

We have done that already...

- We built a model for how users "surf" the web
 Allowed us to answer questions about relative popularity of different web pages
- We built a model for how queues evolve
 Allowed us to answer questions about implications on queuing delay from increased load

But, are these models any good?

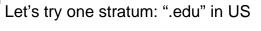
- We already know that we made some possibly unwarranted assumptions – e.g.,
 - People click on links "randomly"
 - $\hfill\square$ Queues can hold as many packets as necessary
- We need to "validate" our models/assumptions
 We validate a model (or assumption) by measuring the real artifact and comparing the results to what the model predicts (or what the assumption states)

Let's try an exercise...

- Assumption: Number of hops between two computers is a good indicator of (is correlated with) the propagation delay between them
- Why is this a useful assumption?
 Counting hops is easier than measuring propagation delays
 Instrumental for server selection purposes (e.g., Akamai)

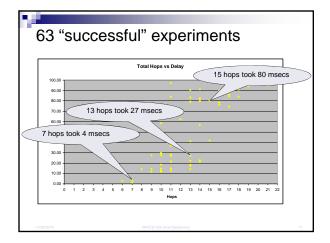
How do we validate this statement?

- Measure the number of hops and the propagation delay between every pair of Internet computers to find out if relationship is evident
- How many pairs of computers are there?
- Impossible!


Statistics to the rescue!

- Measure the number of hops and the propagation delay between <u>sampled pairs</u> of Internet computers to find out if relationship is evident
- How do we measure?
- How do we sample?
- How do we establish relationship?

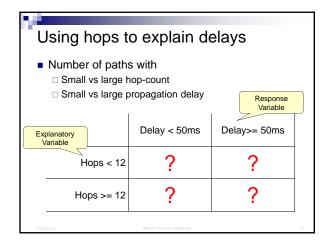
Z:\>ti	racert wu	w.mit.edu		
Tracin over a	ig route a maximum	to www.mi of 30 ho	t.edu [1 ps:	8.7.22.831
1234567	1 ms 4 ms (1 ms (1 ms (1 ms 12 ms (1 ms	<pre><1 ms <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms 1 ms </pre>	<pre><1 ms 1 ms <1 ms </pre>	extgw-dgw-comm595.bu.edu [128.197.254.126] 207.210.143.201 207.210.143.110 W92-RTR-1-BACKDONE.MIT.EDU [18.168.0.25]
	complete	w.faceboo	k	
Tracin over a	ig route		cebook.c	on [69.63.186.12]

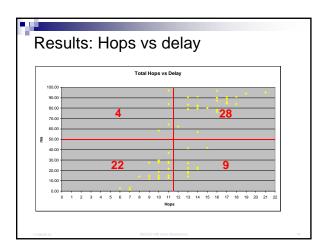

How do we sample?

- Simple Random Sampling (SRS)
 Hard! Cannot run traceroute from arbitrary computers...
- Traceroute is installed on a number of computers around the world
 List available at <u>traceroute.org</u>
- Traceroute "vantage points" may not be representative
 - Use stratified sampling

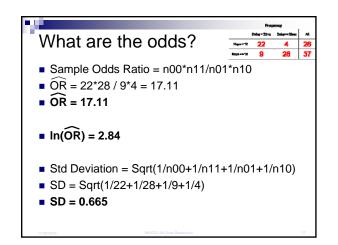
- Vantage Points:
 - CMU

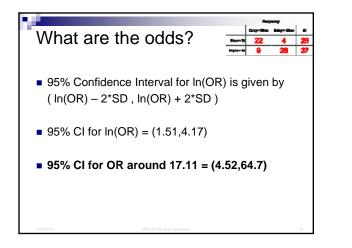
- 🗆 BU
- 🗆 MIT
- 🗆 USC
- □ WISC
- Washington
- 🗆 Arizona
- San Diego
- Stanford
- Berkeley

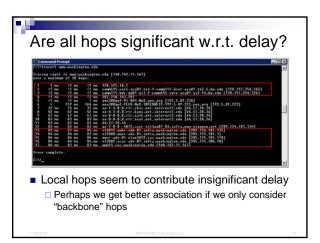


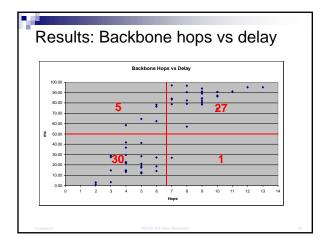

How do we establish "relationship"?

