
1

http://www.cs.bu.edu/groups/wing

Practical and Efficient Construction
of Network Caricatures

Azer Bestavros
Joint work with

Khaled Harfoush & John Byers

Azer Bestavros Practical and Efficient Construction of Network Caricatures 2

Q: What does the net look like?

?

Sender

Receivers

Using only end-to-end observations

Azer Bestavros Practical and Efficient Construction of Network Caricatures 3

A: A bunch of “independent” pipes

Sender

Receivers

That’s how TCP views it

Azer Bestavros Practical and Efficient Construction of Network Caricatures 4

Q: Why is that not good enough?

A motivating example:

How to construct an
overlay network to
move 100MB of data
from grid node A to
grid nodes B and C?

A

B C

100MB

Azer Bestavros Practical and Efficient Construction of Network Caricatures 5

Time = 10sec

10

1220

8

C

A

B

20sec

100MB

A: The devil is in the details!

A

10 10

8

CB

Time = 12.5sec

100MB

Azer Bestavros Practical and Efficient Construction of Network Caricatures 6

Other motivating examples…

Aggregate congestion control:
How to partition a set of flows into “congestion-
equivalent” classes?

Parallel downloads from multiple servers:
Which m (out of n) servers to select to maximize
aggregate download bandwidth?

Request scheduling at busy media servers:
How to prioritize requests to avoid competition for
shared network resources?

2

Azer Bestavros Practical and Efficient Construction of Network Caricatures 7

Q: Why not use physical net maps?

Azer Bestavros Practical and Efficient Construction of Network Caricatures 8

A: It’s overkill!

Sender

Receivers

Azer Bestavros Practical and Efficient Construction of Network Caricatures 9

Q: How much detail is enough?

Need to determine the level of sharing
between a sender and any subset of
receivers w.r.t. a metric of interest.

Example metrics:
Number of hops (e.g., router or AS hops)
Delay (e.g., transmission or queuing delays)
Bandwidth (e.g., available or bottleneck)
Packet loss rate

Azer Bestavros Practical and Efficient Construction of Network Caricatures 10

A EDCB

S

Logical Topology
(link = path segment)

From routing to logical topologies

A EDCB

S

Routing Topology
(link = hop)

Azer Bestavros Practical and Efficient Construction of Network Caricatures 11

Labeled logical topologies

Labeling a logical topology quantifies the sharing
among subsets of endpoints (w.r.t. a metric)

A EDCB

S
3%

0%

1%
2%

0% 0%

1%

2%

A EDCB

S
100

10

100
622

10 100

155

10

Packet loss rate Bottleneck bandwidth

Azer Bestavros Practical and Efficient Construction of Network Caricatures 12

Hiding uninteresting structures

Uninteresting links in the logical topology
are those with metrical values above or
below certain thresholds of interest

Examples:
Hide links with losses below 2%
Hide links with bandwidth above 100 Mbps
Hide links with delays below 1msec

3

Azer Bestavros Practical and Efficient Construction of Network Caricatures 13

Loss-Induced Topology
(labels = loss rate)

3

1

2
1

2

0 0

S

A B C D E

Hiding unobservable segments

Logical Topology
(labels = loss rate)

3

0

1

21

2

0 0

S

A B C D E

Azer Bestavros Practical and Efficient Construction of Network Caricatures 14

BW-Induced Topology
(labels = bandwidth)

100

10

155

10
100

10

100

S

A B C D E

Hiding over-provisioned segments

Logical Topology
(labels = bandwidth)

100

10

155
10100

622

10 100

S

A B C D E

Azer Bestavros Practical and Efficient Construction of Network Caricatures 15

MINT
(loss > 4%)

MINT
(loss > 3%)

Metric-Induced Network Topology

Physical Logical

MINT = a summary of the level of sharing
between a sender and any subset of
receivers w.r.t. a metric of interest

Azer Bestavros Practical and Efficient Construction of Network Caricatures 16

Problem statement

Given:
A set of senders and receivers
A metric and associated sensitivity threshold

