
MA/CS-109:
Beauty of the Beast

Internet Protocols
Azer Bestavros

The Sequel

1

MA/CS-109 (Azer Bestavros) 24/12/2010

Building a complex world
� What is our mental model of the Internet?

� How could it be that simple? (beautiful)

In our attempt to understand how the Internet is built up, we followed a process (of building up more
complicated artifacts by repeatedly abstracting an existing artifact and adding new functionality).

2

MA/CS-109 (Azer Bestavros) 34/12/2010

ArtifactArtifact

Building a complex world

ArtifactArtifactArtifact

Math/Stat/CS

Dream up a functionality

Implement it

ArtifactArtifact

Model of Artifact

Abstraction

Satisfied?

Improve
Functionality

Refine
Abstraction

No

Add it to the artifact
Yes

Recall that the process of “abstracting” (out) the details of a “world” is at the heart of our ability to
understand/comprehend the complexities of that world.
Interestingly, this same process of abstraction is at the heart of our ability to build ever more complex
worlds (or systems).
We do this by incrementally building complex artifacts from simpler ones.
We start with a very simple artifact that does a well-understood simple/abstract function.
Now we dream up a new capability that we want our world to support, and we use concrete methods
(e.g., algorithms) to implement this new capability. If the functionality we implemented is to our liking,
we deploy it in our world, which is now a bit more complex than before (thanks to this added
capability). If the functionality is not to our liking, we can improve it or else modify our vision of the new
functionality, and we repeat.
Let’s review what we did so far (following the above process) with respect to the Internet.

3

MA/CS-109 (Azer Bestavros) 44/12/2010

Circuit-switched (local) network
� To communicate, we set up a

“circuit” between the sender and
the receiver, by using their
addresses to control the
multiplexer and de-multiplexer

� This is how telephone
communication started – called
circuit switching

� If two computers on a local
network are “connected” others
cannot communicate – they are
blocked

Sender
Address

Receiver
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Sender
Address

Receiver
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

We built a circuit switched (local) network out of simple hardware such as multiplexers and de-
multiplexers…

4

5

Packet-switched networks

� Data divided in packets that are stored
and forwarded from one switchboard
(router) to the next. Typical packet size
is 1,500 bytes.

� To send more data, divide into multiple
packets and send one after the other.

� US Mail (or Carrier Pigeon) Analogy.

MA/CS-109 (Azer Bestavros) 54/12/2010

Next we realized the need for packet communication between two local computers (two
computers on the same local network)…

5

MA/CS-109 (Azer Bestavros) 64/12/2010

How about bigger networks?
� Not realistic/practical to build a gigantic “local”

network that spans organizations, countries, …
� Makes sense to build a network of networks – an

“interconnection of networks” (a.k.a. the Internet).

BU

Internet2

Sprint

VerizonMIT

Routers

Next we realized the need to interconnect local networks together…

6

MA/CS-109 (Azer Bestavros) 74/12/2010

The Internetworking Protocol (IP)
� Every computer (on the Internet) has a unique

address – called the IP address, which consists of
4 bytes (A.B.C.D)

� Each packet sent from one computer to another
carries the sender and receiver’s IP addresses

� US Post analogy

For that we built up the Internetworking Protocol (IP)

7

MA/CS-109 (Azer Bestavros) 84/12/2010

IP packet routing

� A router handles any packet whose destination is
not local, storing it, and then forwarding it to the
“next” network (hop) towards its destination

� Thanks to Dijkstra, routers can figure how to
“forward” packets along the “shortest path”.

Recall that routers are computers that link up two or more local networks. A router handles any packet
whose destination is not local, storing it, and then forwarding it to the “next” network (hop) towards its
destination.
Using Dijkstra’s shortest path algorithm, routers can figure out how to forward packets along the
shortest path.

8

MA/CS-109 (Azer Bestavros) 94/12/2010

Internet layers so far…
� A wire can be used to send a bit from one source to one

destination
� A multiplexer can be used to send a bit from any one of

multiple sources to a single destination
� A de-multiplexer can be used to send a bit from one

source to one of multiple destinations
� A multiplexer + a de-multiplexer can be used to send a bit

between any two computers on a local network
� Groups of bits (~1.5kB) are arranged in packets which can

be sent between computers on a local network
� A router enables packets to be communicated between

two computers on adjacent local networks
� Dijkstra’s algorithm is used to “route” packets from any

source to any destination!
� Now what?

