
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Motivation

Visual Recognition – Supervised Learning of Classifiers

Rapid Local Oscillation

Physical Model

Main Idea

Solve for min
𝒇∈ℋ

𝒫 𝒇

Regularized ERM Formulation Experiments
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Fool DNN by hardly perceptible perturbation [Szegedy et at. 2013] 
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Hypersurface deforms towards training data as if attracted by 
gravitational force due to point masses centered at training data 

In the mean time, hypersurface remains as tight as possible as if 
in the presence of surface tension 

Formal Setup

Learn a function 𝒇: 𝒳 ⟶△𝐾 as an estimator of 𝑃(𝑦|𝒙)

The hypersurface associated with 𝒇:
𝑔𝑟𝑎𝑝ℎ 𝒇 = { 𝒙, 𝑓1 𝒙 ,⋯ , 𝑓𝐾 𝒙 |𝒙 ∈ 𝒳} ∈ 𝒳 ×△𝐾

exploit the geometry 
of this hypersurface!Smoothness vs. Mean Curvature

State-of-the-art on ImageNet Challenge: human level classification accuracy
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Training point 𝒙𝑖 , 𝑦𝑖 maps to 𝒙𝑖 , 𝒛𝑖 = 𝒙𝑖 , 0,⋯ , 1,⋯0 ∈ 𝒳 ×△𝐾
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△3

Minimize the regularized loss 𝒫 in functional space ℋ

min
𝒇∈ℋ

𝒫 𝒇 = min
𝒇∈ℋ

𝐿 𝒇 + λ𝐺 𝒇

Regularization term
penalize the volume 
of 𝑔𝑟𝑎𝑝ℎ 𝒇

Data term
penalize the error of 𝒇 in 
explaining the training data 

Solve iteratively by gradient flow:  
𝑑𝒇𝑡

𝑑𝑡
= −𝛻𝒫

 starting from neutral estimator 𝒇0 = (
1

𝐾
, ⋯ ,

1

𝐾
)

 evolve 𝒇𝑡 towards −𝛻𝒫𝒇𝑡

 𝒇𝑡 will flow to a local minimum of 𝒫

The Gradient 𝛻𝒫𝒇𝑡

vector field on 𝑔𝑟𝑎𝑝ℎ 𝒇𝑡tangent vector in 𝑇𝒇𝑡ℋ

𝑇𝒇𝑡ℋ
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𝛻𝒫𝒇𝑡

△2

𝛻𝒫𝒇𝑡:

Datasets from UCI Repository
 Four binary and four multiclass datasets
 Following the choice/setup of previous papers

Comparing with two groups of classifiers

 RBF + functional norm regularization: RBN, SVM, KLR
 RBF + existing geometric regularization: LLS, GLS, EE
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Real-world datasets – comparing with baseline

 Flickr Material Database (4096 dimensional feature)

 MNIST handwritten digits (60,000 samples)

Flickr Material Database MNIST handwritten digits
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Represent 𝒇 as “softmax” output of RBFs

𝑓𝑗 =
exp(ℎ𝑗)

σ𝑙=1
𝐾 exp(ℎ𝑙)

,  ℎ𝑗 = σ𝑖=1
𝑚 𝑎𝑖

𝑗
𝜑𝑖(𝒙),  for 𝑗 = 1,⋯ , 𝐾

where 𝜑𝑖 𝒙 = 𝑒−
1

𝑐
𝒙−𝒙𝑖

2

is the RBF centered at 𝒙𝑖

Gradient update for A = (𝑎𝑖
𝑙)

𝐴 ← 𝐴 − 𝜏𝑀−1 𝛻𝒫𝒉 𝒙1 , ⋯ , 𝛻𝒫𝒉 𝒙𝑚
𝑇,

where 𝛻𝒫𝒉 𝒙𝑖 =
𝜕𝒇

𝜕𝒉 𝒙𝑖

𝑇
𝛻𝒫𝒇 𝒙𝑖 , 𝑀𝑖𝑗 = 𝜑𝑗(𝒙𝑖)

RBF Representation

Smoothness by functional norms:

 Not specifically tailored to measure local oscillation

 Overkill the hypothesis space

 Sculpturing with an axe? Need a sculptor’s knife!

Mean Curvature of the hypersurface: 

 In differential geometric sense

 A specific measure of the amount of local oscillation

 Generalizes to high dimensional space

Geometric Foundation on ℋ

ℋ = 𝑀𝑎𝑝𝑠 𝒳,△𝐾 , ℋ′ = 𝑀𝑎𝑝𝑠 𝒳,ℝ𝐾

Topology
 Frechet topology on ℋ′, and the induced topology on ℋ

i.e. two functions in ℋ are close if the functions and all their partial 
derivatives are pointwise close

Riemannian metric
 Restrict the 𝐿2 metric on ℋ′ to each tangent space 𝑇𝒇ℋ

𝜙1, 𝜙2 = න
𝒳

𝜙1 𝒙 𝜙2 𝒙 𝑑𝑣𝑜𝑙𝒙

where 𝜙𝑖 ∈ ℋ′ and 𝑑𝑣𝑜𝑙𝒙 is the volume form of the induced 
Riemannian metric on 𝑔𝑟𝑎𝑝ℎ(𝒇).

Computation of 𝛻𝒫 = 𝛻𝐿 + 𝜆𝛻𝐺

Computing 𝛻𝐿 is easy

 e.g. back propagation for neural networks

Computing 𝛻𝐺: mean curvature flow

 𝐺(𝒇) measures the volume of 𝑔𝑟𝑎𝑝ℎ(𝒇)

𝐺 𝒇 = 𝑔𝑟𝑎𝑝ℎ׬ 𝒇
𝑑𝑣𝑜𝑙 = 𝑔𝑟𝑎𝑝ℎ׬ 𝒇

det(𝒈)𝑑𝑥1⋯𝑑𝑥𝑁

where 𝒈 is the Riemannian metric induced from ℝ𝑁+𝐾

 Our Theorem: 

need only 1st and 2nd partial derivatives of 𝒇, rest of 
computation is just matrix manipulations


