
Modular Order-Preserving Encryption, Revisited

Charalampos
Mavroforakis

Boston University
cmav@cs.bu.edu

Nathan Chenette
Rose-Hulman Institute of

Technology
chenett1@rose-

hulman.edu

Adam O’Neill
Georgetown University and

NIST
adam@cs.georgetown.edu

George Kollios
Boston University

gkollios@cs.bu.edu

Ran Canetti
Boston University
canetti@bu.edu

ABSTRACT
Order-preserving encryption (OPE) schemes, whose cipher-
texts preserve the natural ordering of the plaintexts, allow
efficient range query processing over outsourced encrypted
databases without giving the server access to the decryption
key. Such schemes have recently received increased interest
in both the database and the cryptographic communities. In
particular, modular order-preserving encryption (MOPE),
due to Boldyreva et al. [8], is a promising extension that
increases the security of the basic OPE by introducing a se-
cret modular offset to each data value prior to encrypting
it. However, executing range queries via MOPE in a näıve
way allows the adversary to learn this offset, negating any
potential security gains of this approach.

In this paper, we systematically address this vulnerabil-
ity and show that MOPE can be used to build a practical
system for executing range queries on encrypted data while
providing a significant security improvement over the basic
OPE. We introduce two new query execution algorithms for
MOPE: our first algorithm is efficient if the user’s query
distribution is well-spread, while the second scheme is effi-
cient even for skewed query distributions. Interestingly, our
second algorithm achieves this efficiency by leaking the least-
important bits of the data, whereas OPE is known to leak
the most-important bits of the data. We also show that our
algorithms can be extended to the case where the query dis-
tribution is adaptively learned online. We present new, ap-
propriate security models for MOPE and use them to rigor-
ously analyze the security of our proposed schemes. Finally,
we design a system prototype that integrates our schemes
on top of an existing database system and apply query opti-
mization methods to execute SQL queries with range predi-
cates efficiently. We provide a performance evaluation of our
prototype under a number of different database and query
distributions, using both synthetic and real datasets.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2749455 .

Categories and Subject Descriptors
E.3 [Data]: Data Encryption

Keywords
order preserving encryption; range queries; database encryp-
tion; database security model

1. INTRODUCTION
Cloud computing and modern networking and virtualiza-

tion infrastructures have made the idea of database out-
sourcing to a third party not only a possibility, but some-
times a necessity. Following the seminal papers on database
outsourcing [20, 19], a number of systems have been pro-
posed [4, 26, 18, 11, 1, 10, 12] that use cloud services for
this task. However, despite the enormous benefits of this
approach, it has been recognized that there are a number
of important issues that need to be addressed for it to be
viable, the most critical of which is security. There have
been three main issues related to security in this context:
confidentiality, integrity (verifiability), and availability [2].

In this paper, we focus on the confidentiality problem,
i.e., how a client can keep the database contents private
from the third party. A typical approach is that the client
encrypts each record before sending it to the third party.
Ideally, one would like to use an encryption scheme that pro-
vides very strong security guarantees, such as semantic se-
curity [17], while maintaining the ability to execute queries.
Remarkable recent work on fully homomorphic encryption
has shown that, in theory, we can in fact build such encryp-
tion schemes with polynomial-time overhead [14]. However,
while this is an active area of research, such schemes remain
far from practical and are not expected to be anywhere close
to being used in real systems in the near future.

To this end, new encryption schemes have been proposed
that, although providing weaker security guarantees, allow
for much more efficient query processing. In this paper we
consider one of the most important such schemes, order-
preserving encryption (OPE) [3, 7, 8, 27]. In an OPE scheme,
any two values x and y with a natural order, e.g., x < y,
get encrypted as Enc(x) < Enc(y). In other words, the
encryption scheme preserves the original order of the plain-
texts. This is a very useful primitive because it allows the
database system to make comparisons between the cipher-
texts and still get the same results as if it had operated
on the plaintexts. Therefore, the database system can still

build index structures, like B+-trees, on the encrypted at-
tributes to efficiently answer exact match and range queries,
the same way as with un-encrypted data.

We focus on a promising extension to OPE introduced
by Boldyreva et al. [8] called modular OPE (MOPE). The
idea behind MOPE is simple: a secret modular offset j is
included in the secret key and the encryption of x becomes
MOPE(x) = OPE(x + j), where OPE is the underlying
OPE scheme. At a first glance, this seems to provide a
substantial improvement in security — given just the en-
crypted database, the adversary cannot deduce any infor-
mation about the locations of the underlying plaintexts. In
constrast, basic OPE leaks about half of the most-important
bits of the locations [8]. We want to point out this is in fact
crucial for applications where a database table contains a
column that takes consecutive values, e.g., a date. In this
case, the plaintexts might cover the complete domain and if
their order is revealed, so are their values. (This is actually
the case for some of the attributes in the TPC-H benchmark
that we used in the experiments.)

However, there is a catch: As Boldyreva et al. [8] note, if
the adversary, i.e., the third party database server, observes
the user’s queries, they can divulge the secret offset j and
negate any security gain. This is because the queries will
never intersect the interval in the ciphertext-space between
the encryptions of the last and the first plaintext value. This
gap (see Figure 1) allows the adversary to orient the space
and get a better estimate of j.

1.1 Contributions
In this paper, we revisit modular OPE and investigate the

security and efficiency of systems that use it to execute range
queries on encrypted data. The goal of our schemes is to
hide the user’s query distribution by mixing it with another
distribution. Our main contributions are summarized below.

Uniform Query Algorithm: In our first scheme, the per-
ceived query distribution from the server’s point of view is
uniform across all possible queries, including “wrap around”
queries. Specifically each time the user makes a query, our
scheme will repeatedly flip a biased coin to decide whether
to execute it or sample a fake query from an appropriate
completion distribution, repeating until the former happens.
The coin’s bias and the completion distribution are carefully
chosen so that the expected number of fake queries is min-
imized, while at the same time ensuring that the perceived
query distribution is uniform. As a result, we perform about
µM additional fake queries for every real query, where µ is
the maximum probability of any particular query and M is
the domain size.

For better efficiency, our scheme also transforms every
range query to a set of one or more queries with some fixed
size k ≤ M . In this case, the space requirement for stor-
ing the query distribution is M values instead of M2. As
shown by our security analysis, the scheme completely hides
the location of the plaintext values, however still reveals the
log(M + qk)/2 most-significant bits of the distance between
any two plaintexts, where q bounds the total number of
queries executed by the system.

Periodic Query Algorithm: Our first scheme becomes
inefficient if the user’s query distribution is highly skewed.
For example, if µ is a large constant, the system performs
roughly M fake queries for every user query, which is ob-

viously prohibitive. Our second scheme addresses this in-
efficiency by mixing the user’s query distribution with a
different completion distribution, such that the perceived
query distribution is ρ-periodic instead of uniform. In a ρ-
periodic distribution the probability of a query depends only
on its congruence class modulo ρ — recall that we transform
queries into a set of queries with fixed size k, so in effect each
query is represented by a single domain element —, where ρ
is a parameter of the system. Again, by carefully choosing
the coin’s bias and the ρ-periodic completion distribution,
we minimize the expected number of fake queries. Namely,
the expected number of fake queries is µρM , where µρ is the
average over the congruence classes modulo ρ of the max-
imum probability of a query in each class. As µρ ≤ 1/ρ,
this quantity can be small even when µ is high, resulting in
much better efficiency than our first scheme in such a case.
As shown by our security analysis, the scheme achieves this
efficiency by revealing log ρ least-significant bits of the data.
Tuning ρ balances between security and efficiency.

Learning the Query Distribution: A drawback of the
above schemes is that, in order to calculate the appropri-
ate coin bias and completion distribution, they both assume
that the system knows the user’s query distribution a priori.
We show that they can be extended to learn this distribution
adaptively online.

The key idea is to maintain a buffer of the user’s queries
and, at each step, use it to estimate their query distribution
based on the queries seen so far. Then, each time a query
is to be executed, the coin’s bias and completion distribu-
tion are updated to reflect this estimate. As the user makes
more queries, this estimate improves and so does the per-
formance of the system. While the efficiency will be low in
the beginning (for example, after the user makes the first
query, the system estimates that the query distribution is
entirely concentrated on this point and, almost always, runs
a fake query), it improves over time and converges to the
performance of the schemes discussed above. Remarkably,
our experiments show that, for many real world datasets,
convergence happens very quickly.

System Prototype and Evaluation: We develop a sim-
ple system prototype that implements the proposed schemes.
In our system architecture, we have three parties: the client
(it could be more than one), the proxy, and the server, as
show in Figure 4. The client issues queries to the proxy,
which processes them (and buffers them, in the online adap-
tive case) and issues real and fake queries to the server ac-
cording to one of our schemes. The responses that are rel-
evant to the client’s queries are forwarded by the proxy to
the client and the rest are dropped. We use a PostgreSQL
system as a back-end database system. Furthermore, an im-
portant advantage of our approach (similar to CryptDB [31])
is that the underlying database server does not need to be
modified and we can use any existing DBMS to execute the
actual queries. Therefore, we can take advantage of query
optimization techniques at the back-end to process many
fake queries together very efficiently.