So far, through repeated abstractions and addition of functionalities, we are able to build up the
following Internet layers :
1.Physical Layer:

• A wire can be used to send a bit from one source to one destination.
2.Link Layer:

• A multiplexer can be used to send a bit from any one of multiple sources to a single
destination.

• A de-multiplexer can be used to send a bit from one source to one of multiple destinations.
• A multiplexer + a de-multiplexer can be used to send a bit between any two computers on

a local network.
• Groups of bits (~1.5kB) are arranged in packets which can be sent between computers on

a local network.
3.Network Layer:

• A router enables packets to be communicated between two computers on adjacent local
networks.

• A set of routers enable packets to be routed between any two computers on the Internet…
To the above three layers, in this lecture, we will add to more layers: the Transport Layer and

the Application Layer.

9

MA/CS-109 (Azer Bestavros) 104/12/2010

From individual packets to a flow
� Dream Functionality:

Forget that we are sending packets and think of
the Internet as a gadget that enables the
communication of a flow of bytes from one
computer to another!

� But, packets from the same source to the same
destination are routed independently
� They may be lost
� There may be too many of them for routers to handle
� They may follow different routes and arrive out of order

To think about communication in terms of “packets” requires significant work to recover from packet
losses, to make sure the network is not congested by an avalanche of packet transmissions, and to
make sure that packets are delivered in order. Thus, it would be nice if we implement a functionality
that gives us the illusion of a network that does not drop packets, that does not get congested, and
that delivers packets in order.

10

MA/CS-109 (Azer Bestavros) 114/12/2010

From individual packets to a flow
� But, packets from the same source to the same

destination are routed independently
� They may be lost

� We can ensure delivery by insisting that packet delivery is
acknowledged (otherwise retransmit)

� There may be too many of them for routers to handle
� We can ensure that a sender slows down the transmission of

packets when it notices that packets are being lost

� They may follow different routes and arrive out of order
� We can ensure that a sequence of packets between a source

and a destination are delivered in order

� Say hello to TCP (Transmission Control Protocol)

Solving these problems can be done by making sure that the sender (and receiver) follow a specific
protocol – called the TCP (Transmission Control Protocol).
TCP deals with packet losses by insisting that the receiver acknowledges (to the sender) receipt of
each packet. If an acknowledgment of a packet is not received within some timeframe (e.g., 10-100
milliseconds) then the sender will retransmit that packet.
TCP deals with network congestion by making sure that whenever the sender realizes that packets
are being lost (see above), it “decreases” the number of packets it injects in the network per unit time
(i.e., it slows down its sending rate). Also, when the sender realizes that there are no losses, it
“increases” the number of packets it injects in the network per unit time. Typically, a sender cuts its
sending rate by half when it detects congestion and increases its sending rate by a constant when it
detects no congestion. This is called the “additive increase multiplicative decrease” rule of TCP.
TCP deals with out of order delivery by giving each packet a sequence number. On the receiving end,
packet delivery is delayed until all packets with a lower sequence number are received.

11

MA/CS-109 (Azer Bestavros) 124/12/2010

Our new mental model
� A sender (source) sends as much data (bits) as it

wants to a receiver (destination)….

1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 Source Destination

The TCP functionality allows the sender and receiver to have the illusion of a “wire” that carries
information which is delivered reliably (nothing is lost), in order, and without ever overloading the
network.

12

MA/CS-109 (Azer Bestavros) 134/12/2010

Did we just go full circle?
� With TCP functionality, our mental view of the

Internet is that of a wire
�Why is this progress?

� Because this abstraction enables us to add more
functionalities without even knowing (or being
experts in) how this “wire” works!
� Now we can forget about packets, routing, lost packets,

out of order delivery, network congestion, …

So, it seems that we have reinvented the wheel! We started with a wire and went full circle! Why do all
that?
Notice that while our mental model is that of a “wire”, in reality that wire is not a physical wire, but a
wire implemented by having many layers of functionalities.
Having an abstraction of a wire is useful because it allows the communicating parties (the sender and
receiver) to not concern themselves with details of how the wire is implemented. And, since having
physical wires between any two computers is not feasible, we ended up implementing the wire as we
have seen using local switching networks, packets, IP routing, and TCP.

