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Briefly speaking, [1] explains from a theoretical perspective why training GAN
is hard, and [2] suggests a solution from the perspective of geometric founda-
tion of generative modeling, which is more fundamental than GAN itself. The
algorithm suggested by [2] ends up being another variant of GAN, purely due to
optimization reasons, rather than being inherently designed to follow any form
of adversarial training.

The problem with GANs

Given a generator g : Z → X , and a distribution p(z) on Z, the generator’s
data distribution pg is determined by the process of first sampling from p(z) and
then applying g to the samples. Denote the real data distribution as pr, then
explicit maximum likelihood methods are equivalent to minimizing KL(pr‖pg).
GANs, instead, minimize the following symmetric Jensen-Shanon divergence,

JSD(pr‖pg) =
1

2
KL(pr‖pa) +

1

2
KL(pg‖pa),

where pa =
pr+pg

2 . The original minimax objective for GANs,

min
g

max
D
{Ex∼pr [logD(x)] + Ex∼pg [log(1−D(x))]}, (1)

where D : X → {0, 1} is the discriminator. A revised objective function for
optimizing g,

max
g

Ex∼pg [log(D(x))]. (2)

While achieving intriguing success in generating realistic and sharp images, some
mysterious problems during GAN training are widely observed:

1. Updates of the generator gets worse as D gets better, for both loss (1)
and (2).

2. GAN training is massively unstable.
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A recent work [1] studies these problems and makes important steps towards a
better theoretical understanding of the training of GANs.

The support of pr and pg

In my opinion, the key observation of [1] is to focus on the supports of pr and
pg, and relates them with a classical result in differential topology. Let M =
supp(pr),P = supp(pg). If M∩P = ∅, it is straightforward that there exists a
perfect discriminator that is constant on bothM and P (D∗|M = 1, D∗|P = 0).
If M∩P = L 6= ∅, the General Position Lemma gives the following marvelous
result,

Theorem (General Position Lemma). If M and P are two submanifolds of
Rd that do not have full-dimension, for almost every a ∈ Rd, the perturbed
submanifold M+ a intersects transversely with P, i.e., for every x ∈ L, TxM+
TxP = TxRd.

This lemma leads to horrible situations for GAN training. Since it is widely
believed that real image data lies in low dimensional submanifold, and P ⊂
g(Z) also lies in a submanifold that does not have full dimension, as a result,
transversality holds almost surely for M and P. Then it is straightford to see
that L has dimensionality strictly lower than that of bothM and P, i.e., L has
measure 0 on both M and P. Therefore, as in the disjoint case, there exists
perfect discriminator that is constant on both M and P.

Then rest of the reslults in [1] are not surprising. Such as KL-divergence
will be infinity, JSD will be maxed out, either the updates to D is inaccurate
or the gradients for training g will vanish. Note that (2) might not be a good
choice either, causing unstable updates and mode dropping.

Recipe in practice

The key idea for a possible recipe is, either to break the basic assumptions of
the General Position Lemma, i.e., to ensure the input to D has full dimension,
or to use other distance measures that do not suffer from the General Position
Lemma. Regarding the first direction, the paper [1] suggests adding continuous
noise to the inputs of D, for both real data and generated data, which is also
a typical recipe in machine learning. However, adding noise, in essence, alters
the original problem and might degrade the quality of generated results. The
second direction leads to paper [2], which in my opinion, is seminal and has
vital importance beyond GANs.

Maximum Likelihood for generative modeling

Solving the typical MLE problem max
g

Ex∈pr [pg(x)] amounts to minimizing the

Kullback-Leibler divergence KL(pr‖pg) on a subspace (depending on p(z) and
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g) of the space of probability measures (denoted by Prob(X )). MLE has been
used by default as the “golden standard” in machine learning for many years,
yet whether KL-divergence is the most proper distance measure in Prob(X )
has not been studied carefully. The WGAN paper [2] analyzes the topology
of Prob(X ) in the light of pursuing better continuity/convergence properties
for doing optimization on Prob(X ). This is indeed the first step one should
do for a given space before any geometry (such as distances, angles, gradients,
etc) can be discussed. We summarize briefly in the last section the rigorous
mathematical workflow for an arbitrary space on which we would like to study
any geometry.

Topology, Convergence, and Continiuity

The notion of convergence and continuity can be well-defined without having
a “distance/metric”, but solely based on the topology. A topology associated
with a space S is the collection of all “open” subsets of S. For a given S, it
is possible to put different topologies on it by introducing different senses of
“open”. If T1 and T2 are two topologies on S, T1 is smaller (weaker in the
language of [2]) than T2 if T1 ⊆ T2.