We provide a comprehensive evaluation, where we study
experimentally how our prototype performs under a num-
ber of different database and query distributions. The ex-
periments use datasets and SQL queries from the TPC-H
benchmark. The results show that the proposed approaches
are quite practical.

Security Analysis: In order to analyze the security of our
schemes, we propose new security definitions that allow the
adversary to see both the encrypted database and the user’s
encrypted queries. Previous security models for OPE did not
make this distinction and essentially just allowed the adver-
sary to see the encrypted database. Our security definitions
extend those of [8] to capture both the location privacy (how
much about the plaintext location is revealed) and distance
privacy (how much about the pairwise distances between
the plaintexts is revealed).

Under our new definitions, we show that MOPE with our
uniform query algorithm achieves perfect location security,
while in the worst case leaking the log(M+qk)/2 high-order
bits of the plaintext distances. Despite the fact that the
perceived distribution of the queries is uniform, the analysis
here is non-trivial because, as explained above, we trans-
form the queries to have a fixed size k. This means that the
adversary gets to see encryptions of plaintexts that it knows
are distance k apart, a situation not considered in prior anal-
yses of OPE. We also show that MOPE with our periodic
query algorithm leaks at most the log ρ least-important bits
of the data. These results also hold in the case where the
user’s query distribution is learned adaptively online. This
means that learning the query distribution affects only the
efficiency and not the security of the system.

These security results should be contrasted with the basic
OPE, which was shown to leak half of the most-important
bits of both the plaintext values and their pairwise dis-
tances [8]. In particular, we want to draw the reader’s atten-
tion to the fact that using MOPE with our periodic query
algorithm only leaks the least-important bits of the data,
which seems much more desirable.

2. BACKGROUND ON (MODULAR) OPE
For a randomized algorithm A, we denote by y←$A(x)

that y is the output of running A on input x and a fresh
random tape. When A is deterministic, we denote this by
y ← A(x) instead. All algorithms in the paper are required
to be efficient unless otherwise mentioned. For a number n
we denote by [n] the set {1, . . . , n}.

2.1 Order-Preserving Encryption
An order-preserving symmetric encryption (OPE) scheme

with plaintext-space [M] and ciphertext space [N] is a tuple
of algorithms OPE = (Kg,Enc,Dec) where:

• The randomized key-generation algorithm Kg outputs
a key K.

• The deterministic encryption algorithm Enc on inputs
a key K and a plaintext m outputs a ciphertext c.

• The deterministic decryption algorithm Dec on inputs
a key K and a ciphertext c outputs a plaintext m.

In addition to the usual correctness requirement that

Dec(Enc(K,m)) = m

for every plaintext m and key K, we require that

m1 ≤ m2 if and only if Enc(K,m1) ≤ Enc(K,m2)

for all plaintexts m1,m2 and every key K.
For notational convenience, we extend encryption nota-

tion to sets. That is, if X is a set then Enc(K,X) denotes
the set {Enc(K,x) | x ∈ X}.

Figure 1: The gap in the query distribution reveals the dis-
placement.

2.2 Modular Order-Preserving Encryption
A modular order-preserving encryption (MOPE) scheme

is an extension to OPE that increases its security. Instead of
defining such a scheme in general, we define a transformation
to obtain it from a given OPE scheme.

The transformation. Let OPE = (Kg′,Enc′,Dec′) be
an OPE scheme. We define the associated modular OPE
scheme MOPE[OPE] = (Kg,Enc,Dec) where

• Kg generates K←$ Kg′ and j←$ [M]; it outputs (K, j).

• Enc on inputs a key K and a plaintext m outputs
Enc′(K,m+ j mod M).

• Dec on inputs a key K and a ciphertext c outputs
Dec(K, c)− j mod M .

Above, the value j in the secret key of MOPE[OPE] is called
the secret offset or displacement.

3. NEW QUERY ALGORITHMS FOR MOPE

The Problem: With MOPE, as is also the case for OPE, it
is very easy for the client to execute range queries: to make
a range query [mL,mR] for which 1 ≤ mL ≤ mR ≤ M , the
client computes the pair (cL, cR) = (Enc(K,mL),Enc(K,mR))
and sends it to the server. The server then returns all
database ciphertexts found in the range [cL, cR]. Note that
in an MOPE scheme, this ciphertext interval could “wrap
around” the space, i.e., if cR < cL then the server returns
database ciphertexts found in [cL, N] ∪ [1, cR]. For simplic-
ity, we will use the notation [cL, cR] independent of whether
or not the interval wraps around.

However, as pointed out by [8], there is a security vul-
nerability introduced by making range queries with MOPE.
Note that all valid range queries, i.e., those [mL,mR] for
which 1 ≤ mL ≤ mR ≤ M , when encrypted may “cover”
every value in the ciphertext-space [N] except from those
ciphertexts lying between Enc(K,M) and Enc(K, 1). There-
fore, after observing enough queries, the adversary can get a
better idea of where this gap lies, increasing its probability
to predict j. In Figure 1 we show the histogram of the start
values of a set of range queries for a small domain and dis-
placement j = 20. In particular, we assume that the domain
(and the range) is [0, 100] and that all possible valid range
queries with length 10 (k = 10) are generated and executed.
In that case, the adversary will observe that there are no

queries that start between the values 10 and 20, which cor-
respond to the end of the domain before the displacement.
Therefore, it can easily infer that the displacement is 20.

One natural step toward avoiding this attack is to intro-
duce wrap-around queries [8]. A wrap-around range query
corresponds to a pair mL,mR for which mR < mL. The
desired interval of values wraps around the space, and is
[mR,M]∪ [1,mL]. MOPE schemes naturally support wrap-
around range queries in the same manner as standard range
queries. These queries are not practically useful, but can
be used as “dummy queries” in fooling the gap attack. How-
ever, [8] did not rigorously analyze the attack or explain how
to implement dummy queries. Moreover, the one-wayness
bounds of [8] did not consider the effect of observed range
queries. A formal security model, constructions, and analy-
sis are needed to address this scenario, and we take this as
the starting point of our work.

3.1 Uniform Query Algorithm
The idea behind our basic query algorithm is as follows.

We suppose that the user’s queries come from some distri-
bution Q. Each time we need to make a query, we flip an
α-biased coin, which returns heads with probability α, to
decide whether to make a query from Q or from some other
distribution Q̃. We will choose α and Q̃ such that the convex
combination αQ + (1 − α)Q̃ = U , where U is the uniform
distribution on the entire query space considered, includ-
ing wrap-around queries in the case of MOPE). This solves
two problems: (1) Q may not be uniform, even on standard
(non-wrap-around) queries, invalidating the techniques for
the security analysis developed in [8], and (2) Q depends on
the secret offset, while U clearly does not, and consequently
hides all information about it.

Completion of a distribution: To define our algorithm
formally, we start with notation and a definition. Let D be
a probability distribution on a finite set S. Define µD =
maxi∈S D(i), and define the completion of D, denoted D̃, as

D̃(i) =
µD −D(i)

µD|S| − 1

for all i ∈ S.

Representation of the query distribution: To repre-
sent the query distribution we use a histogram on the query
domain. However, since each query can have different start
location and length, to represent all possible queries, we need
to keep O(M2) values. In order to address this problem, we
pick a fixed query length k ≥ 1 and we decompose every
query into a set of queries with length k. So, if an original
user query has length smaller than k, we use a single fixed
query that starts at the same location as the original query.
On the other hand, if the original user query is larger than
k, we split the query into a set of range queries of size k,
where again the first fixed query starts from the start lo-
cation of the original query. This approach guarantees that
we need only O(M) values to represent the query histogram.
Notice that if a user’s query q is decomposed into multiple
fixed length queries, the results of all the decomposed queries
should be returned to the user.

The query algorithm: Now we are ready to describe the
algorithm, which we call QueryU (“U” for uniform), which
processes a new query q. The algorithm is initialized with

Figure 2: The query distribution after we add the fake
queries. The real queries are obfuscated and the displace-
ment gap is hidden.

the completion distribution Q̃, the maximum query proba-
bility µQ, and a fixed length query k. We denote by Bern(α)
the Bernoulli distribution with parameter α, i.e., Bern(α) =
1 with probability α. Note that the input to the algorithm
is just the start location of the query, since the query has a
fixed length.

Algorithm QueryU(q):
Until q is executed do:

coin←$ Bern (1/(µQM))
If coin = 1 then execute q
Else (coin = 0)

qf←$ Q̃ ; Execute qf

Above, “executing” a query q means that the ciphertexts
Enc(K, q),Enc(K, q + k) are issued, where Enc is the en-
cryption algorithm for the MOPE scheme and K is the en-
cryption key. To sample from the completion distribution
Q̃ we use the inversion method, i.e., inversion sampling [13].
Again, we just have to sample the start location of the query.
In Figure 2 we show the perceived query distribution after
we add the fake queries. In Section 7 we formally analyze
the security of our scheme.