13

MA/CS-109 (Azer Bestavros) 144/12/2010

What can we do with a “TCP” flow?
� Allow a program on one machine to interact with

(send/receive bits to/from) a program on another

� Examples
� Interaction between a web browser and a web server
� Interaction between two bittorrent peers
� Interaction between two skype programs

1 0 1 1 1 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0
Source

Program
Destination
Program?

Using TCP, two programs on two different computers can “talk” to each other just as if there were a
wire connecting one to the other.
Examples of programs that need to talk to one another include: a web browser and web server (the
browser asking the server for web content, and the web server delivering that content), two bittorrent
peers in a peer-to-peer file sharing system (one bittorrent peer requesting part of a file from the
second, and the second sending such content back if available), etc.

14

MA/CS-109 (Azer Bestavros) 154/12/2010

From a flow to an application
� A program on a machine (client) could get service

from a program on a remote machine (server)

� But, to do so, client needs to identify the program
it wants to interact with on the remote machine

In all of these examples (and many others) we have a program on one machine (client) requesting
service from a program on another machine (server) which responds to the request. This is the so-
called “client-server” model of interactions between computers on the Internet.
For the client program to be able to “connect” to the server program, the server program must have a
unique identity.

15

MA/CS-109 (Azer Bestavros) 164/12/2010

Naming programs (on a machine)
� Assign a unique number (called port number) to

each program and make sure to ask for that
number when setting up the flow

� Analogous to phone extensions in a company

� Examples (comprehensive list of port #’s here):
�Web servers are typically assigned to port 80
� SMS programs are assigned to ports 2701-2703
�Gnutella programs are assigned to port 6346
� DNS servers are typically assigned to port 53

This is done by associating different programs (running on a host computer) with unique identifiers,
called port numbers, based on the functionality offered by the program.
By analogy, to get service from a bank over the phone, a customer must know the bank’s phone
number and the extension of the department (within the bank) that is able to offer this service. Here
the bank phone number is analogous to the IP address of the host computer, and the extension of the
department is analogous to the port number.
For example, the web server program (the program that knows how to talk to your browser) is typically
assigned port number 80.
A comprehensive list of port numbers and what programs are associated with each is available at
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

16

MA/CS-109 (Azer Bestavros) 174/12/2010

Naming programs on any machine
� By combining the IP address of the remote

machine with the port number of the “service” we
get a unique identity of a program!

� Unique program ID: [IP Address]:[Port Number]

� Let’s try some examples …

To summarize: The combination of IP address (to identify a computer) and a port number (to identify
a program running on that computer) is all we need to communicate with that program.

17

Get the current time
� NIST Computer IP Address is 129.6.15.28
� Port number for a program that tells the time is 13

� BU/CS Computer IP Address is 128.197.12.8
� Port number for a program that tells the time is 13

MA/CS-109 (Azer Bestavros) 184/12/2010

Port 13 is reserved for a program that when contacted returns the time of day. A computer that is
known to run such a program is the National Institute of Standards and Technologies (NIST) – e.g., at
IP address 129.6.15.28.

18

Get the current time

MA/CS-109 (Azer Bestavros) 194/12/2010

[csa2:~] telnet 129.6.15.28 13
Trying 129.6.15.28...
Connected to 129.6.15.28.
Escape character is '^]'.

55158 09-11-23 04:16:05 00 0 0 379.9 UTC(NIST) *
Connection closed by foreign host.

[csa2:~] telnet 129.6.15.28 13
Trying 129.6.15.28...
Connected to 129.6.15.28.
Escape character is '^]'.

55158 09-11-23 04:16:05 00 0 0 379.9 UTC(NIST) *
Connection closed by foreign host.

[csa2:~] telnet 128.197.12.8 13
Trying 128.197.12.8...
telnet: connect to address 128.197.12.8: Connection refused

[csa2:~] telnet 128.197.12.8 13
Trying 128.197.12.8...
telnet: connect to address 128.197.12.8: Connection refused

Results from contacting such a program were done live in class. The above are example outputs
(obtained in Fall 2009). Text typed on the local computer (the client, which is my computer) is in red,
text received from the remote computer (the server) is in green.
Notice that if a service (i.e., a program) is not enabled on a remote computer, the computer will
“refuse” the connection (this is analogous to trying an extension that has nobody associated with it).
The second example shows that.