Recall:

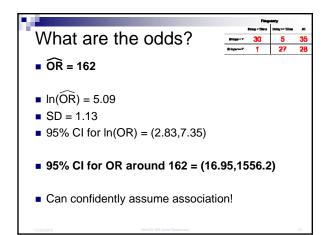

An association exists between two variables if a particular value of one variable is more likely to occur with certain values of the other variable.

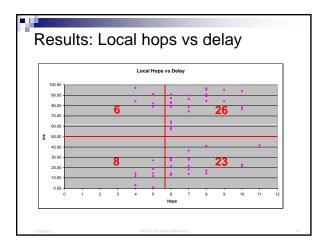

- Two variables
 - Response Variable: Propagation Delay
 - Explanatory Variable: Number of hops

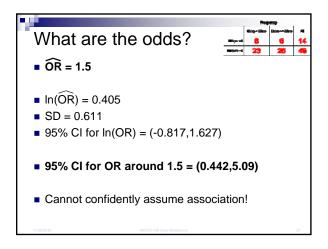




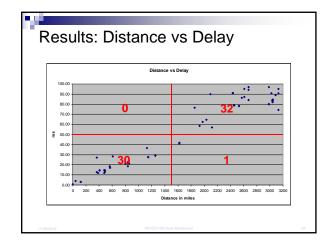
Results: Hops vs delay Frequency					
	Delay < 50ms	Delay>= 50ms	All		
Hops < 12	22	4	26		
Hops >= 12	9	28	37		
			•••		







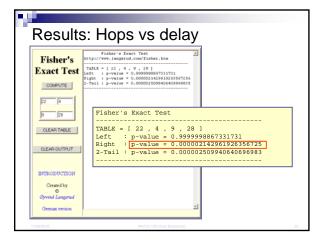
Frequency				
	Delay < 50ms	Delay >= 50ms	All	
BHops < 7	30	5	35	
BHops >= 7	1	27	28	

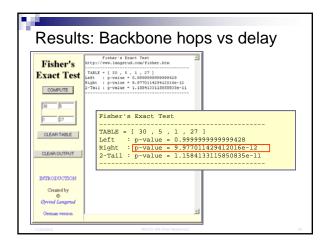


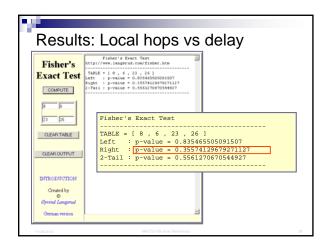
Results: Local hops vs delay					
Frequency					
	Delay < 50ms	Delay >= 50ms	All		
LHops < 6	8	6	14		
LHops >= 6	23	26	49		
11/23/2019 MACS-149 (Aar Bessons) 25					

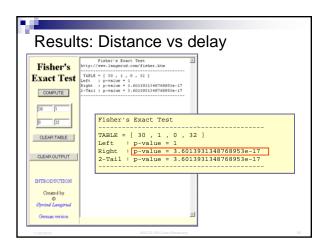
Let's try another exercise...

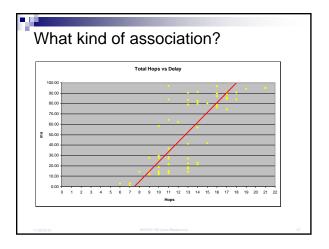
 Assumption: Physical distance between two computers is a good indicator of (is correlated with) the propagation delay between them


Results: Distance vs delay					
Frequency					
	Delay < 50ms	Delay >= 50ms	All		
D < 1.5K miles	30	1	31		
D >= 1.5K miles	0	32	32		
11/22/2010 MJ/C5-109 (Aur Bastaven) 30					


What are the odds? Approach we used in class cannot be used! Why? Based on the CLT CLT assumes a very large sample and that non-zero


- observations for all combinations of response and explanatory variables
- Important to remember assumptions and fine prints – remember: "garbage in garbage out"!


What are the odds?


- Other approaches (beyond MCS-109) exist for checking associations
- Example: Fisher's exact test
 - Quantifies the probability that the observed results are due to pure chance
 - Recall the "monkey and the keyboard"

