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Visual Recognition — Supervised Learning of Classifiers Physical Model Minimize the regularized loss P in functional space RBF Representation
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" Four binary and four multiclass datasets
= Following the choice/setup of previous papers

Computation of VP = VL + AVG
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traini test Hypersurface deforms towards training data as if attracted by . o
raining esting gravitational force due to point masses centered at training data Computing VL is easy = RBF + functional norm regularization: RBN, SVM, KLR
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Fool DNN by hardly perceptible perturbation [Szegedy et at. 2013] = e.g. back propagation for neural networks RBF + existing geometric regularization: LLS, GLS, EE
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Computing VG: mean curvature flow Mean Accuracy (%)

* G(f) measures the volume of graph(f) B B
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where g is the Riemannian metric induced from RN *X

Rapid Local Oscillation
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= Our Theorem:

class probability estimator need only 15t and 2" partial derivatives of f, rest of

(actually a hypersurface) In the mean time, hypersurface remains as tight as possible as if computation is just matrix manipulations

1| R gy A Wy QU yi S 1 G ppp—— in the presence of surface tension

Ours-Q Ours-CE

: FO rmal Setu E The Gradient V:Pft First group Our method Second group

: /_\ S > . Ee
4 ,. \ Learn a function f: X —AX as an estimator of P(y|x) Tf, H et |

space of images _ .
(high dimensional) The hypersurface associated with f:

graph(f) = ((x f1 @), ¥ (0)x € X} € X xAK

Real-world datasets — comparing with baseline

= Flickr Material Database (4096 dimensional feature)
= MNIST handwritten digits (60,000 samples)
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Smoothness vs. Mean Curvature of this hypersurface!
VPs,: tangent vectorin Tf HH vector field on graph(f;) .ﬁ....
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