Do the following:
Infer the MINT observable at a sender
Label the inferred MINT
Integrate MINTs obtained at different times
Integrate MINTs obtained at different senders

Azer Bestavros Practical and Efficient Construction of Network Caricatures 17

Two approaches:

Prior Work:
Solve the problem using “metric-specific” or
“technology-specific” techniques, e.g.:

Determine if paths share a bottleneck [RKT’00]
Quantify shared losses [CDLPT’99] [HBB’00]
Quantify shared bottleneck bandwidth [HBB’01]

Our Work:
Provide generic solutions that work on a variety
of metrics satisfying certain properties

Azer Bestavros Practical and Efficient Construction of Network Caricatures 18

MINT Framework [BBH:Infocom02]

Assumes the availability of an
“oracle” that quantifies the
sharing f(LS) between a sender
and any two receivers A and B.

S

A B

Ls

Depending on the properties of the metric
of interest, provides sound constructions
that enable MINT inference, labeling, and
integration.

4

Azer Bestavros Practical and Efficient Construction of Network Caricatures 19

Metric properties

Monotonicity:
f(Lij) ≤ f(Lik) or
f(Lij) ≥ f(Lik)

Separability:

f(Ljk) = g(f(Lik), f(Lij))

Symmetry:
f(Lij) = f(Lji)

i j k

Azer Bestavros Practical and Efficient Construction of Network Caricatures 20

Metric Properties: Examples

Hop Count

Loss Rate

Jitter

Bottleneck Bandwidth

2-way Prop Delay

1-way Prop Delay

Queuing Delay

SymmetricSeparableMonotonic

Azer Bestavros Practical and Efficient Construction of Network Caricatures 21

From properties to constructions

If f(LAB) > f(LAC) then
monotonicity implies ability to
order A, B, C in terms of
where they join the topology.

Theorem: Metric monotonicity
enables inference of partially
(prefix) labeled MINTs.

S

A
B

C

LAC
LAB

Azer Bestavros Practical and Efficient Construction of Network Caricatures 22

From properties to constructions

Theorem: Metric monotonicity enables
integration of MINTs observed over time.

A EDCB

S

@ t1

+ =

@ t2 @ t1 & t2

Azer Bestavros Practical and Efficient Construction of Network Caricatures 23

From properties to constructions

If f() is separable, then given
LAB and LAC, we can infer L*.

Theorem: Metric separability
enables complete labeling of
MINTs.

S

A
B

C

LAC
LAB

L*

Azer Bestavros Practical and Efficient Construction of Network Caricatures 24

From properties to constructions

Theorem: Metric symmetry enables the
merger of MINTs observed from multiple
vantage points

S1

S0

S3

S2 S2

S1

S0

S3 S0

S2

S1

S3 S0

S3

S2S1

S0

S1

S2

S3+ ++ =

5

Azer Bestavros Practical and Efficient Construction of Network Caricatures 25

MINT Framework: Constructions

Is f()
Monotonic

?

Is f()
Separable

?

Is f()
Symmetric

?

Yes

Yes

Yes

Inference
Partial labeling
Integration over time

Labeling

Integration over space

Given an
oracle that

computes f(Ls)

No

No

No

Resort to
metric-specific
constructions

Azer Bestavros Practical and Efficient Construction of Network Caricatures 26

How about that “Oracle”?

The oracle is simply a procedure that
enables a sender to establish the level of
sharing between any pair of receivers.

Many MINT instantiations; each one is
associated with a metric and an oracle.

A MINT instantiation is as good as the
oracle it relies on for that instantiation!

Azer Bestavros Practical and Efficient Construction of Network Caricatures 27

MINT example: Hop topologies

Metric: Hop count (h) is monotonic and
separable, but not necessarily symmetric.

Oracle: Given receivers A and B, find number of
hops shared between paths S A and S B.

MINT: Using our constructions, we can efficiently
(better than linear in diameter of network)
infer and label the hop topology between a
sender and n receivers.

Azer Bestavros Practical and Efficient Construction of Network Caricatures 28

MINT example: Loss Topologies

Metric: Packet loss probability (p) is monotonic
and separable, but not symmetric.