19

Send an email
� BU/CS email server IP address is 128.197.12.8
� Port number for a program to send mail is 25

MA/CS-109 (Azer Bestavros) 204/12/2010

Port 25 is reserved for a program that can send an email using the Simple Mail Transfer Protocol, or
SMTP.

20

Send an email

MA/CS-109 (Azer Bestavros) 214/12/2010

[csa2:~] telnet 128.197.12.8 25
Trying 128.197.12.8...
Connected to 128.197.12.8.
Escape character is '^]'.
220 cs3.bu.edu ESMTP Sendmail 8.13.8/8.13.8; Sun, 22 Nov 2009 22:57:52 -0500
HELO csa2.bu.edu
250 cs3.bu.edu Hello csa2.bu.edu [128.197.12.4], pleased to meet you
MAIL FROM: best@bu.edu
250 2.1.0 best@bu.edu... Sender ok
RCPT TO: best@bu.edu
250 2.1.5 best@bu.edu... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Subject: Email Demo!

Hello MCS-109!
.
250 2.0.0 nAN3vqf1016348 Message accepted for delivery
quit
221 2.0.0 cs3.bu.edu closing connection
Connection closed by foreign host.

[csa2:~] telnet 128.197.12.8 25
Trying 128.197.12.8...
Connected to 128.197.12.8.
Escape character is '^]'.
220 cs3.bu.edu ESMTP Sendmail 8.13.8/8.13.8; Sun, 22 Nov 2009 22:57:52 -0500
HELO csa2.bu.edu
250 cs3.bu.edu Hello csa2.bu.edu [128.197.12.4], pleased to meet you
MAIL FROM: best@bu.edu
250 2.1.0 best@bu.edu... Sender ok
RCPT TO: best@bu.edu
250 2.1.5 best@bu.edu... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself
Subject: Email Demo!

Hello MCS-109!
.
250 2.0.0 nAN3vqf1016348 Message accepted for delivery
quit
221 2.0.0 cs3.bu.edu closing connection
Connection closed by foreign host.

In class we tried the above exercise and showed that one can impersonate another person (e.g., I sent
an email to myself claiming that it was sent by Professor Reyzin).

21

Get a web page
� BU/CS web server 128.197.10.3
� Port number for web server is 80

MA/CS-109 (Azer Bestavros) 224/12/2010

We can do the same exercise with a web server program, which is typically assigned to port 80.

22

Get a web page

MA/CS-109 (Azer Bestavros) 234/12/2010

[csa2:~] telnet 128.197.10.3 80
Trying 128.197.10.3...
Connected to 128.197.10.3.
Escape character is '^]'.
GET / HTTP/1.1
HOST: cs-web.bu.edu

[[[Home Page in HTML is returned]]]

In class we tried the above exercise and showed that one can connect to a web server program (on
port 80) and retrieve a web page.

23

Internet Protocols: Lingua Franca
� For two programs to “talk” to one another, they

must agree on a standard vocabulary – called a
protocol

� Example protocols:
� SMTP: Simple Mail Transfer Protocol
� FTP: File Transfer Protocol
� HTTP: Hyper-Text Transfer Protocol
� NNTP: Network News Transfer Protocol

MA/CS-109 (Azer Bestavros) 244/12/2010

As we saw in the connections we set up to “talk” to the mail server (SMTP) and web server (HTTP)
programs, we used some special language to interact with these servers, e.g., “HELO”, “DATA”,
“GET”, “HOST”, …
This vocabulary and the request/response sequences make up the a “standard convention” or
“protocol” that enables programs to exchange information. Internet protocols such as HTTP, FTP,
SMTP, NNTP, etc.

24

MA/CS-109 (Azer Bestavros) 254/12/2010

Naming machines
� IP addresses are problematic

� They are hard to remember
� They change

� We need the equivalent of the “yellow pages” – to
go from friendly names (like cs-web.bu.edu) to IP
addresses (like 128.197.10.3)

� Just have a “program” do it!!
� How hard could it be?