3.2 Periodic Query Algorithm
Note that the uniform query algorithm can be very inef-

ficient when the user’s distribution Q is highly skewed. In
particular, on expectation µQM ∈ Ω(M) fake queries are
needed for every user query, which is no longer sub-linear to
the size of plaintext domain.

We now present a periodic query algorithm that avoids
this inefficiency, at the cost of leaking the least-significant
bits of the secret offset in the MOPE scheme. In fact, it
is a generalization of both QueryU and the straightforward
algorithm that forwards all user queries directly; it offers
any level of security vs. functionality trade-off, lying between
these two extremes. Furthermore, we reduce the size of the
histogram that is used to generate the fake queries from M
to the size of the period.

Let Q, as before, be the user’s query distribution. Our
periodic algorithm works like that of Section 3 with one ex-
ception: the distribution Q̃ is chosen so that αQ + (1 −
α)Q̃ = Pρ, where Pρ is a periodic distribution on the query
space with period ρ, an integer that divides M . That is,
Pρ(x) = Pρ(x + ρ) for all x ∈ [M], where the addition is
modular, i.e. it “wraps around” the query space. In partic-

Figure 3: The periodic query distribution after we add the
fake queries.

ular, we pick the appropriate Q̃ to maximize α, which we
formalize below.

ρ-periodic completion of a distribution: Let D be a
probability distribution on a finite set S = [M]. Let ρ be
an integer dividing M . Let sets S1, . . . , Sρ partition S into
congruency classes modulo ρ. Define ηj = maxi∈Sj D(i) for

j = 1, . . . , ρ and ηD = 1
ρ

∑ρ
j=1 ηj . The ρ-periodic completion

of D, denoted D̃ρ, is

D̃ρ(i) =
ηj −D(i)

ηDM − 1

for all i ∈ S.

The periodic query algorithm: The periodic query al-
gorithm, QueryP[ρ], is the same as the one presented in Sec-
tion 3 except that the coin is taken from Bern (1/(ηQM))

and the ρ-periodic completion Q̃ρ is used in place of Q̃. In
Figure 3 we show the query distribution histogram for the
example that we used before using a period of size ρ = 20.

Choosing ρ to balance efficiency and security: Using
QueryU, we expect to see µQM fake queries for every real
query, where µQ is the maximum probability in Q. Using
QueryP instead, we expect ηQM where ηQ is the average of
the maximum probabilities of the congruency classes of Q
modulo ρ. As ηQ ≤ 1/ρ, the ratio of fake to real queries is at
most M/ρ, so even for skewed distributions we can achieve
sublinear (in M) number of fake queries per real query by

taking, e.g., ρ =
√
M .

On the other hand, notice that the ρ-periodic algorithm
cannot protect the least-significant-bit information of the
secret offset, as the cumulative distribution of real and fake
queries is non-uniform. An adversary that knows the user’s
distribution can easily construct the cumulative distribution
and match this to the perceived distribution of query cipher-
texts. However, the adversary cannot determine which of
the ρ possible shifts of this match is correct; i.e. the adver-
sary can guess the least-significant bits of the encryption’s
secret offset, but cannot guess the most-significant bits. For
example, if ρ =

√
M then the most-significant half of the

bits of the secret offset are hidden.
Thus, ρ is a parameter that enables us to fine-tune the

efficiency-security trade-off: a larger ρ results in fewer fake
queries but leaks more bits of the secret shift; a smaller ρ has
the opposite effects. Notice that when ρ = 1, there is only
one congruence class and the “periodic” algorithm is just

the standard algorithm. When ρ = M , each value has its
own congruence class and no fake queries are generated, so
the user’s distribution is exposed. In Section 7 we formally
analyze the security of this scheme.

4. LEARNING THE QUERY DISTRIBUTION
In our schemes above, we assume that the user’s query dis-

tribution is known a priori. Now we consider whether it can
be learned adaptively online. The main idea is at each point
to use the queries seen so far as the estimate of the user’s
query distribution. A näıve algorithm for this setting would
then run the QueryU (or QueryP) algorithm to process each
query with the updated histogram. However, this would re-
sult in extremely inefficient performance — we would need
to execute roughly all possible range queries before the first
real query is even executed. Instead, we maintain a buffer
of the queries seen so far, which we use to represent the his-
togram, and issue only a single query before updating the
buffer with the next query. For example, here is our adap-
tive online version of QueryU, which we call AdaptiveQueryU,
to process a query q.

Algorithm AdaptiveQueryU(q):
buffer.add(q)

Compute µQ and Q̃ from buffer
coin←$ Bern (1/(µQM))
If coin = 0 then

qf←$ Q̃ ; Execute qf
Else (coin = 1)

qr←$ buffer ; Execute q

The above algorithm should be repeated until all of the
user’s queries have been executed. Note that the second
line regards the buffer as a histogram, in the obvious way.
Furthermore, the last line randomly selects an item from the
buffer, but leaves the buffer itself unmodified. An analogous
adaptive version of QueryP, call it AdaptiveQueryP, can be
obtained from the above.

In Section 7, we show that the adaptive online version of
our algorithms achieve the same security guarantees as their
counterparts in the basic model. For example, in the case
of AdaptiveQueryU, the idea is that each individual query
executed is uniformly distributed. To see this, note that in
every execution of the while loop, sampling randomly from
the buffer is identical to sampling randomly from the current
Q. Ensuring this identity is why we sample randomly from
the buffer (rather than taking an arbitrary element from it).

Note that at some point the algorithm could declare the
user’s query distribution “learned” and delete any executed
queries from the buffer (without changing a separate his-
togram Q) until the buffer is empty, then switching to the
basic QueryU or QueryP algorithms. We leave determining
such a “cross-over” point for future work.

5. SYSTEM ARCHITECTURE
We now turn to developing a concrete system for execut-

ing queries on encrypted data using our algorithms. We
consider a typical architecture used in database outsourcing
systems [19], including CryptDB [31]. The system consists
of a set of clients, a proxy server, and a (database) server as
shown in Figure 4. The database server is an un-modified
DBMS (in our experiments with TPC-H described later, we
used a PostgreSQL server). The proxy is a trusted party

������

�����

	
�����

	
�����

	
�����

�
�
����

�����

������

Figure 4: The architecture of the system.

and holds both the basic and the periodic completion dis-
tributions Q̃ and Q̃ρ respectively, as well as the encryption
key for the MOPE scheme.

Initially, the data owner encrypts the database, using MOPE
to encrypt attributes that support range query predicates
and outsources the encrypted database to the untrusted
database server. After that, the proxy starts sending queries
(which are a mix of real and fake queries) to the server, which
are executed using the DBMS, and the encrypted results are
sent back to the proxy. We assume that the server executes
queries correctly and returns the correct results. The proxy
gets the results back, filters out the fake queries, and returns
the requested results to each client. Next, we discuss how
the proxy generates the fake queries and the query mix.

As we discussed before, our algorithms assume that all the
queries have the same length k. However, an incoming query
may have arbitrary length. Therefore, the proxy decomposes
an original query q into a set of queries of size k that cover
completely q. Assume that the set of these queries is τk(q).
According to the previous algorithms we need to use a set
of Bernoulli trials to generate a set of queries for each query
in τk(q). However, we can directly compute the number of
fake queries that we need each time, using the geometric
distribution Geom. In particular, for each query in τk(q),
we generate a value ` = Geom (1/(µQM)) and sample ` fake

queries from Q̃ using inversion sampling. Let the union of
all the fake queries be F (q). Finally, the proxy permutes all
the queries in F (q) ∪ τk(q) and sends them to the server.

Of course, the server may be able to detect the real queries
if the number of fake queries is small and the real queries ar-
rive in non-regular time intervals. We thus have the proxy is-
sue queries to the server at fixed regular time intervals. This
is a standard approach to hide real from fake queries that
has been used in other systems, like in a practical ORAM
implementation [25].

5.1 Multiple Range Query Execution
An advantage of our MOPE schemes compared to an-

other recently proposed scheme that offers increased secu-
rity over basic OPE [30] is that we do not need to modify
the underlying DBMS when we execute the range queries.
Thus, any optimization that the server can use for a regu-
lar database workload can also be used here. In particular,
the fake queries are just some additional queries of the same
form. Therefore, a simple and very efficient optimization is
to consider multiple range predicates and execute them in a
single query. For example, we can have many range query
predicates connected with ORs in the WHERE clause of a
single SQL query statement. This is an example of multi-
ple query optimization [32] that allows sharing index and

data access across multiple range queries. We can there-
fore execute multiple range queries at once and return the
results to the proxy. This means of course that the proxy
has to filter the query results and compute the tuples that
satisfy the real queries. However, this slight extra work at
the proxy can be justified if the performance at the server
and the communication overhead (since the same record can
be shared by multiple queries) improves significantly.

