
MA/CS-109:
Graph Random Walks

Azer Bestavros

1



� We saw that given a map (graph), one can 
determine paths that satisfy a specific objective
� Minimize cost for going from A to B (Shortest Path)
� Visit every node once (Traveling Salesman)
� Cross every edge once returning to starting point (Eulerian circuit)
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Wandering around in a graph

Recall our use of graphs as abstractions of real-world settings (specifically maps) in order to answer 
specific questions for somebody potentially using that map – for example, finding the shortest path 
between two points or finding a path that satisfies specific properties (e.g., visiting all nodes while 
crossing each edge exactly once). 
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Wandering around in a graph
� We saw that given a map (graph), one can 

determine paths that satisfy a specific objective
� Minimize cost for going from A to B (shortest path)
� Cross every edge once returning to starting point (Eulerian circuit)

� What if we have no objective? 
� A tourist roaming around the city
� A web surfer aimlessly clicking from a web page to another

Now consider a situation where the “walker” (using the map) has no specific objective. He/she is just 
wandering around from node to node. 
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Wandering around in DC

To illustrate this, consider a tourist moving around the subway system in DC where the tourists 
simply selects trips between nodes randomly – i.e., upon arrival to a station, the tourist selects the 
next leg randomly (from among all possible outgoing trips from that station. The above animation 
illustrates an example of what the tourist would be doing. 
From the animation one can see that the tourist ends up going in and out some stations much more 
frequently than others. One can explain this intuitively by noting that the stations in the center of 
town are much better connected that the chances of wandering in them is higher (if one moves 
between stations at random).
So, here is a question we may wand to answer: What is the relative frequency with which a “random 
walker” ends up in one station versus another? 
As we have done in this class, we want to answer this question not qualitatively using words like 
“more” or “much more”, but using some metric that we can be precise about.
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Random walks on a graph
1. Start in some random node
2. At random, select one of the outgoing edges of 

the current node
3. Walk over that edge to a new node
4. Go to 2  

� What properties would emerge as a result of 
doing the above for a very very very long time? 

First, let’s be specific about the model at hand. 
A random walker starts at some random node in the graph, selects an outgoing edge from that node, 
traverses that edge and then repeats this process for a very very long time.
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A specific question
� What are the relative frequencies (or probabilities) 

of visiting the various nodes in the graph. 

�What is the likelihood of finding the wandering tourist at 
a given subway station?

�What is the likelihood that a wandering tourist will 
stumble upon the Museum of Science?

�What is the likelihood that a web surfer will end up 
visiting Google? How about the BU web site?

And here is the specific question we want answered: What are the relative frequencies of visiting 
the various nodes in the graph? (or stations in the DC Metro, or milestones in Boston, or pages on 
the web, …) 
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Shuttling between BU campuses

BU 
Medical 
Campus

BU
Main

Campus

BU 
Medical 
Campus

BU
Main

Campus

� 50% chance to be on either campus

Always

Always

Let’s start with a very simple scenario. Consider a BU student who shuttles between the BU Charles 
River Campus and the BU Medical Campus (using the BU shuttle). For simplicity, consider 
consecutive time periods (e.g., one hour) and assume that the students alternates between the two 
campuses every hour. 
Now, if we ask the question “what is the relative frequency of the student being on the main campus 
versus the medical campus”, the answer will be clearly 50% on each. This is obvious; we don’t need 
math to figure this out!
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Let’s make it more interesting

� Imagine many random walkers (a population)
� Question: At some random point in time, what is 

the percentage of the population we should 
expect on each campus?

BU 
Medical 
Campus

BU
Main

Campus

Heads

TailsAlways

How about a slightly more complicated scenario. 
Instead of one walker (student), consider many walkers (e.g., 1000). 
Each one of the student does the following:
If in some hour, the student is on the main campus, he/she will flip a coin and if the result is heads, 
the student will hop on the shuttle and go to the medical campus for the next hour, otherwise (if the 
coin toss is tails) the student will just stay put. From the medical campus, the student always hops on 
the shuttle and goes back to the main campus. 
Now, let’s pose the question: At some random point in time in the far future, what is the percentage 
of the population (of 1,000) we should expect on each campus?
What would be our answer now? 
Let’s try to figure this out. 
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A simple example (continued)

� Denote by         the population of vertex     in 
iteration  .