A point sequence {xi} converges in S, if there exists some x∞ ∈ S, such
that for any open set A (an element of the topology) containing x∞, there always
exists some N , such that for all n > N, xn ∈ A. Then it is clear that the smaller
the topology is, the easier it is for {xi} to converge under that topology, since
there are “fewer” open sets to worry about.

Continuity is a property of a function, i.e., two (topological) spaces are
involved. Say f : M → N , where M has topology TM and N has topology TN ,

Definition 1. f is continuous if for any open set A(∈ TN ) on N , f−1(A) is
open (∈ TM ) in M .

It can be easily shown that this definition of continuity leads to the following
definition used in [2], if the notion of convergence is defined as above.

Definition 2. f is continuous if for any convergent (under TM ) sequence {xi}
in M , the sequence {f(xi)} converges (under TN ) in N .

From both definitions of continuity, it is quite clear that the smaller TN is,
the easier it is for f to be continuous. This lies the foundation for the arguments
of [2].

Remark. Though the notion of topology does not depend on a pre-defined dis-
tance, if given a distance d on S, it naturally induces a topology, i.e., the set of
all unions of open balls (an open ball is B(x, r) = {y ∈ S : d(x, y) < r}).
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Diagram of functional spaces that generative mod-
eling algorithms deal with

Let Θ denote the parameter space of the parameterized generator (gθ), which is a
subspace of some Euclidean space and therefore comes with the standard topol-
ogy, metric, and distance of Euclidean space. The following diagram commutes,
so the continuity of function (θ → d(pg, pr)) is equivalent to the continuity of
function (θ → pg).

Wasserstein distance for continuity concerns

[2] starts with GAN’s problem raised by [1]: if d(pg, pr) = KL(pr‖pg) (or its
symmetric form, the Jensen-Shanon divergence) as is by default for MLE, due to
the General Position Lemma, the function (θ → d(pg, pr)) on which our learning
algorithm performs SGD, is unfortnately discontinuous, which makes gradient-
based training very hard. Given the above relation between the topology on
Prob(X ) and the difficulty of (θ → pg) being continuous, it is natural to consider
a smaller topology on Prob(X ) which is more likely to enable a continuous
(θ → pg), and therefore a continuous (θ → d(pg, pr)) for gradient-based training
of θ.

[2] suggests putting the topology induced by the Wasserstein distance on
Prob(X ), which is shown (Thm 2 of [2]) to be smaller than topologies induced
by KL-divergence, Jensen-Shanon divergence, and Total Variation divergence.
While this is just a qualitative result pointing to a more hopeful direction, [2]
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further shows in Thm 1 that picking the Wasserstein distance as the loss function
and putting its induced topology on Prob(X ) is indeed sufficient to enable a
continuous (θ → d(pg, pr)) for training θ. Rest of the work is to design a
computationally tractable algorithm under this setup.

Optimization with Wasserstein distance

While the Wasserstein distance and its induced topology have appealing theoret-
ical properties, it is harder to compute/optimize than the Jensen-Shanon diver-
gence. The K-R duality is then introduced to enable a tractable approximation
of the Wasserstein distance, which in the end leads to a minmax optimization
problem. This is exactly why the WGAN algorithm ends up being in the form
of another GAN. From a higher level perspective, however, WGAN is quite dif-
ferent from the original GAN, with adversarial training being a computational
compromise rather than the motivating idea.

Regarding the learning algorithm, WGAN makes the following modifications
compared with the origninal GAN:

1. Remove the final sigmoid layer of the discriminator

2. No log for loss computation

3. Clamp the updated weights to a fixed closed interval

4. Avoid momentum based SGD methods

While the last modification depends largely on empirical observations, 1-3 are
simple tricks directly inspired by the theoretical analysis. It is hardly possible for
someone to simultaneously fix 1-3 in practice without the theoretical guidance.

A rigorous workflow to study the geometry of an
arbitrary space

Given an arbitrary space S, we first need to define a topology on it, based on
which, we can further study some fundamental “qualitative” properties, such as
convergence, compactness, connectedness, and continuity. The crucial step from
“qualitative” to “quantitative” study is the introduction of some Riemannian
metric, which defines a smoothly varying (from point to point) inner product on
the tangent space at each point of S. With a Riemannian metric specified, it is
then possible (not always though) to define a series of “quantitative” geometric
notions, such as angles, curvatures, distances/geodesics, areas/volumes, and
gradients of functions on S.
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