5.2 Other Practical Considerations
The completion distribution Q̃ needs O(M) space to be

stored. If M is not very large, this is not a problem. On the
other hand, it can be a non-negligible overhead if M is large.
However, notice that M is actually the effective domain of
the possible values of the encrypted attribute and not the
domain of the attribute per se. In many applications, this
can be much smaller than the potential complete value of M .
For the periodic query algorithm the space is not a problem
since the histogram needs only O(ρ) space, where ρ is the
period that we use in this approach.

Furthermore, another interesting point is that the proxy
does not really execute any queries; it just creates the fake
queries and keeps track of the state of the actual queries.
Therefore, it is possible to implement the proxy using secure
hardware, for example secure co-processors [6, 5]. This has a
number of benefits. The operations executed from the proxy
can be easily executed inside a secure hardware platform.
Moreover, the proxy can be placed very close to the server
and the communication overhead between the server and the
proxy can be minimized.

6. EXPERIMENTS
In this section, we experimentally evaluate the uniform

and periodic query algorithms, as well as their extensions
that learn the user’s query distribution adaptively online.
We aim to (i) clearly illustrate the cost of these algorithms
in different settings, (ii) measure the gain in performance
when using the QueryP algorithm, (iii) explore the perfor-
mance of an end-to-end system that runs range queries using
MOPE, (iv) showcase the ability to deploy query optimiza-
tion methods, and (v) evaluate the algorithm for learning
the user’s query distribution.

Query distributions: As we discussed in the previous sec-
tions, the performance of a query algorithm is determined
by the user’s behavior, i.e., the query distribution Q. In
order to evaluate our proposed algorithms with practical
workloads, we simulate a user’s query distribution in the fol-
lowing way: (i) We use a combination of real and synthetic
datasets to define a distribution over the range of values in
the database. This distribution will determine the position
of each query, implicitly assuming that a user is more inter-
ested in querying records that are densely represented in the
dataset. (ii) In order to account for variable query lengths,
we sample the length of each range query from the normal
distribution N(0, σ2) for different values of σ.

By combining the query’s center and length, we generate
the query distribution against which we will evaluate our
algorithms.

The datasets that we used for step (i) above are: Uni-

form, Zipf, Adult, Covertype, SanFran. Details about these
datasets can be found in the Appendix.

 2

 4

 6

 8

 10

 12

n/a 5 10

B
a

n
d

w
id

th

Period

ageadults5

ageadults10

(a)

 2

 4

 6

 8

 10

 12

 14

 16

 18

n/a 5 10

R
e

q
u

e
s
ts

Period

ageadults5

ageadults10

(b)

Figure 5: Bandwidth(5a) and Requests(5b) costs for the
Adult query distribution with σ = 5 and 10.

 3

 4

 5

 6

 7

n/a 25 50 100 200

B
a
n

d
w

id
th

Period

elevation5

elevation10

(a)

 4

 5

 6

 7

 8

 9

n/a 25 50 100 200

R
e

q
u
e

s
ts

Period

elevation5

elevation10

(b)

Figure 6: Bandwidth(6a) and Requests(6b) costs for the
Covertype query distribution with σ = 5 and 10.

Each of the resulting query distributions is defined on a
different domain. As such, we treat them differently during
the experiments, by picking values for the period size and
the query length that make sense.

In Section 6.3, we test our system against the popular
TPC-H benchmark. Instead of generating simulated user
queries, we use the ones that the benchmark provides. Specif-
ically, we chose queries Q4, Q6 and Q14, since they are the
only ones to query ranges.

Notation: We denote byR the set of the user’s real queries.
The first step of both our algorithms is to break each query
q ∈ R into a set of transformed queries τk(q), all of which
are of length k and cover at least the same range of values
as q. We define T to be the multi-set

⋃
q∈R τk(q). Finally,

F will denote the set of fake queries.

Cost evaluation: In practice, cloud-service providers have
different pricing schemes for the number of requests and the
bandwidth that is being used. To reflect this, we introduce
two different cost functions.

The first one captures the overhead in the number of
records that we need to retrieve from the database and we
formally define it as

Bandwidth(R,F) =

∑
q∈F |q|+

∑
q∈R (|q| mod k)∑
q∈R |q|

where |q| denotes the size of the answer to query q (num-
ber of records returned). This cost depends on the number
of fake records that are queried and the number of excess
records requested due to the transformation of the original
queries.

The second measure captures the relative increase in the
number of requests to the service provider. We define it as

Requests(R, T ,F) =
|T |+ |F|
|R|

 2

 4

 6

 8

 10

n/a 25 50 100 200 400

B
a
n

d
w

id
th

Period

sanfrancisco5

sanfrancisco10

sanfrancisco25

(a)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

n/a 25 50 100 200 400

R
e

q
u
e

s
ts

Period

sanfrancisco5

sanfrancisco10

sanfrancisco25

(b)

Figure 7: Bandwidth(7a) and Requests(6b) costs for the
SanFran query distribution with σ = 5, 10 and 25.

6.1 The Cost of Security
In our first experiment, we aim to measure the cost of us-

ing each query algorithm, both in terms of Bandwidth and
Requests. For each of the query distributions that we in-
troduced above, we generate queries to simulate a user’s
behavior. We try different values for σ that make sense for
the underlying database. Then, each query is handed over
to the proxy, who runs one of the two algorithms, either
QueryU or QueryP, with a fixed value k = 10. We let the
proxy execute the queries and observe the sets T and F . We
report the results in Figures 5, 6 and 7. We got similar re-
sults for the Uniform and Zipf distributions, but we do not
report them for brevity. We also repeated this experiment
for multiple values of k; however the trend was similar.

6.1.1 The Uniform Query Algorithm
First, we consider QueryU. The results for QueryU cor-

respond to the value of each of the cost functions for Pe-
riod=n/a. As expected, for a constant k, the Bandwidth

when the queries in R are short (σ = 5) is bigger than when
they are longer. This can be attributed to the fact that the
denominator,

∑
q∈R |q|, becomes smaller as σ decreases.

On the other hand, Requests behaves oppositely. Longer
queries in R mean that, for a fixed k, the set T will be
strictly bigger and it will dominate the cost function.

6.1.2 The Periodic Query Algorithm
Next, we use the QueryP algorithm with different choices

for the period size. It is clear that the cost functions decrease
as we increase the size of the period. However, this comes
with a price — larger periods leak more bits of informa-
tion. The aim of this experiment is to measure the trade-off
between the security and the performance of our scheme.
Notice that the behavior of QueryP depends strongly on
the user’s query distribution. We observe that the cost for
query distributions similar to Adult and SanFran is greatly
decreased, even with just a small sacrifice in the security.
On the other hand, the cost for query distributions such as
Covertype seems to be much harder to change.

6.2 Choosing the Query Length
One important parameter of both QueryU and QueryP is

the fixed length k of the transformed queries in T . The
reason of its importance is the fact that larger values for k
lead to increased Bandwidth costs, but also tend to decrease
the Requests. In this experiment, we explore how this choice
affects the cost for the different query patterns that we use,
for the case of the QueryP algorithm with period size ρ = 25.
However, the trend of the cost functions is similar for other

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

5 10 25 50 10
0

20
0

40
0

80
0

B
a

n
d

w
id

th

Length

uniform5

uniform10

uniform25

(a)

 0

 5

 10

 15

 20

 25

 30

 35

5 10 25 50 10
0

20
0

40
0

80
0

R
e
q

u
e
s
ts

Length

uniform5

uniform10

uniform25

(b)

Figure 8: Bandwidth(8b) and Requests(8b) costs for Uni-

form query pattern and different k.

 0

 500

 1000

 1500

 2000

 2500

 3000

5 10 25 50 10
0

20
0

40
0

80
0

B
a

n
d

w
id

th

Length

powerlaw5

powerlaw10

powerlaw25

(a)

 20

 40

 60

 80

 100

 120

5 10 25 50 10
0

20
0

40
0

80
0

R
e
q

u
e
s
ts

Length

powerlaw5

powerlaw10

powerlaw25

(b)

Figure 9: Bandwidth(9a) and Requests(9b) costs for Zipf

query pattern and different k.

period sizes, as well as for QueryU. We report the results of
this experiment in Figures 8, 9, 10, 11 and 12.

We observe that, in order to minimize both costs, one
should pick k to be above the median length of the queries
in R.

6.3 The TPC-H Benchmark
As part of this work, we built a prototype proxy that

connects to a PostgreSQL database server and implements
both QueryU and QueryP algorithms. We chose to test these
algorithms against the TPC-H benchmark, a widely-used
database performance benchmark. There are only a hand-
ful query templates in TPC-H that execute range queries.
Specifically, Q1, Q4, Q6 and Q14 generate range queries on
a date attribute of the database. This attribute represents
the full range of dates between the years 1992 and 1998, in-
clusive. Apart from Q1, all of the queries are of fixed length
(3 months, 1 year and 1 month for each query type respec-
tively) and only cover the range of dates between 1993 and
1997. Q1 runs range queries that retrieves almost the whole
database, so we chose not to include it in the experiments.
We used a Scale Factor (SF) equal to 1 for generating the
TPC-H workload. Thus, the LINEITEM table contains 6M
tuples, ORDERS 1.5M tuples, and PART 200K tuples.