Oracle: Given receivers A and B, find p for the
shared segment of paths S A and S B. Many
methods available.† Take your pick!

MINT: Using our constructions, we can infer and
label loss topologies between a sender and n
receivers.

† Multicast [CDLPT’99], Poisson [RKT’00], and Bayesian probing [HBB’00]

Azer Bestavros Practical and Efficient Construction of Network Caricatures 29

Loss Oracle

Many to chose from!

Bayesian Probing [HBB:icnp’00]
Send two packets back-to-back, each to a
different client
Measure probability of different outcomes
Relate outcome probabilities to analytical
prediction (using a simple queuing model)
to estimate shared loss rate
Has good accuracy and convergence
characteristics

R

S

A B

Azer Bestavros Practical and Efficient Construction of Network Caricatures 30

Loss Oracle: Evaluation

Time in seconds

S
u

cc
e
ss

 %

6

Azer Bestavros Practical and Efficient Construction of Network Caricatures 31

Loss Topology: ns Experiments

50 receivers organized in
random trees of 400+
nodes and 8+ levels
deep with bursty cross-
traffic along each link.

Azer Bestavros Practical and Efficient Construction of Network Caricatures 32

MINT example: Bottleneck B/W

Metric: Bottleneck Bandwidth (BB) is monotonic,
but neither separable nor symmetric.

Oracle: Given receivers A and B, find bb for the
shared segment of paths S A and S B using
Cartouche probing [HBB:Infocom’03].

MINT: Using our constructions, we can infer and
partially label the BB topology between a sender
and n receivers. To completely label that
topology, we need BB-specific techniques
(because bb is not separable) [HBB:Infocom’03].

Azer Bestavros Practical and Efficient Construction of Network Caricatures 33

Bottleneck Bandwidth Estimation

BB is the speed (capacity) of the slowest
physical link along a sequence of links
Existing path BB estimation techniques:

End-to-end BB [K’91][P’96][CC’96][DRM’01]
Hop-by-hop BB [D’99][LB’01]

Path BBSegment BB

Azer Bestavros Practical and Efficient Construction of Network Caricatures 34

60mph90mph

Separation as a Measure of speed

1 mile 1 mile

75mph

fn(speed of slowest railroad segment)

Length of train
Delay =

How far behind will the 2nd train be when the 1st arrives to station?

∆t = ?

Azer Bestavros Practical and Efficient Construction of Network Caricatures 35

Leveraging the Packet Pair Technique

How could we estimate the BB of the
shared segment S R ?

Send a packet-pair [mm] from S
Use separation ∆ = s(m)/BB at R to estimate BB

R

S

A B

m
m

s(m)
BB

@ S @ R---------

Azer Bestavros Practical and Efficient Construction of Network Caricatures 36

Towards a BB Oracle

… but how can we measure the
separation at R from endpoints?

Need to “preserve” separation so
we may measure it at an endpoint

R

S

A B

Lemma:
Separation ∆ is preserved if BB(R A) > s(m)/∆

s(m) is the size of the probing packets
Cannot make s(m) arbitrarily small

∆ is a function of BB(S R)
Need a function that yields a large ∆

7

Azer Bestavros Practical and Efficient Construction of Network Caricatures 37

@ S - - - - - @ R @ A- - - - -

Magnifying ∆: Packet Pair Trains

Use overlapped packet pairs to make ∆
large enough at R. All but first and last
packets are diverted (or dropped) at R.

R

S

A B

r=
4

Azer Bestavros Practical and Efficient Construction of Network Caricatures 38

Magnifying ∆: Packet Pair Trains

If BB(S R) = 64 * BB(R A), we would
need to send 65 back-to-back packets to
ensure a large enough ∆ at R.

Not practical!

R

S

A B

600Mbps

10Mbps

How
many ?

Azer Bestavros Practical and Efficient Construction of Network Caricatures 39

p
m
p
q
p
m

@ S - - - - - @ R @ A- - - - -

Cartouche Probing [HBB’01]

R

S

A B

Recognizes difference in function between
“marker” packets and “filler” packets.