� Let us write down some relationships…

BU 
Medical 
Campus

BU
Main

Campus

Prob(Heads)=0.5

Prob(Tails)=0.5Prob(Always)=1

)(vft v
t

Let’s denote by           the number of walkers at time t at node v. 
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A simple example (continued)
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...
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To simply things, let’s denote the medical campus with the symbol A and the main campus with 
symbol B. 
Assume that the population at time 0 on the main campus is      . Since at time 1, everybody who 
was in A ends up leaving A and half of those who were in B at time 0 end up in A at time 1, we can 
write the relationship: 

Now with a similar logic, we can see that this will be the case for all time periods 1, 2, 3, … all the 
way to a very very large number – let’s call it “M”. 
Doing so, gives us the relationships shown on the slide, which relate the population on campus A in 
terms of the population on campus B in the previous time interval. 
Adding up all the terms on both sides of the equations, we get…
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A simple example (continued)
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Using simple algebraic manipulation (by adding a quantity and subtracting it from the right hand side, 
rearranging terms,  and then dividing both sides by M, we get 
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A simple example (continued)
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We note that the left-hand-side of the equation is the sum of the population in A in all time intervals 
(from 1 to M) divided by M, which is precisely the average size of the population in A over time, 
which we denote by          . Similarly, we can substitute on the right hand side for  the value of          . 
This leaves us with the second term on the right hand side. Since M is very very large (compared to 
the difference between two numbers that are close to each other -- the population of B at time 0 and 
at time M), we can simply ignore that term as it tends to zero. 
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A simple example (continued)

)(5.0)( BfAf =

)()(
)(5.0

)()(
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BfAf
Bf
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Af

+
=
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Proportion at A Proportion at B

A B

0.5

0.51

A B

0.5

0.51

Now, dividing both sides by the total population, which is      , which gives us the proportion 
of the population at each node, which we denote bt Pr(A) and Pr(B) – which is also the probability of 
a walker being in A versus B, respectively. 
Thus, we can write the relationship Pr(A) = 0.5 Pr(B). 
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A simple example (continued)

)Pr(5.0)Pr( BA =

1)Pr()Pr( =+ BA

3
1)Pr( =A

3
2)Pr( =B

A B

0.5

0.51

A B

0.5

0.51

Another relationship we can write is that the sum of the two proportions, i.e., Pr(A) + Pr(B) , must be 
equal to 1. 
So, we have two equations in two unknowns. 
By substituting for Pr(A) from the first equation into the second, we get one equation in one 
unknown, which gives us the value of Pr(B) = 2/3. This means that Pr(A) which is half of Pr(B) is 1/3. 
That’s it, we figured it out. We would expect one third of the population in A (the medical campus) 
and two thirds of the population in B (the main campus). 
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How about this one?

)Pr(1.0)Pr( BA =

1)Pr()Pr( =+ BA

%9)Pr( =A %91)Pr( =B

A B

0.1

0.91

A B

0.1

0.91

We can also consider a scenario where the walkers (students) choose to stay on the main campus 9 
out of every 10 times and choose to shuttle to the medical campus 1 out of every10 times. 
Following the exact same process, we conclude that 0.91 (i.e., 91%) of the population will be on the 
main campus with the rest (i.e., 9%) on the medical campus. 
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How about this one?

Why is it interesting to randomly walk web graphs?

Well, these were toy examples!
How about a very very large graph – the web graph?
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Random walks on web graphs
� Web pages are nodes of the graph; a link from a 

page to another is an edge

� If web users surf randomly, then they are 
effectively doing a random walk on the web graph

� Computing the relative frequency with which a 
page is visited would make for a good measure of 
the page’s popularity

The web graph is made up of nodes (the web pages) and directed edges (the links from one page to 
another). 
If web users surf the web randomly, going from one page to the next by picking one of the links from 
that page at random, then they are effectively doing a random walk on the web graph! 
Now we can ask the question: What percentage of web surfers would end up in one page versus 
another?
This quantity could be interpreted as the “popularity” of a web page. This is a very valuable thing to 
know since it could be used by advertisers to decide the worth of putting an ad on one page (e.g., 
cnn.com) versus another (e.g., msnbc.com). 
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Web graph example

� Which page is more “important”? 

A B

C

A B

C

A B

0.5

0.5

C
0.5

1

0.5

A B

0.5

0.5

C
0.5

1

0.5

Just to illustrate this, consider a web of simply three pages, with the specific link structure shown (on 
the left). 
From that structure, we can infer the web graph (on the right) where we labeled the edges with the 
probability of traversing that edge. For example, since out of page A there are two outgoing links, 
and since random web surfers (graph walkers) would “equally likely” pick one of these, we label them 
both with a probability of 0.5.
Now we ask the question: What is the relative popularity of pages A, B, and C? Which one of these 
pages is more popular than the others?
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Web graph example 
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By following the same process as before, we can write a set of equations. Since we have three 
unknowns – Pr(A), Pr(B), and Pr(C) – we must have a set of 3 equations.
The first equation is always the easiest one to write – that the sum of the relative popularity is 1. 
Now, by looking at one of the states (say A) we can say that at any time interval, the population in A 
will be composed of everybody who was in B + half those in C in the previous time interval. This 
gives us a second equation. Doing the same for another state (say C), we get the third equation. 
With 3 equations in 3 unknown, we can find the relative popularity of A, B, and C – namely, Pr(A) = 
0.444, Pr(B)=0.333, and Pr(C)=0.222.
So, page A is the most popular – it is the one in which we would expect that most random web 
surfers will be. 
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Is surfing really a random walk?
� Of course not…