 0

 2

 4

 6

 8

 10

 12

5 10 25

B
a

n
d

w
id

th

Length

ageadults5

ageadults10

(a)

 3

 4

 5

 6

 7

 8

 9

5 10 25

R
e

q
u

e
s
ts

Length

ageadults5

ageadults10

(b)

Figure 10: Bandwidth(5a) and Requests(5b) costs for Adult
query pattern and different k.

 0

 40

 80

 120

 160

 200

 240

5 10 25 50 10
0

20
0

40
0

B
a

n
d

w
id

th

Length

elevation5

elevation10

(a)

 2

 4

 6

 8

 10

 12

 14

5 10 25 50 10
0

20
0

40
0

R
e
q

u
e
s
ts

Length

elevation5

elevation10

(b)

Figure 11: Bandwidth(6a) and Requests(6b) costs for
Covertype query pattern and different k.

 0

 100

 200

 300

 400

 500

 600

5 10 25 50 10
0

20
0

40
0

80
0

B
a

n
d

w
id

th

Length

sanfrancisco5

sanfrancisco10

sanfrancisco25

(a)

 0

 5

 10

 15

 20

 25

 30

 35

5 10 25 50 10
0

20
0

40
0

80
0

R
e
q

u
e
s
ts

Length

sanfrancisco5

sanfrancisco10

sanfrancisco25

(b)

Figure 12: Bandwidth(7a) and Requests(6b) costs for San-

Fran query pattern and different k.

We start by creating an encrypted version of the tables
that these queries are executed on, i.e. we encrypt the date
values using MOPE. Then, for each query that TPC-H gen-
erates, the proxy encrypts it and runs it on the encrypted
tables of the database. We pick k equal to the fixed (orig-
inal) query size and measure the performance of the algo-
rithms for different period sizes. The times we report are for
1000 client queries. The baseline we are comparing against
is the time it took the client to execute those 1000 queries,
without using any encryption or requesting the help of the
proxy’s algorithms. Conveniently enough, this time is al-
most the same for both Q6 and Q14 (1.3 and 1.1 seconds
respectively), so, for ease of presentation, we consider them
to be equal. The results of this experiment for Q6 and Q14

are summarized in Figure 13. We observe that, if we allow
the adversary to know where within a quarter the client’s
query is located, the time it takes to run 1000 queries drops
to under 20 seconds (or about 20 msec for each query). We
also need to add here that the näıve approach to return the
whole database every time – a strategy that would result
in perfect hiding – would require 8 hours 20 minutes and
14 hours, for Q14 and Q6 respectively, in order to execute
all 1000 queries. This means that for Q14 even the QueryU
algorithm is more than 660 times faster than the näıve ap-
proach and for Q6 the QueryP with period 1 month is more
than 800 times faster.

We consider the case of Q4 separately. A single, un-
encrypted, query of this type takes almost 4 seconds to run.
This makes it a little bit more expensive to handle it the
same way as Q1 and Q14. So, instead of reporting the run-
ning time, we skip the execution of the queries and just
measure the Requests cost for the proxy. The results of this
experiment are summarized in Figure 14.

6.4 Multiple Range Query Execution
As we discussed in Section 5, a big advantage of our

MOPE schemes is that there is no need to modify the under-

1 sec

2 sec

5 sec

10 sec

20 sec

30 sec

45 sec
1 min

5 mins

n/a 15 days
1 month

2 months

3 months

6 months

1 year

R
u

n
ti
m

e

Period

QUERY6

QUERY14

UNENCRYPTED

Figure 13: The time required to run 1000 queries generated
by the Q6 and Q14 query templates using different period
sizes.

 0

 10

 20

 30

 40

 50

 60

n/a 15 days
1 month

2 months

3 months

6 months

1 year

F
a

c
to

r

Period

Figure 14: The Bandwidth cost when trying to hide the
query pattern for Q4. A single query takes around 4 sec-
onds to execute, so we can predict the actual running time.

lying DBMS in order to use it. As a result, practical query
optimization methods are still applicable. To showcase this
advantage, we do the following experiment: instead of exe-
cuting the range queries one at a time, we combine a number
of them into a disjunctive query (the WHERE clause is the
logical disjunction of multiple ranges) and execute this in-
stead. The setting is the same as in the previous section:
the client executes 1000 encrypted queries of type Q6 and
Q14 to the TPC-H database using the proxy’s QueryU algo-
rithm. Figure 15 shows that, as we combine more ranges,
the time required for the proxy to execute all these queries
is dramatically decreased. Notice that for the case of Q14,
executing queries of 250 ranges at a time makes QueryU run
in time comparable with the non-encrypted execution!

6.5 Learning the Query Distribution
For AdaptiveQueryU, we experimented with both a query

distribution, i.e. SanFran, as well as the benchmark TPC-H
(Q14). We measure the number of fake queries that need
to be executed for each set of 10 unique real queries. No-

2 sec

5 sec

10 sec

20 sec

30 sec

45 sec

1 min

5 mins

n/a
100

250
500

750
1000

R
u
n
ti
m

e

Batch size

QUERY6

QUERY14

Figure 15: Combining multiple ranges into a single query
results in dramatic speedups of the QueryU algorithm. The
times reported are for 1000 queries.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20
 40

 60
 80

 100

N
u

m
b

e
r

o
f

fa
k
e

 q
u

e
ri
e

s

Rounds

(a)

 300

 400

 500

 600

 700

 800

 900

 0 200
 400

 600
 800

 1000

N
u

m
b

e
r

o
f

fa
k
e

 q
u

e
ri
e

s

Rounds

(b)

Figure 16: The number of fake queries executed for round of
10 real queries in SanFran10(16a) and Q14 of TPC-H(16b).
The AdaptiveQueryU converges really fast, especially for Q14.

tice that because the sampling from the buffer is done with
replacement, we may sample again a real query that has
been executed before. In that case, we do not count this
query as part of the unique queries but we count it as a
fake query. In the beginning, when we do not know any-
thing about the clients’s query distribution, this number is
expected to be large. However, as we observe more real
queries, AdaptiveQueryU converges close to the performance
of QueryU. Figure 16 summarizes these results. Indeed, each
unique real query executed takes on average about 10 fake
queries in the SanFran query pattern. For the case of Q14,
what we observe is that the algorithm converges rapidly,
since the distribution is practically over only 84 elements
(one per month, for 7 years). The deviations we observe are
due to randomness. We obtained similar results for all the
other datasets.

7. SECURITY ANALYSIS
We follow the paradigm of provable security, the standard

in modern cryptography. The first step is to capture the se-
curity of a scheme via a precise definition that specifies what
an adversary is allowed to do when attacking the scheme
and what its goals are. Such definitions are formulated via
a probabilistic experiment that the adversary runs on some
inputs, which is itself a randomized algorithm. For exam-
ple, in a simple experiment the adversary may be given the
encryptions of some messages and then tries to guess one
of these messages. The adversary’s advantage is defined to
capture the probability that an adversary is able to violate
the security according to the definition.

We can then analyze our candidate schemes under these
definitions in order to assess their security, i.e., bound any
efficient adversary’s advantage against the scheme (usually
under some well-accepted computational assumptions). It is
important, especially in our context, to realize that the se-
curity of a scheme is not an all-or-nothing property, meaning
that a scheme should not really be viewed as “either secure
or not.” Our schemes are such that some information about
the data intentionally leaks in order to allow efficient query
processing, and we strive to minimize information leakage
beyond that. The provable security paradigm allows us to
precisely capture and measure such a leakage.

7.1 Background on (M)OPE Security
We recall the security models for OPE and MOPE in-

troduced in [7, 8]. Below, we fix a symmetric encryption
scheme SE = (Kg,Enc,Dec). The definitions that follow do
not assume that the scheme is (modular) order-preserving,
but this is an important special case.

POPF security: We first define the notion of pseudo-
random order-preserving function (POPF) security intro-
duced in [7]. Intuitively, this notion asks that oracle access
to the encryption algorithm of the scheme is indistinguish-
able from that to a truly random order-preserving function
with the same domain and range (the “ideal object”). Let
OPF[M,N] denote the set of all monotonically-increasing
functions from [M] to [N]. For every adversary A define its
POPF-advantage as

Advpopf
SE (A) = Pr[AEnc(K,·) outputs 1 : K←$ Kg]

− Pr[Af(·) outputs 1 : f←$ OPF[M,N]] .

The work of [7] provides a POPF-secure OPE construction
based on any standard blockcipher such as AES.