When connecting with the NIST server program (to get “time”) and when connecting with the mail
server of the CS Department at BU (to send “email”), we had to know the IP address of the hosts
(computers) on which these programs (called services) are running. Clearly, we can just use IP
addresses to identify these hosts, but this would be both inconvenient (since it would be very hard to
remember IP addresses) and impractical (since these IP addresses may change to allow for regular
maintenance or if computers go down or are added to manage higher loads). Also, it may be the case
that we may offer the same service on a number of hosts so that we are able to handle high traffic
load. For example, to be able to meet the demand on a service like Google, Bing, or Facebook, we
may have to rely on thousands of computers – often called a “computer farm”!
What we need (and what we use regularly on the Internet) are host names, like www.google.com or
www.bing.com or www.facebook.com. Names like these are easy to remember and more importantly
allow for significant flexibility in the management of the hosts that offer the service (by allowing
multiple hosts to be associated with the same name, for example).
But, the IP protocol (e.g., for routing purposes) works with IP addresses and not “friendly” names such
as google.com or bing.com. Thus, what we need is a service that given a friendly “name” can lookup
the IP address of a host associated with that name. This is very much like a 411 service (or a
yellow/white page service).
Implementing such a service is not hard; we know how to do this already… Just like we were able to
offer services (such as “time” and “email”) by running a program on a host with a particular port
number, we can have a program offer the service of “looking up the IP address of a computer given its
name”. Knowing where this program is running (the IP address and port number of the host of that
look-up service), we can figure out the IP address of any other host from its name.
Is it feasible to write such a program?

25

MA/CS-109 (Azer Bestavros) 264/12/2010

How many names are there?
� If every possible IP address is assigned a

different name, then we are talking about a
directory with 4 billion entries

� How many steps would it take you to search a list
with 4 billion entries?

� Assuming computer names are kept in a sorted
order, it would take us about 32 comparisons for
each lookup – not too bad!!

Clearly, the lookup service we are entertaining will have to store a table with all host names and
associated IP addresses. Presumably, we could have as many names as there are IP addresses. For
IP (version 4), we use 32 bits for the IP address, which gives us around 4 billion possible IP
addresses. So, our table may have that many entries.
How hard is it to search for a given entry in a table with 4 billion entries? Well, if the entries are not
sorted, we would have to compare the name we are looking for to about half the entries in the table
(on average). That’s 2 billion comparisons for every lookup – a lot!
But, we know better!
If we keep the entries sorted, we could use binary search, which is much more efficient as it would
require a logarithmic number of comparisons. For a table with 4 billion entries, that’s a mere 32
comparisons! Very efficient!
Ah… Now we know why designing an efficient algorithm is important!

26

MA/CS-109 (Azer Bestavros) 274/12/2010

Domain name registration

But, who is going to compile this list of names (and associated IP addresses)?
There are two questions here:
(1)Who gets to “own” a particular name such as “google.com” or “microsoft.com” or “bu.edu”?
(2)Who gets to “map” the names of hosts to IP addresses?

Focusing on the first question, we need an authority with which some legal entity (a company, a
university, or an individual) could “register” a name and thus “own” it.
This authority is called the “Internet Corporation for Assigned Names and Numbers” (ICANN) (check
http://www.icann.org/).
Created in 1998, ICANN is a non-profit corporation that took over from the US government the
responsibility of overseeing various Internet governance issues (the most notable of which is the
management of the Internet “name space”). For more information, check
http://en.wikipedia.org/wiki/Internet_Corporation_for_Assigned_Names_and_Numbers.
There are a number of companies that allow entities to register names with the ICANN authority (for
an annual fee). The slide shows an example of a communication regarding registration of a particular
account.
Incidentally, it was not until 2009 that Internet “names” were allowed to be written in non-Latin
characters – a feat celebrated around the world!

27

MA/CS-109 (Azer Bestavros) 284/12/2010

How about aliasing?
� It is desirable to have multiple names for the

same computer. Why?
� Businesses often use aliases
�Multiple web sites are often hosted on same computer

� Also, we may want to have multiple hosts
assigned to the same name. Why?
� Allow for scalability
� Allow for flexible management

� Also, we may want to anticipate typos – In fact,
organizations often register misspelled domain
names (e.g., gogle.com, googel.com)!

It may be desirable to have multiple names for one IP address (e.g., www.united.com and
www.ual.com are names for United Airlines) – just like two individuals may have the same phone
number.
Also, as we noted earlier, we may want to have the same name be associated with multiple IP
addresses (e.g., as of Fall 2009, the BU web site is served by 4 hosts with IP addresses 128.197.26.3,
128.197.26.4, among others).
This is called aliasing.
Thus, it may be the case that we may have even much more than 4 billion name and IP address
combinations.