Azer Bestavros Practical and Efficient Construction of Network Caricatures 40

Cartouche Probing [HBB’01]

Filler packets are used to “produce” ∆
larger is better

Marker packets are used to “measure” ∆
smaller is better

Make marker packets as small as possible
and filler packets as large as possible
s(m) = 40 bytes
s(p) = 1,500 bytes

Azer Bestavros Practical and Efficient Construction of Network Caricatures 41

Cartouche Probing [HBB’01]

From S, send a probe [pm {pq}r-1 pm]
“Filler” packets (p & q) go to B
“Marker” packets (m) go to A
s(p)>> s(m) = s(q)

At A, measure the separation ∆ between
markers and calculate the shared BB:

BB=
r [s(p)+s(m)]

∆

Azer Bestavros Practical and Efficient Construction of Network Caricatures 42

Cartouche Size

Recall that to survive trip from R to A, the
separation ∆ must be > s(m)/BB(R A)

r[s(p)+s(m)]/BB(S R) > s(m)/BB(R A)

For s(m)=40 and s(p)=1500 k=38.5
If BB(S R) = 50 * BB(R A), we would
need to send a cartouche of size r=2, or a
total of 6 packets

BB(S R)
BB(R A)

1
k

r >

8

Azer Bestavros Practical and Efficient Construction of Network Caricatures 43

Path BB estimation: Summary

38.5 rr1Tolerable
BB(S R):BB(R A)

r[s(m)+s(p)]/BBr s(m)/BBs(m)/BBSeparation

CartouchePacket Pair trainPacket Pair

Probe Structure

[pm{pq}r-1pm][m{m}r-1m][mm]

Azer Bestavros Practical and Efficient Construction of Network Caricatures 44

Labeling BB MINTs

MINT + Cartouche Probing allow us to:
Infer BB topology between a set of endpoints
Partial (i.e. prefix) labeling of BB topology

Need BB-specific techniques to label non-
prefix subpaths

Conjecture: If we can measure the BB of
a path suffix, we can in effect measure
the BB of any path segment!

Azer Bestavros Practical and Efficient Construction of Network Caricatures 45

Path Suffix BB Estimation

Use packet pairs to measure BB(S A)
Use Cartouche to measure BB(S j)

If BB(S A) < BB(S j)
Then BB(j A) = BB(S A)
Else BB(j A) > BB(S j)

S j Ai1

Azer Bestavros Practical and Efficient Construction of Network Caricatures 46

Path Suffix BB Estimation

Consider a Cartouche train of the form:

pm{pq}r-1pm{pq}r-1pm{pq}r-1pm…

drops out at j drops out at j+1 drops out at j+2

...

S j Ai1

Azer Bestavros Practical and Efficient Construction of Network Caricatures 47

Cartouche Train: Illustration (r=1)

@j @j+1

p

p

p

m

m

m

∆j+
s(p)-s(m)

bj+1

∆j

∆j
∆j

Azer Bestavros Practical and Efficient Construction of Network Caricatures 48

Cartouche Train: Illustration (r=1)

@j @j+2@j+1

p

p

p

m

m

m

∆j+

∆j+
s(p)-s(m)

bj+2

s(p)-s(m)

bj+1

∆j

∆j

9

Azer Bestavros Practical and Efficient Construction of Network Caricatures 49

Path Suffix BB Estimation

Lemma: The largest ∆ between markers
of the Cartouche train corresponds to the
suffix BB link

Corollary: If BB(R A) > BB(S A) then
using a Cartouche train, we can estimate
BB(R A)

Azer Bestavros Practical and Efficient Construction of Network Caricatures 50

Subpath BB Estimation

We need to preserve the spacing ∆ of
markers of a Cartouche train at j
Recall that preserving ∆ is a matter of
sizing the Cartouche probes; i.e.