The related notion of pseudorandom modular order pre-
serving function (PMOPF) security was introduced in [8].
Now, the“ideal object”is a random modular order-preserving
function with the same domain and range. Let MOPF[M,N]
denote the set of all modular order-preserving functions from
[M] to [N] (that is, all order-preserving functions appended
with all possible modular shifts). For every adversary A
define its PMOPF-advantage as

Advpmopf
SE (A) = Pr[AEnc(K,·) outputs 1 : K←$ Kg]

− Pr[Af(·) outputs 1 : f←$ MOPF[M,N]] .

[8] showed that one can easily extend a POPF-secure OPE
(like that of [7]) to a MPOPF-secure MOPE by introducing
a secret (pseudo)random shift to encryption and decryption.

WOW-L and WOW-D security: Next, we characterize
the data privacy provided by a POPF-secure OPE scheme.
Fix a parameter n, which is the number of ciphertexts in
the database, and w, which is the “window size.” For a set
S let Sk(S) denote the set of all k-element subsets of S, for
any 1 ≤ k ≤ |S|.

We consider security experiments in which a database is
sampled randomly and then the encrypted database is given
to the adversary, who in turn tries to infer something about
the plaintexts. Specifically, we use the notions of window
one-way wayness for location (WOW-L) and window one-
way wayness for distance (WOW-D) from [8]. Intuitively,
WOW-L asks that it should be hard to specify a consecutive
interval (i.e., a “window”) of at most a certain length in
which the decryption of some ciphertext lies. Analogously,
WOW-D asks that it should be hard to specify a window of
at most a certain length in which the distance between the
decryption of some two ciphertexts lies. For more details we
refer to [8].

Note that if OPE met the standard notion of semantic
security, then the WOW-L and WOW-D advantage of any
adversary would be upper-bounded by nw/M , since the ad-
versary would get no useful information about the plaintexts
and should just guess at random. (In general we could allow
the adversary to choose a non-consecutive window in which
a plaintext or distance could lie, but then in the case of OPE
it is to the adversary’s advantage to choose a consecutive one
anyway.) Roughly, for OPE we get a

√
M in the denomina-

tor instead. This means that roughly the upper-half of the
bits of each plaintext, as well as the upper-half of the bits of
the distance between each pair of plaintexts, are leaked by
POPF-secure OPE.

Security bounds for POPF-secure MOPE: We now
give the bounds from [8] for MOPE.

Theorem 1. Let OPE = (Kg,Enc,Dec) be a POPF-secure
OPE scheme with N ≥ 8M and let MOPE be the associated
MOPE scheme. Then for every adversary A there is an ad-
versary A′ such that

Advwow-`
MOPE,n,w(A) ≤ Advpmopf

MOPE,n(A′) +
nw

M
.

The running-time of A′ is that of A.

Theorem 2. Let OPE = (Kg,Enc,Dec) be a POPF-secure
OPE scheme with N ≥ 8M and let MOPE be the associated
MOPE scheme. Then for every adversary A there is an ad-
versary A′ such that

Advwow-d
MOPE,n,w(A) ≤ Advpmopf

MOPE,n(A′) +
4n(n− 1)w√
M − n+ 1

.

The running-time of A′ is that of A.

Intuitively, the above says that in the case of one-wayness
for location, the security of MOPE is the same as for se-
mantic security, i.e., no information about the location is
revealed at all. However, in the case of distance, it is the
same as for OPE.

7.2 New Security Models with Queries
As shown by the gap attack, in an appropriate security

model for MOPE we need to take into account the queries
seen by the adversary. Accordingly, we will now denote
a MOPE scheme by MOPE = (Kg,Enc,Dec,Query). Here
the stateful and randomized algorithm Query on input a
key K, an un-encrypted (standard or wrap-around) query
(mL,mR), and state St outputs an encrypted query (cL, cR)
and updated state St ′. The un-encrypted query may also
be the empty string ε, which indicates that there is no new
query to process but that the next query in the encrypted
query sequence should be returned. Note that in our gen-
eral model the Query algorithm is otherwise arbitrary; in
our analyses in Sections 7.3 and 7.4, it will be replaced by
(appropriate modifications of) the algorithms from Sections
3 and 4.

For any choice of Query, it will be useful to define the
following algorithm that takes as input a key K and an
un-encrypted query sequence Q = (m1

L,m
1
R), . . . , (mq

L,m
q
R),

and outputs a corresponding encrypted query sequence that
contains the real encrypted queries embedded in it:

Algorithm MakeQueries(K,Q) :
St ← ε
For i = 1 to q do: // process queries in Q

(ciL, c
i
R,St)←$ Query(K, (mi

L,m
i
R),St)

While St 6= ε do: // output remaining encrypted queries
i← i+ 1 ; (ciL, c

i
R)←$ Query(K, ε,St)

CQ ← ((c1L, c
1
R), . . . , (ciL, c

i
R))

Return CQ

We require that for any Q, MakeQueries(K,Q) terminates
with overwhelming probability over K←$ Kg and the coins
of the algorithm itself.

WOW-L and WOW-D with queries: As before, let n
be the database size and w be the window size. LetQ denote
a distribution on queries; i.e., Q is a distribution on the set

{(mL,mR) | 1 ≤ mL ≤ mR ≤M} .

Experiment Expwow∗-`
SE,n,w,q,Q(A) :

/* Sample encrypted database */
K←$Kg
D←$Sn([M]) ; CD←$Enc(K,D)
m←$D ; c←$Enc(K,m)
Count← 0
/* Now adversary can ask for queries */

x←$ANextQuery(q,Count)(CD, c)
If m ∈ [x, x+ w]

Then return 1
Else return 0

Experiment Expwow∗-d
SE,n,w,q,Q(A) :

/* Sample encrypted database */
K←$Kg
D←$Sn([M]) ; CD←$Enc(K,D)
{m1,m2}←$S2(D)
{c1, c2}←$Enc(K, {m1,m2})
Count← 0
/* Now adversary can ask for queries */

x←$ANextQuery(q,Count)(CD, c1, c2)
If |m1 −m2| ∈ [x, x+ w]

Then return 1
Else return 0

Oracle NextQuery(q, Count) :
If Count ≥ q

Return ⊥
(mL,mR)←$Q
(cL, cR,St)←$Query(K,mL,mR,St)
Count← Count+ 1
Return (cL, cR)

Figure 17: The security experiments (left and middle) give the adversary access to an oracle (right).

Intuitively, we want to consider window one-wayness when
the adversary also sees queries. We want to protect privacy
of both the data and the queries. The basic set-up is as
follows: We give the adversary the encrypted database but
also give it the ability to request the next query via an oracle
that samples a query from an appropriate distribution. It
can query this oracle (which takes no input) as much as
it likes to receive more queries, up to some query limit q
(which will play a role in our security bounds). Formally,
we consider the experiments given in Figure 17. For an
adversary A define its WOW∗-L advantage (one-wayness for
location with queries) as

Advwow∗-`
SE,n,w,q,Q(A) = Pr

[
Expwow∗-`

SE,n,w,q,Q(A) outputs 1
]
.

Similarly, for an adversary A define its WOW∗-D advantage
(one-wayness for distance with queries) as

Advwow∗-d
SE,n,w,q,Q(A) = Pr

[
Expwow∗-d

SE,n,w,q,Q(A) outputs 1
]
.

Note that we do not require the plaintext distances in the
encrypted queries to be hidden; that is, we allow the adver-
sary to learn the length of the requested plaintext ranges.
This admits a much more practical solution.

Notice also a further change in the experiments Expwow∗-`,
Expwow∗-d from their non-query counterparts: we require
that the adversary invert a specific plaintext or distance
between two plaintexts (chosen at random). This change
in definition allows us to consider applications where the
database size n is large, and one is concerned with the ability
of an adversary to uncover a specific message or distance—a
more practical scenario. And while this weakens the secu-
rity notions themselves, our later security results lose none
of their potency from a practical standpoint.

7.3 The Uniform Query Algorithm
We can easily fit QueryU and AdaptiveQueryU into our

general model above. For example, we can modify QueryU to
maintain a buffer as in AdaptiveQueryU and return the next
query to be executed instead of executing many queries until
the input is executed. We slightly abuse notation and use
the same names for the appropriately modified algorithms.
Below we prove results about QueryU; analogous results hold
for AdaptiveQueryU. The first result says that when using
this algorithm to make range queries (regardless of the fixed
query length) with MOPE, one-wayness for location is the
best possible (no information is revealed at all).

Theorem 3. Let OPE be a POPF-secure OPE scheme on
domain [M], range [N]. Let MOPE = (Kg,Enc,Dec,QueryU)

be the associated MOPE scheme using the QueryU algorithm
obtained from Section 3.1. Let Q be a distribution on [M].
Then for any query limit q, for every adversary A there is
an adversary A′ such that

Advwow∗-`
MOPE,n,w,q,Q(A) ≤ Advpmopf

MOPE,n(A′) +
w

M
.

The running-time of A′ is that of A.