28

MA/CS-109 (Azer Bestavros) 294/12/2010

Truth in Domain Names Act…
� The Anti-cybersquatting Consumer Protection Act

is a US federal law enacted in 1999.
� It makes people who register domain names with the

sole intent of selling the rights to these domain names
for a profit liable to civil action.

� URL hijacking is a form of “cybersquatting” that
capitalizes on typographical errors made by
Internet users to lead them to an alternative
website owned by a cybersquatter.

As we noted, anybody (that includes you) could register an Internet name and “own” it. This is an
important consideration for branding. Indeed, in the early days of the Internet (during the .com bubble),
many Internet names were “snatched” by individuals and later sold to companies and businesses that
wanted these names. Since this practice went a bit out of control, Congress passed a law that makes
it illegal to grab an Internet name (or a variant thereof) for the sole purpose of selling it. This (now
illegal) practice is called cybersquatting (Squatting means occupying an unoccupied space or building
that the “squatter” does not own, or otherwise have permission to use).
An interesting story related to cybersquatting is about trademark laws. As we emphasized throughout
the course, the digital revolution (in our case the introduction of the Internet) tests our laws, which
were written for a bricks and mortar world. Trademark law is no exception. Now consider the following
(true) story involving a small computer business started by a person whose last name is Nissan”.
Should “Nissan Computers” (as opposed to “Nissan Motors”) be able to register (and keep) the
Internet name “nissan.com”? Here is a link to this true story!
Traditionally, trademarks are given protection under the law in order to avoid consumer confusion.
Basically, trademark law considers both the locality of use and the industry sector for a trademark.
You can’t start a restaurant called “My Little Italy” right next to another restaurant called “Little Italy” –
but you can start it in the next town over. And, you can’t simply start a restaurant and call it
“McDonald’s” or for that matter “McRonald’s”. If you do, McDonald’s (the one with the golden arches)
will sue you! However, if you start an organic food store and call it “McDonald’s”, it would be hard to
imagine that you will be sued.
Neither locality of use, nor an industry sector makes any difference on the Internet! When you type
“nissan.com” you could do so from anywhere in the world and presumably be interested in any place
in the world, and you could be interested in Nissan Motors or Nissan Computers.
Trademark law was designed for a world where information is "pushed" to consumers through ads for
something specific (e.g., a car ad and a computer ad even if they use the same name would look very
different and will not confuse the customer). On the Internet, a customer actively seeks a web page
(by typing a name such as “nissan.com”).
It’s the law that has become confusing!

29

MA/CS-109 (Azer Bestavros) 304/12/2010

Why is this not good enough?
� What we are doing (so far) is akin to having a

single directory for all phones in the whole world!

� Notice that some names are not at all interesting
to anybody outside the local network – e.g.,
csa2.bu.edu or best-p.bu.edu

� Rather than organize the names in a list sorted
alphabetically, we can organize the names in a
“hierarchy” sorted by “domains”, “subdomains”, …

Now we turn our attention to the second question – that of deciding who gets to answer queries about
the Internet directory of names.
Having a single entity do this is not practical (and delegates too much responsibility to a single
authority – e.g., government or business).
Besides, many names on the Internet may be of little (or absolutely no) use to most people. For
example, nobody cares what the names of network printers at BU are (except perhaps BU people).
This implies that we want to “distribute” the task of looking up names, by organizing things in a
hierarchy of “domains”.

30

MA/CS-109 (Azer Bestavros) 314/12/2010

The Internet domain hierarchy

Root Domain

Top-level Domain

Current Top-level domains

Second-level Domain

Internet names are organized in a hierarchy (or a tree). Each internal node of the tree will have its own
“directory service” that is able to either translate a name to an IP address (if that name is within its
domain) or else it would be able to return the IP address of another directory service (below it) that
may be able to help.
For example, consider a name like “mydomain.microsoft.com”.
To find the IP address associated with that name, first one has to go to the directory service at the root
of the tree (which is managed by the ICANN registration authority). Every computer comes with the IP
addresses of that root authority directory service pre-programmed in it. So, everybody knows how to
go to that root. This root directory service (which oversees the top-level domains) would direct us to
the IP address of the directory service for “.com”. By contacting the “.com” directory service (which
oversees all domains under .com), we would get the IP address of the directory service for
“microsoft.com”. By contacting the “microsoft.com” directory service (which oversees all domains
under microsoft.com domain) we would finally be able to get the IP address of
mydomain.microsoft.com.
Interesting statistics about domains and how many hosts are listed in each, etc. are available from
http://ftp.isc.org/www/survey/reports/current/report.bynum.