� People are not “robot” clicking randomly on links
� People are not synchronized in their clicks
� People often just type the URL they want
� Links on a page may change over time
�Many web pages are dynamic
�…

� But despite all that…
� Random walks on a web graph tell us something about 

how the structure of the web influences surfers. 
� That’s what models are for!

But, is a “random walk” the best way to model surfing behavior?
Clearly, people are not “robot” clicking randomly on links; they do not go from one page to the other 
every time interval (e.g., every minute); they are not synchronized in their actions; they may visit a 
web page by typing its URL in the browser, or by searching for it and then clicking on the search 
results. Moreover, the web structure itself is not a static graph since links change as web pages 
change (when you add a link to your Facebook page, you are effectively changing the structure of 
the web).  
These are all valid points, but despite all that, the random walk model is a very good abstraction that 
allows us to come up with precise answers. 
Notice that trying to capture all the nuances of how people surf the web, will result in a very 
complicated object that would be rather impossible to “solve” (or to comprehend in the first place). 
This is precisely why we use abstractions and models – it is to simplify the real world so that we may 
be able to answer questions!
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Random walks on web graphs
� But, the web graph has ~ 100 billion pages! We 

are not about to write 100 billion equations and 
solve them?! 

� We can simulate the random walk and measure 
the frequency of visits to the various pages.

� This process is at the heart of Google’s 
“PageRank” algorithm (and ~ $400 stock value).

So far, we figured out how to convert a real-world object (maps or web) to a graph and then using 
random walks solve analytically for the “popularity” of various nodes in the graph (stations or web 
pages). 
But the graphs corresponding to real-word objects are HUGE. The web has hundreds of billions of 
pages! We are not about to write 100 billion equations and expect to solve them algebraically!!!
The way we deal with this is to “simulate” the random walkers! 
BTW, this technique is at the heart of the Google search technology – a technology that propelled 
one of the most successful companies in hostory!
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Random walk simulation
1. Initialize:

Assume that some arbitrary population at 
each node

2. Compute new population:
Use edge probabilities to calculate the 
population at the next time interval

3. Check for change:
If population changed then go to 2
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A B
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So, what do we mean by “simulating random walkers”?
It’s simple, just start with some arbitrary population at each node. Now, each time step, calculate the 
new population at each node, and keep doing this until things stabilize (or until we get tired). This 
would give us the relative popularity of the various nodes!
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Random walk simulation
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Here is an example. We started with 100 people, whom we divided equally among the three nodes 
(web pages) at time t=0. Now we do the simulation for a number of steps and we notice how the 
population seems to “stabilize” with A attracting around 44 people, B attracting 33, and C attracting 
22.
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Random walk simulation
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A B

0.5

0.5

C
0.5

1

0.5

A B

0.5

0.5

C
0.5

1

0.5

Iteration Pr(A) Pr(B) Pr(C)
0 33.33 33.33 33.33
1 50.00 33.33 16.67
2 41.67 33.33 25.00
3 45.83 33.33 20.83
4 43.75 33.33 22.92
5 44.79 33.33 21.88
6 44.27 33.33 22.40
7 44.53 33.33 22.14
8 44.40 33.33 22.27
9 44.47 33.33 22.20

10 44.43 33.33 22.23
11 44.45 33.33 22.22
12 44.44 33.33 22.22
13 44.45 33.33 22.22
14 44.44 33.33 22.22
15 44.44 33.33 22.22

Indeed, the spreadsheet shown is exactly the resulting evolution of the population and as we can 
see, by the 11th time step, the population stabilizes and we have our answer. 
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Random walk simulation
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A B

0.5

0.5

C
0.5
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0.5
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0.5
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C
0.5

1

0.5

Iteration Pr(A) Pr(B) Pr(C)
0 0.33 0.33 0.33
1 0.50 0.33 0.17
2 0.42 0.33 0.25
3 0.46 0.33 0.21
4 0.44 0.33 0.23
5 0.45 0.33 0.22
6 0.44 0.33 0.22
7 0.45 0.33 0.22
8 0.44 0.33 0.22
9 0.44 0.33 0.22