The next result is the most technically challenging to
prove, and says that for distance one-wayness, using QueryU
to make range queries with MOPE and fixing the query
length to k leaks roughly at most the log(M + qk)/2 most-
significant bits of the distance between any two plaintexts.

Theorem 4. Let OPE = (Kg,Enc,Dec) be an OPE scheme
on domain [M], range [N], with N ≥ 16M . Let MOPE =
(Kg,Enc,Dec,QueryU) be the associated MOPE scheme us-
ing the QueryU algorithm obtained from Section 3.1. Let
k ≥ 1 be the fixed query length, with k �M , q be the query
limit. Then for any adversary A there is an adversary A′

such that

Advwow∗-d
MOPE,n,w,q,Q(A) ≤ Advpmopf

MOPE,n(A′) +
8w√

M − qk − 1
.

The running-time of A′ is that of A.

The proofs for the Theorems 3 and 4 appear in the Ap-
pendix.

7.4 The Periodic Query Algorithm
Again, we can easily fit QueryP and AdaptiveQueryP into

our model above. We present our results for QueryP, but
analogous results hold for AdaptiveQueryP. Below we show
that using this algorithm to make range queries with MOPE
leaks roughly at most the log ρ least-significant bits of the
plaintexts.

Theorem 5. Let Q be a distribution on [M] and let ρ
be an integer that divides M . Let OPE be a POPF-secure
OPE scheme on domain [M], range [N], and let MOPE(ρ) =
(Kg,Enc,Dec,Query) be the associated MOPE scheme, with
Query(ρ) defined as the periodic algorithm above. Then for
any query limit q, for every adversary A there is an adver-
sary A′ such that

Advwow∗-`
MOPE(ρ),n,w,q,Q(A) ≤ Advpmopf

MOPE(ρ),n(A′) +
ρw

M
.

The running-time of A′ is that of A.

The proof of Theorem 5 is also in the Appendix.
Notice that, in general, the periodic scheme has poor one-

wayness for distance. In fact, depending on how the period
ρ relates to the input distribution Q, it may be quite easy
for an adversary to guess distances based on knowledge of
these parameters alone. For instance, suppose Q has equal
spikes at a certain set of messages spaced ρ apart and is zero
elsewhere. Then only distances kρ for integers k are possible,
and thus low-order-bit information is leaked about distance
(in addition to high-order-bit information about distance,
which is always leaked by an RMOPF) resulting in poor
distance one-wayness.

8. RELATED WORK
The idea of OPE was proposed by Agrawal et al. in [3]

were they formally defined the problem and they provided
a scheme to address it. Interestingly, this idea had already
appeared before in [27, 19]. However, none of these works
defined a formal security model as the one that we discuss
here and no formal cryptographic security guarantees were
discussed. The first to present a more formal security study
of the problem was Boldyreva et al [7, 8].

A stronger notion of security for OPE would be that only
order (or modular order, in the case of MOPE) among the
plaintext is revealed. Unfortunately, [7] show such a defi-
nition is impossible to achieve. However, [30] (and an im-
provement by [23]) shows that this can be achieved by an
“interactive” scheme that modifies existing encryptions in
the database depending on the insertion of new values, and
where encryption and decryption requires the interaction be-
tween the server and the client. However, here we work in
the standard “non-interactive” setting. Remarkably, it has
recently been shown that such security can even be achieved
in the non-interactive setting by a“generalized”form of OPE
that allows an arbitrary comparison operation on cipher-
texts [16, 9], but such schemes are far from practical.

There are a number of works that use bucketization to
store encrypted records for answering range queries, where
each bucket corresponds to a given partition of the domain
and each record is associated with a given partition. Given a
range query, the buckets that intersect with the query must
be identified by the client and an exact match query is issued
at the server that retrieves all the records in these buck-
ets. The records themselves are encrypted with a semantic
security scheme. This idea has been used for both one di-
mensional [19, 22] and multidimensional range queries [21].
However, these works have weaker security models than ours
and are susceptible to query pattern attacks.

Another work, that is related to our approach to obfuscate
real queries using fake queries, is the work by Pang et al. [28],
where they try to hide the terms in text search queries by
introducing decoy terms. In a subsequent work [29], the
same authors enhance a text query with a set of fake queries
that can obfuscate the real query.

Some notable recent works on building database systems
that run queries over encrypted data are CryptDB [31] and
Monomi [34]. Both of them use an OPE scheme as one
of their main encryption strategies that allows to execute
database queries efficiently. Furthermore, two systems that
use secure hardware and provide stronger security and better
functionality are TrustedDB [6] and Cipherbase [5].

9. DISCUSSION AND FUTURE WORK
Relation to oblivious RAM: Oblivious RAM (ORAM),
introduced by Goldreich and Ostrovsky [15] (see [33] and
references therein for more recent work) is a technique that
hides all information about what positions in an outsourced
database are accessed by the client, by continually shuffling
around and re-encrypting the data. In principle ORAM
could be used generically to solve the problem of hiding the
user’s access pattern in our modular OPE setting. However,
ORAM is less efficient than our solution and is actually an
overkill: We need to hide the distribution of access locations
by the client, not the locations themselves.

Thus, we achieve efficiency by taking in account the ac-
tual distribution of the user’s queries, whereas in the ORAM
model the access pattern of the client is arbitrary and fixed.
It is an interesting future direction whether such an ap-
proach can be beneficial in the ORAM setting as well.

A note on the security model: We note that obtain-
ing the security benefits of modular OPE over basic OPE
crucially relies on the fact that we only allow the adversary
a so-called “ciphertext-only” attack. In particular, the ad-
versary in our security models is not allowed to see known
plaintext-ciphertext pairs; if it could, it would be able to
orient the dataset despite the use of the modular offset.

We envision that in many applications such an attack
is unlikely — in any case, security will degrade back only
the case of basic OPE (it cannot be worse than using ba-
sic OPE), so in some sense there is no reason not to use
modular OPE anyway. However, it is interesting question
for future research whether something can be done to miti-
gate the effect of plaintext-ciphertext pair exposure, such as
re-encrypting portions of the data at regular intervals.

Acknowledgements
We thank Raluca Ada Popa, Kobbi Nissim, and Nickolai
Zeldovich for discussions. Part of this work was done while
Adam O’Neill was at Boston University, supported by NSF
grants CNS-1012910 and CNS-0546614. George Kollios and
Ran Canetti were supported by an NSF SaTC Frontier Award
CNS-1414119.

10. REFERENCES
[1] D. Agrawal, A. El Abbadi, B. C. Ooi, S. Das, and

A. J. Elmore. The evolving landscape of data
management in the cloud. IJCSE, 7(1):2–16, 2012.

[2] D. Agrawal, A. El Abbadi, and S. Wang. Secure data
management in the cloud. In DNIS, pages 1–15, 2011.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu.
Order-preserving encryption for numeric data. In
SIGMOD Conference, pages 563–574, 2004.

[4] Amazon. Amazon RDS. http://aws.amazon.com/rds/.

[5] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik,
D. Kossmann, and R. Ramamurthy. Transaction
processing on confidential data using cipherbase. In
ICDE Conference, 2015.

[6] S. Bajaj and R. Sion. Trusteddb: A trusted hardware
based outsourced database engine. PVLDB,
4(12):1359–1362, 2011.

[7] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-preserving symmetric encryption. In
EUROCRYPT, pages 224–241, 2009.

[8] A. Boldyreva, N. Chenette, and A. O’Neill.
Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In
CRYPTO, pages 578–595, 2011.

[9] D. Boneh, K. Lewi, M. Raykova, A. Sahai,
M. Zhandry, and J. Zimmerman. Semantically secure
order-revealing encryption: Multi-input functional
encryption without obfuscation. In Advances in
Cryptology - EUROCRYPT, 2015.

[10] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann,
and T. Kraska. Building a database on s3. In
SIGMOD Conference, pages 251–264, 2008.

[11] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya,
E. Wu, S. Madden, H. Balakrishnan, and
N. Zeldovich. Relational cloud: a database service for
the cloud. In CIDR, pages 235–240, 2011.

[12] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An
elastic, scalable, and self-managing transactional
database for the cloud. ACM Trans. Database Syst.,
38(1):5:1–5:45, Apr. 2013.

[13] L. Devroye. Non-Uniform Random Variate
Generation. Springer-Verlag New York, 1986.

[14] C. Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, pages 169–178, 2009.

[15] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious rams. J. ACM,
43(3):431–473, 1996.

[16] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain,
J. Katz, F. Liu, A. Sahai, E. Shi, and H. Zhou.
Multi-input functional encryption. In Advances in
Cryptology - EUROCRYPT, pages 578–602, 2014.

[17] S. Goldwasser and S. Micali. Probabilistic encryption.
J. Comput. Syst. Sci., 28(2):270–299, 1984.

[18] Google. Google Cloud SQL.
https://cloud.google.com/products/cloud-sql.

[19] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra.
Executing sql over encrypted data in the
database-service-provider model. In SIGMOD
Conference, pages 216–227, 2002.