31

MA/CS-109 (Azer Bestavros) 324/12/2010

The Internet domain hierarchy

Root Domain

Top-level Domain

Current Top-level domains

Second-level Domain

For Fun: As of Fall 2009, there were 791,457,160 host names (that’s almost a billion – or one host per
5-6 people), of which around 15% are aliases. These hosts belonged to 269 top-level domains. In
addition to .com, .org, .edu, .gov, there are also domains for different countries (e.g., .us for USA, .ca
for Canada, .eg for Egypt, and .va for the Vatican). The statistics show that there were 4,339,451
second-level domains (such as bu.edu, microsoft.com, etc.) and 76,750,312 third level domains (such
as cs.bu.edu and research.microsoft.com). Four country domains (Bouvet Island, St. Pierre And
Miquelon, Svalbard And Jan Mayen Islands, and Somalia) had zero hosts in them ☺

32

MA/CS-109 (Azer Bestavros) 334/12/2010

Domain Name System (DNS)
� At every level of the Internet domain hierarchy we

need “yellow pages” that tell us how to go to the
next level down, until we get to our target name
� Done by having a “yellow pages” program (called name

server) represent each “domain”.
� How many lookups do we need to find out the IP

address of www.bu.edu? How about www.alex.edu.eg?
� Also allows for reverse lookup!

� Let’s try it out…
� Also web tools available [Here] and [Here]

The set of directory services used to figure out the IP address of any host name (and also the reverse
lookup as in “what is the name of the host whose IP address is X?”) is called the Domain Name
System or DNS.
The DNS service that each domain must have (in order to be able to resolve names under it in the
DNS hierarchy) is assigned to port 53.
One can try this “domain name lookup” from any command prompt of a computer (e.g., using
commands such as “nslookup” or “dig”) as well as from many web sites that allow lookups of various
information about domains.

33

MA/CS-109 (Azer Bestavros) 344/12/2010

We did it!

Now we can understand what needs to be done to get a simple web page such as “www.bu.edu” on
one’s browser!
(1)Browser needs to find the IP address of www.bu.edu. To do so requires a lookup of .edu, and then
of .bu.edu, and then of www.bu.edu.

For each one of these lookups
a. Browser must open a TCP connection with port 53 (the DNS port) of the host running the

DNS service
b. Browser sends the name it wants to resolve
c. Browser gets the IP address

(2)Browser opens a TCP connection with port 80 of the host with IP address returned for www.bu.edu.
The program associated with port 80 of www.bu.edu is nothing other than the web server program for
BU.
(3)Browser sends a request using the HTTP vocabulary to get the Home page.
(4)Web server program responds by sending to the browser the web page (in a special markup
language called “HTML”).
(5)Browser receive the web page and displays it according to the instructions in the returned HTML
(these instructions may require the browser to go fetch other content (e.g., pictures) from another web
server. And, to do so, this whole process has to be repeated!)
(6)Browser says “thank you” and closes the TCP connection with the server!
Notice that in all of the above we have the illusion of a program talking to another (just like the ladies
using the “love phone” would do). In reality, of course, any time information is communicated from one
program to another (namely steps 1.b, 1.c, 3, 4, and 5), that information must be broken down into
packets (of 1.5K bytes each), each of which with the IP addresses (and port numbers) of the sender
and receiver. These packets are routed through the Internet independently by having the routers
forward them on to the next router along a path (e.g., as identified by Dijkstra’s algorithm). And,
packets belonging to the same communication are assembled at the destination and delivered to the
program at the specified port number!
Whew!

34

MA/CS-109 (Azer Bestavros) 354/12/2010

Recall

Math/Stat/CS

Dream up a functionality

Implement it

Wire

Model of Artifact

Abstraction

Satisfied?

Improve
Functionality

Refine
Abstraction

No

Add it to the artifact
Yes

Local Network SwitchPacket CommunicationStore-and-forward IP NetworkTCPApplication (e.g., Web, Skype, SMS, …)

So, what have we done so far?
Well, we kept dreaming (and implementing) new functionalities, adding more layers on top of the IP
(Internet Protocol) layer. Namely, we added a transport layer (TCP) as well as an application layer for
running services such as name lookup (DNS), email (SMTP), web servers (HTTP).
The process of abstracting complex artifacts enabled us to add new functionality to it -- making it even
more complex... Clearly, this cycle of "envisioning" a new functionality, implementing it, and adding it
must be done with buy in from the community (or else it would be useless since nobody would really
use it).
In a very nice article in the NYT entitled “How the Internet Got Its Rules” at
http://www.nytimes.com/2009/04/07/opinion/07crocker.html, the RFC (Request for Comments)
process that computer scientists followed to create the Internet's many functionalities (including all
those we considered in this course) is described and its value emphasized.

