Department of Computer Science, College of Arts & Sciences

Fundamentals of Computing Systems

CS-350: Spring 2019


This course is a required sophomore/junior-level Computer Science course. It covers the fundamental concepts underlying the design and implementation of computing systems.

The philosophy underlying the design of this course is that students should be familiarized with problems that reoccur in software systems, and should be acquainted with the set of classical algorithms/techniques for solving such problems. In particular, it is important to develop the ability to recognize standard problems in different wordings and within unusual context, and match them with appropriate solutions.

Catalog Description:

Rigorous treatment of invariant concepts, algorithms, and performance evaluation methods underlying computing systems design. Topics include modeling and analysis of concurrent processing, computational resource scheduling and consumption, and performance evaluation techniques.

Prerequisite Courses:  
    CS-112 and CS-210: Programming and basic software/hardware interface concepts.
    CS-131 or CS-237: Elements of discrete and continuous probabilistic analysis.

Recommended Follow-up Courses:

The following courses build on knowledge assimilated in CS-350. They are natural follow-up courses in decreasing order of relevance (more or less).

    CS-451: Distributed Systems and Cloud Computing
    CS-552: Introduction to Operating Systems (and CS-553 as a follow-up to that)
    CS-455: Introduction to Networking (and CS-556 or CS-559 as follow-ups)
    CS-470: Performance Evaluation and Modeling of Systems and Networks
    CS-410: Software Systems and Systems programming
    CS-460: Introduction to Database  (and CS-562 or CS-565 as follow-ups)
    CS-450: Introduction to Computer Architecture (and CS-550 as follow-up)

Function in the Curriculum:

As a core undergraduate course, CS-350 does not focus on particular implementations or specific technologies. On the contrary, it stresses the fundamental concepts and basic algorithms that have survived (and are likely to survive) the evolution of computer software systems in general, and operating systems in particular.

This course is significantly different in purpose and coverage from CS-210 (Computer Systems) and CS-410 (Software Systems). CS-210 and CS-410 introduce computer systems to sophomores using a hands-on approach by examining the "mechanics" and/or the "plumbing" of modern (or typical) computer operation through exposure to various interfaces between architecture, compilers, loaders, linkers, and run-time systems. CS-350 does not focus on a particular interface or a particular technology, rather it deals with fundamental notions and algorithms that are common to computing systems in general and to software systems in particular.

This course is required or strongly recommended for the following advanced courses: CS-552 (Advanced Operating Systems), CS-550 (Advanced Computer Architecture), CS-551 (Parallel Computing Architectures and Models), CS-455/655 (Data Communications), CS-460/660 (Databases), and CS-470/670 (Performance Analysis). In that respect, this course covers basic notions that we expect students (graduates and undergraduates alike) enrolling into these classes to have mastered. For example, it is inconceivable that a student who is interested in taking a database or an operating systems class, not to have been exposed to the notion of concurrent processing and mutual exclusion. Similarly, it is unconceivable for a student enrolled in a networking, database, or operating systems class, not to have been exposed to performance analysis using simple queuing systems, for example.

Topical contents:

The topics covered in this class could be grouped under 4 general themes:

  • Performance Analysis and Evaluation (with probability refresher)

  • Scheduling and Resource Management

  • Concurrency and Synchronization

  • Distributed Systems

The first half of the semester will be devoted to the coverage of the first two of the above themes, whereas the second half of the semester will be devoted to the coverage of the other two themes.

Updated on: 01/19/2019
Maintainer: Azer Bestavros