of the uniform integrability condi-
tion supT EλT |g1:T ‖λT − λ∗

T ‖1+ǫ
1 < ∞ (Durrett, 2010).

Therefore,EλT |g1:T [λT ]−λ∗
T =

(

∇2L(λ∗
T ;g

1:T )
)− 1

2
wT

wherewT = o(1) by (14). But then
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∥

∥

(
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)− 1

2
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1
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∥
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∥

(
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)− 1
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∥
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1
‖wT ‖1

≤ C

σ
1/2
T

‖wT ‖1 = o

(

1

σ
1/2
T

)

where‖·‖1 when applied to matrix is the inducedL1-norm.
This shows (5).

A.2. Proof of Theorem2

Proof. The proof follows by combining (5) with estab-
lished central limit theorems for sample average approx-
imation (Pasupathy & Kim, 2011) and stochastic gradient
descent (SGD) algorithms. First, letz(λ) := −E[ℓ(λ;g)],
andλ∗ := argmin

λ
z(λ). The quantityλ∗

T can be viewed
as the minimizer of1T

∑T
t=1 ℓ(λ;g

t) (the initial loss func-
tion can be argued to be negligible after dividing byT ).

Then Theorem 5.9 in (Pasupathy & Kim, 2011) stipulates

that
√
T (λ∗

T − λ∗)
d→ N(0,Σ), where

Σ = (∇2z(λ))−1V ar(∇ℓ(λ;g))(∇2z(λ))−1 (15)

andV ar(·) denotes the covariance matrix.

Now since∇2LT (λ
∗
T ;g

1:T ) =
∑T

t=1(∇2ℓ(λ∗
T ;g

t)) and
1
T

∑T
t=1(∇2ℓ(λ∗

T ;g
t)) → E[∇2ℓ(λ∗;g)] by law of large

numbers (Durrett, 2010), we have∇2LT (λ
∗
T ;g

1:T ) =
Θ(T ). Then the bound in (5) implies that|EλT |g1:T [λT ]−
λ∗
T | = o

(

1√
T

)

. In other words, the difference between

posterior mean andλ∗
T is of smaller scale than1/

√
T .

By Slutsky Theorem (Serfling, 2009), this implies that√
T (EλT |g1:T [λT ]− λ∗)

d→ N(0,Σ) also.

On the other hand, for SGD (6), it is known
(e.g. (Asmussen & Glynn, 2007)) that the optimal step size
parameter value isǫT = 1/T andK = ∇2z(λ), in which
case the central limit theorem for the updateλT will be

given by
√
T (λT − λ∗)

d→ N(0,Σ) whereΣ is exactly
(15). For other choices of step size, either the convergence
rate is slower than order1/

√
T or the asymptotic variance,

denoted bỹΣ, is such that̃Σ−Σ is positive definite. There-
fore, by comparing the asymptotic variance, the posterior
mean always has a faster convergence unless the step size
in SGD is chosen optimally.
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A.3. Proof of Theorem3

Proof. Supposeλ is used in the strong classifier (11). De-
noteI(·) as the indicator function. Consider

E(x,y)
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the last inequality holds by reverse Holder inequality
(Hardy et al., 1952). So

P (error) ≤
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and the result (12) follows by plugging in λi =
1

θE(x,y)[gi(x,y)]
for each i, the minimizer ofE[ℓ(λ;g)],

which can be solved directly whenℓ is in the form (7).

A.4. Proof of Theorem4

Proof. Since for eachi, gti are i.i.d., the sample mean
(1/T )

∑T
t=1 g

t
i follows a central limit theorem. It can be

argued using the delta method (Serfling, 2009) that the pos-
terior mean (10) satisfies

√
T

(

α+ T

β + θ
∑T

t=1 g
t
i

− 1

θE[gi(x, y)]

)

−→ N

(

0,
V ar(gi(x, y))

θ2(E[gi(x, y)])4

)

(16)

For the stochastic gradient descent scheme (13), it would be
useful to cast the objective function aszi(λi) = E[θλigi−
logλi]. Let λ∗

i = argminλzi(λ) which can be directly
solved as 1

θE[gi]
. Thenz′′i (λ

∗
i ) =

1
λ∗

i
2 = θ2(E[gi(x, y)])

2.

If the step sizeγ > 1
2z′′(λ∗

i
) , the update scheme (13) will

generateλT
i that satisfies the following central limit theo-

rem (Asmussen & Glynn, 2007; Kushner & Yin, 2003)
√
T (λT

i − λ∗
i )

d→ N(0, σ2
i ) (17)

where

σ2
i =
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e(1−2γz′′

i (λ∗

i ))sγ2V ar

(

θgi(x, y)−
1

λ∗
i

)

ds

(18)
and θgi(x, y) − 1

λ∗

i

is the unbiased estimate of the gra-

dient at the pointλ∗
i . On the other hand,λT

i − λ∗
i =

ωp(
1√
T
) if γ ≤ 1

2z′′(λ∗

i
) , i.e. the convergence is slower

than (17) asymptotically and so we can disregard this
case (Asmussen & Glynn, 2007). Now substituteλ∗

i =
1

θE[gi]
into (18) to obtain

σ2
i = θ2γ2V ar(gi(x, y))

∫ ∞

0

e(1−2γ/λ∗

i )sds

=
θ2γ2V ar(gi(x, y))

2γ/λ∗
i − 1

=
θ2γ2V ar(gi(x, y))

2γθ2(E[gi(x, y)])2 − 1

and letγ = γ̃/θ2, we get

σ2
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γ̃2V ar(gi(x, y))

θ2(2γ̃(E[gi(x, y)])2 − 1)
(19)

if γ̃ > θ2

2z′′(λ∗

i
) =

1
2(E[gi(x,y)])2

.

We are now ready to compare the asymptotic variance in
(16) and (19), and show that for all̃γ, the one in (16) is
smaller. Note that this is equivalent to showing that

V ar(gi(x, y))

θ2(E[gi(x, y)])4
≤ γ̃2V ar(gi(x, y))

θ2(2γ̃(E[gi(x, y)])2 − 1)

Eliminating the common factors, we have

1

(E[gi(x, y)])2
≤ γ̃2

2γ̃ − 1/(E[gi(x, y)])2

and by re-arranging the terms, we have

(E[gi(x, y)])
2

(

γ̃ − 1

(E[gi(x, y)])2

)2

≥ 0

which is always true. Equality holds iff̃γ = 1
(E[gi(x,y)])2

,

which corresponds toγ = 1
θ2(E[gi(x,y)])2

.Therefore, the
asymptotic variance in (16) is always smaller than (19), un-
less the step sizeγ is chosen optimally.
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