35

MA/CS-109 (Azer Bestavros) 364/12/2010

The network “stack” (of layers)

Bits (electric/optical/radio signaling)

Local network frame

IP packet

TCP flow

HTTP

Web Browser Web Server

SMTP

Email Client Mail Server

Bittorrent protocol

Bittorrent App Bittorent App

And, for each one of these layers we are totally ambivalent to what happens on the layers below it.
When we have a web browser “talk” to a web server at the application layer, neither the browser nor
the server knows anything about the layers below them; they simply “talk” to one another!
Of course in reality (as we saw), this “talking” is carried out over a TCP connection. And at that
transport layer, we get the illusion of a communication channel that deliver information in the order it
was sent, reliably, and without overloading the network.
Of course in reality (as we saw), this communication channel is the result of individual packets sent
from the sender to the receiver independently over the network layer by sending the packets over a
path determined using an algorithm such as Dijkstra’s.
Of course in reality, each packet is forwarded from one router to the next over the local area network.
At that link layer (as we saw), we get the illusion of a wire carrying the data.
Of course, in reality (as we saw) that wire is implemented using multiplexers and demultiplexers at the
hardware layer.

36

MA/CS-109 (Azer Bestavros) 374/12/2010

Advantage of net abstractions
� Support multiple realizations/technologies (below)

and multiple functionality/apps (above)

� IP is the equivalent of the electric plug/outlet

At each of the layers we considered so far, there might be multiple functionalities. For example, we
may have multiple protocols such as HTTP and SMTP at the application layer, and various types of
local area networks such as wireless and wired at the link layer.
Unlike all other layers, the network layer has only one protocol – the Internet Protocol (IP). Below the
IP protocol we have protocols that support many different technologies and above the IP protocol we
have protocols that support many different applications and uses.
The IP protocol acts as the common “plug” that connects all these different applications (above it) to
the different communication technologies (below it).
Applications above the IP layer are designed with the “illusion” of the functionality supported by IP. So,
when new communication technologies emerge (e.g., when 802.11 wireless networks were
introduced) these applications do not have to be redeveloped – they will simply work because the IP
layer “hides” (or abstracts out) the details of that new technology from the application.
This is precisely why the Internet has emerged as the *universal* communication medium it is. It can
carry text, images, voice, video, programs, … using wireless, optical, copper, satelite …
communication hardware.
We don’t need to change applications when we introduce new hardware, and we don’t need to
change the hardware when we introduce a new applications!
This is so, because of the “narrow waist” (or hourglass) shape of the Internet design, with a single
protocol – the IP protocol – at this narrow waist.

37

MA/CS-109 (Azer Bestavros) 384/12/2010

Disadvantage of net abstractions
� Abstractions can be misleading

� The network is not a wire…
� Your email is stored and forwarded from router to router (and

can be copied)

� Server names / IP addresses could be hijacked
� You may not be communicating with the computer you think

you are communicating with

� But we can always add more layers (e.g.,
encryption and authentication) to protect from
such vulnerabilities

So far, we have been singing the praises of abstractions… But, one has to also realize that these
abstractions hide details, which may have consequences. For example, while we may want to think of
the transport layer as providing us with a “wire” between two programs running on two different hosts,
in reality the data transmitted over that abstract “wire” is stored and forwarded from one router to the
next in the form of packets. Well, these packets can be copied and thus our communications may be
intercepted!
But, the good news is that if we know what an abstraction hides (e.g., the fact that people can listen in
on Internet communications), we can always add more functionalities (i.e., add more layers) to the
Internet to deal with such limitations.
For example, as you recall from our discussion of cryptography and the use of public and private keys,
since people can listen in on Internet communication, we can add a layer that encrypts the data we
send over the Internet so that if anybody intercepts it, they cannot decipher it. This is precisely how
sensitive information (e.g., a credit card number) is communicated safely over the Internet.

38