S j Ai1

BB(S j)
BB(j A)

1
k

r >

Azer Bestavros Practical and Efficient Construction of Network Caricatures 51

Subpath BB Estimation

Theorem: Using an appropriately size
Cartouche train, we can measure the
bottleneck bandwidth of an arbitrary
segment i j on a given path S A

Corollary: Using Cartouche probes we
can infer and label BB MINTs

S j Ai1

Azer Bestavros Practical and Efficient Construction of Network Caricatures 52

PeriScope†: Linux API [HBB:Pam’02]

A kernel-level API for
implementing various
probing structures

A user-level library that
implements the MINT
constructions (i.e.,
inference, labeling, and
integration)

Used effectively to
implement many MINT
instantiations

API

MANAGER

DEFINITIONS LOGIC

SCHEDULERMONITOR

User
Space

PeriScope

Kernel
Space

IP Layer

Application CallbacksAPI Calls

† A Probing Engine for the Recovery of Internet Subgraphs
(Available from WING web pages at http://www.cs.bu.edu/groups/wing)

Azer Bestavros Practical and Efficient Construction of Network Caricatures 53

Probing Structures

Example probing structures:
[pp]: Packet-pair probing [CC96] [P96] [P97].
[pp]: Bayesian probing [HBB00].
[pq]: Tailgated-pair probing [LB00].
[pm(pq)r-1pm]: Cartouche Probing [HBB01].

Probing structures differ in:
The number of packets.
The size of each probe packets.
The destination of each probe packet.
The inference function.

Azer Bestavros Practical and Efficient Construction of Network Caricatures 54

PeriScope Design Rationale

Ensure kernel code modularity and restrict
changes to the networking stack.

Minimize user/kernel boundary crossings.

Provide enough primitives to enable the
definition of arbitrary probing structures
and techniques.

Provide a structured and well-defined
interface for applications.

10

Azer Bestavros Practical and Efficient Construction of Network Caricatures 55

Loss Topology: Internet tests

Integration over
time of inferred
loss topologies

Loss topology
inferred most of the
time by PeriScope

Logical topology of
hand-picked set of

receivers

Using BP loss oracle implemented in PeriScope

Azer Bestavros Practical and Efficient Construction of Network Caricatures 56

Cartouche Probing: Internet Tests

Implemented in PeriScope
Tested against pchar on path prefixes of
known link speeds

pchar results on
January 30, 2002

BB of links at BU and
in Internet2

published by Abilene

Azer Bestavros Practical and Efficient Construction of Network Caricatures 57

Cartouche Probing: Internet Tests

Shared BB Experiments

Example: Measure BB shared between
the BU GTech and BU UBC paths

Azer Bestavros Practical and Efficient Construction of Network Caricatures 58

Cartouche Probing: Internet Tests

r=2 r=3

r=4 r=5

Shared BB for GTech and UBC

Effect of
cross traffic

Correct
estimate

Azer Bestavros Practical and Efficient Construction of Network Caricatures 59

Cartouche Probing: Internet Tests

Path Prefix BB Experiments

Example: Measure BB of first 6 hops
from BU to all destinations

Azer Bestavros Practical and Efficient Construction of Network Caricatures 60

Cartouche Probing: Internet Tests

Georgia
Tech

University of
British Columbia

Ecole Normale
Superieure

Hirosaki
University

b1,5 over a 10Mbps LAN (top) and over 56Kbps modem (bottom)
using Cartouches of size r=4

11

Azer Bestavros Practical and Efficient Construction of Network Caricatures 61

Cartouche Probing: Internet Tests

95 percentile confidence interval estimates with r=4
Estimates of BB of arbitrary path segments

Azer Bestavros Practical and Efficient Construction of Network Caricatures 62

Summary

MINT is an effective framework for the
representation of the sharing structure
between a set of endpoints.

We embodied MINT in a Linux API
(PeriScope), which we for inference and
labeling of loss, BB and delay topologies.

Azer Bestavros Practical and Efficient Construction of Network Caricatures 63

Food for thought

How do we “better” validate all this?
Active versus passive?
Other metrics? Other properties?
MINT “triangulation”? MINT “beacons”?
MINT-enabled applications?
MINT for non Internet networks?
Caricatures for non-internet networks…

http://www.cs.bu.edu/groups/wing