10 0.44 0.33 0.22
11 0.44 0.33 0.22
12 0.44 0.33 0.22
13 0.44 0.33 0.22
14 0.44 0.33 0.22
15 0.44 0.33 0.22

Rather than reporting the number of people we expect to see at a node, it is customary to report the 
fraction of the population at each node. This is nothing but the population at the node divided by the 
total population – a number between 0 and 1, which we can think of as the probability that a single 
person will end up in a node. Indeed, we would get the same answer if we start with any initial 
population! 
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(Larry) PageRank
PageRank relies on the uniquely democratic 
nature of the web by using its vast link 
structure as an indicator of an individual 
page's value. In essence, Google interprets a 
link from page A to page B as a vote, by page 
A, for page B. But, Google looks at more than 
the sheer volume of votes, or links a page 
receives; it also analyzes the page that casts 
the vote. Votes cast by pages that are 
themselves "important" weigh more heavily 
and help to make other pages "important".

A B

C

A B

C

Source: Google

Using random walks to estimate the popularity of various web pages (based on the structure of the 
web – i.e., how the various pages are linked to one another) was the value proposition for Google 
search. By sorting the various pages returned from a keyword search based on their relative 
popularity, users found the search results to be much more useful – you really don’t want to scroll 
down to the 10th page of search results to find what you are looking for.
Indeed, Google makes an interesting observation: The structure of the web reflects “votes” from one 
page to another. If a page points to another, then this constitutes a vote by the referring page for the 
referred-to page. If you post a link on your Facebook page, you are effectively saying that “this link is 
interesting”. 
Google search uses a slightly modified version of random walks by recognizing that the popularity of 
a web page has two sources – the first is due to random walking (as we have done so far) and the 
second is due to people going to the web page directly (e.g., by typing a URL directly, instead of 
clicking on a link from another page). The resulting algorithm is PageRank, which is due to “Larry 
Page” a co-founder of Google. PageRank attributes a weight to the two sources of web page 
popualrity and computes a score based on the joint contribution of these two sources. While we will 
not cover how PageRank does this, it suffices to say that it is very very similar to random walks.  So, 
for all practical purposes, you can simply think of PageRank as the equivalent of evaluating 
popularity using random walks. 
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Ashton Kutcher vs CNN
� It is not only how many “followers” you have, but 

how “important” these followers are!

� Important implications for evaluating scholarship!

An interesting point to note is that the popularity of a web page (according to a random walk 
evaluation or PageRank evaluation) is not necessarily dependent on the number of other pages 
pointing to it, but in fact it is dependent on the popularity of those pages pointing to it as well. This is 
why the Twitter “debate” about who is more popular “Ashton Kutcher” or “CNN” based on the number 
of “followers” of each does not make sense!!! 
According to random walks (and Google), “not all web pages are created equal and this a vote from 
an important web page should count for more than a vote from an insignificant web page”. 
This concept has significant implications for evaluating scholarship – do we simply count the number 
of citations to a paper, or do we take into account the importance/popularity of the paper making the 
citation?
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PageRank Simulation

Demo of PageRank simulations… Simulator available through Moodle. 
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Google Bombs
� If we know how an algorithm works, we can 

manipulate its output
� Make a web page show up on the first line of the 

first page of a search! 
� A big business and even a political instrument! 

Try this seach: “miserable failure”

� Food for thought:
� PageRank depends on the web’s link structure to do a good job
� But the web’s link structure is influenced by how PageRank works
� Is Google undermining the assumption that a link = a vote?! 
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One last point to make. The fact that we know how Google sorts web pages means that we can 
manipulate it! This is precisely what people did in the early days of web search technologies and 
what has become known as “Google Bombing” or “Google Bombs”. People who “make” Google 
bombs do so by creating a bunch of web non-sense web pages that link to a page that they want to 
artificially raise its popularity. 
The most famous of Google Bombs is the “miserable failure” bomb! Just Bing “miserable failure” to 
see who comes up very high on the list of returned web pages (hint: it is a US president ☺)
Finally, we make the following (philosophical) observation: PageRank depends on the web’s link 
structure to do a good job. But the web’s link structure is influenced by how PageRank works -- e.g., 
people are likely to point to pages that Google ranks highly (because they use Google to find these 
pages). This means that Google is introducing bias in the web structure! This raises the following 
intriguing question: Is Google undermining the assumption that a link = a vote?!! Is Google 
undermining its own business proposition?! Is a software program (PageRank) influencing the 
evolution of our society, our public opinion, etc.? This is scary in many ways – it suggests that 
algorithms are acting like “DNA”; they affect how we evolve as a society!
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