[20] H. Hacigümüs, S. Mehrotra, and B. R. Iyer. Providing
database as a service. In ICDE Conference, pages
29–38, 2002.

[21] B. Hore, S. Mehrotra, M. Canim, and
M. Kantarcioglu. Secure multidimensional range
queries over outsourced data. VLDB J.,
21(3):333–358, 2012.

[22] B. Hore, S. Mehrotra, and G. Tsudik. A
privacy-preserving index for range queries. In VLDB,
pages 720–731, 2004.

[23] F. Kerschbaum and A. Schropfer. Optimal
average-complexity ideal-security order-preserving
encryption. In ACM SIGSAC Conference on
Computer and Communications Security, CCS’14,
pages 1–12, 2014.

[24] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and
S. Teng. On trip planning queries in spatial databases.
In Advances in Spatial and Temporal Databases, 9th
International Symposium, SSTD, Proceedings, pages
273–290, 2005.

[25] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song.

PHANTOM: practical oblivious computation in a
secure processor. In ACM SIGSAC Conference on
Computer and Communications Security, CCS’13,
pages 311–324, 2013.

[26] Microsoft. SQL Azure.
http://www.windowsazure.com/en-
us/develop/net/fundamentals/cloud-storage/.

[27] G. Özsoyoglu, D. A. Singer, and S. S. Chung.
Anti-tamper databases: Querying encrypted
databases. In DBSec, pages 133–146, 2003.

[28] H. Pang, X. Ding, and X. Xiao. Embellishing text
search queries to protect user privacy. Proc. VLDB
Endow., 3(1-2):598–607, Sept. 2010.

[29] H. Pang, X. Xiao, and J. Shen. Obfuscating the
topical intention in enterprise text search. In ICDE
Conference, pages 1168–1179, 2012.

[30] R. A. Popa, F. H. Li, and N. Zeldovich. An
ideal-security protocol for order-preserving encoding.
In 2013 IEEE Symposium on Security and Privacy,
SP, pages 463–477, 2013.

[31] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: protecting confidentiality
with encrypted query processing. In SOSP, pages
85–100, 2011.

[32] T. K. Sellis. Global query optimization. In Proceedings
of the 1986 ACM SIGMOD International Conference
on Management of Data, pages 191–205, 1986.

[33] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher,
L. Ren, X. Yu, and S. Devadas. Path oram: an
extremely simple oblivious ram protocol. In ACM
Conference on Computer and Communications
Security, pages 299–310, 2013.

[34] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.
Processing analytical queries over encrypted data.
PVLDB, 6(5), 2013.

APPENDIX
A. SECURITY PROOFS

First, we prove a short lemma. Let RMOPF be the “ideal”
(inefficient) MOPE scheme that selects a random element
from MOPF[M,N] as its key, and samples this function and
its inverse for encryption and decryption.

Lemma 1. Given an adversary A to experiment WOW*
(can be WOW*-L or WOW*-D) on scheme MOPE, there
exists PMOPF adversary A′ with the same running time
such that

Advwow∗
MOPE,n,w(A)−Advwow∗

RMOPF,n,w(A) = Advpmopf
MOPE,n(A′).

(where wow∗ is either wow∗-` or wow∗-d.)
Proof. Let A′ be an algorithm for the PMOPF experi-

ment that simulates experiment WOW*SE,n,w for adversary
A, using its oracle access to either MOPE’s actual encryption
function or a truly random MOPF on the same domain and
range as “encryption” for SE, and outputs the result of the
experiment. The PMOPF advantage of A′ is equal to the
difference in success probabilities for WOW* between using
MOPE’s actual encryption function versus a truly random
MOPF. The former success probability is Advwow∗

MOPE,n,w(A)
and since a truly random MOPF is equivalent to the en-
cryption function of RMOPF, the latter success probability
is Advwow∗

RMOPF,n,w(A). The result follows.

Proof of Theorem 3. By Lemma 1, it is enough to
prove that

Advwow∗-`
RMOPF,n,w(A) ≤ w

M
.

Recall that a random MOPF can be viewed as a random
shift on the message space, followed by a random OPF. No-
tice then that even given the entire set of ciphertexts seen
by the adversary, each ciphertext equally likely came from
any element of the message space (because of the random
shift.) Furthermore, all the adversary sees is ciphertexts.
Thus, when the adversary guesses a window of size w, each
ciphertext’s likelihood to have come from a message in the
window is simply w/M .

Proof of Theorem 4. In this proof, consider addition,
subtraction, and“betweenness”of plaintexts and ciphertexts
to be modular, i.e., they wrap around the plaintext and ci-
phertext spaces. Also, recall from [8] the definitions of most
likely plaintext (m.l.p.) and most likely plaintext distance
(m.l.d.): informally, the m.l.p. of a given ciphertext c is
the plaintext mc that most likely (over all keys and given
knowledge) produced ciphertext c; the m.l.d. of given ci-
phertext pair c, c′ is the plaintext distance dc,c′ that most
likely separates the plaintexts whose encryptions produced
c1 and c2.

Invoking Lemma 1 and the trivial fact Advwow∗-d
RMOPF,n,w(A) ≤

w ·Advwow∗-d
RMOPF,n,1(A) , it is left to prove that

Advwow∗-d
RMOPF,n,1(A) ≤ 8√

M
.

Advwow∗-d
RMOPF,n,1(A) is bounded by the probability of the most

likely plaintext distance (m.l.d.) between random messages
m1,m2 when c1, c2 are known to the adversary as well as
ciphertexts (ciL, c

i
R) for i ∈ [q], each pair of which comes

from some uniformly random query mi
L, mi

R = mi
L + k− 1.

This task is equivalent to the following experiment: given
N balls, numbered 1 through N (the ciphertext space), we
are told that a random M of them are black (representing
which are actual ciphertexts under the key) and the rest are
white. Also, balls c1 and c2 are black (as they are valid
ciphertexts.) Furthermore, for i ∈ [q], the balls ciL and ciR
are black and there are precisely k total black balls between
ciL and ciR, inclusive. The goal is to guess how many black
balls lie between c1 and c2. (Notice that the MOPE scheme’s
secret shift is irrelevant in determining plaintext distance.)

We prove the bound by showing a more powerful adver-
sary’s advantage is bounded by the quantity desired. The
more powerful adversary is given slightly more information
in addition to the above:

• When two range queries overlap, i.e. ciL < cjL < ciR for
some i, j ∈ [q], the adversary knows how many black
balls lie in each subinterval. That is, the adversary is
given the number of black balls between ciL and cjL,

between cjL and ciR, and between ciR and cjR.

• When a challenge ciphertext lies in a range query, i.e.
ciL < c1 < ciR (or analogously, ciL < c2 < ciR), the ad-
versary knows how many black balls lie in each subin-
terval. That is, the adversary is given the number of
black balls between ciL and c1, and between c1 and ciR.

Let C be the set of ciphertexts within a range query, but not
including c1 or c2.

All told, the adversary knows that some number r ≤ kq
of black balls lie within C. Of these, say rin lie strictly

in between c1 and c2 and rout lie outside, so that rin +
rout = r. Of the remaining M − r black balls, the adversary
knows there are black balls at c1 and c2 but knows nothing
of the others, other than that they are uniformly distributed
among the other balls in R′ = [N]\C. Thus, the adversary’s
advantage is bounded by its ability to guess how many of
these remaining balls between c1 and c2 are black. (This
guess would be combined with rin to find the adversary’s
best guess.) Let N ′ = |R′|. Then this is equivalent to
guessing the m.l.d. between two random ciphertexts on a
domain of size M − r and range of size N ′. Notice that
|C| ≈ N

M
r = N

M
kq � N . Thus N ′ ≥ N/2 ≥ 8M ≥ 8(M − r)

and the bound of Theorem 2 applies, giving

Advwow∗-d
RMOPF,n,1(A) ≤ 8√

M − r − 1
≤ 8√

M − kq − 1
.

Combining with the initial reductions, we achieve the re-
sult.

Proof of Theorem 5. Lemma 1 applies here, so it is
enough to prove that

Advwow∗-`
RMOPF(ρ),n,w(A) ≤ ρw

M

where RMOPF(ρ) is the scheme that uses a completely ran-
dom MOPF as encryption function and Query(ρ) as a query
algorithm. Notice that the query algorithm samples mes-
sages from the ρ-periodic distribution Pρ, and in the random
MOPF a random shift is applied in encryption. Thus, the
set of ciphertexts seen by the adversary has equal probabil-
ity of coming from one of M/ρ different shifts of a certain set
of messages. Hence, when the adversary guesses a window
of size w, each ciphertext’s likelihood to have come from a
message in the window is simply ρw/M .

B. DATASETS
Here we describe in more details that datasets that we

used in the experimental evaluation:

• Uniform: The most basic distribution of queries is when
every record has equal chance of being the center of a
query. We use a domain size of 10000.

• Zipf: Often, user behavior resembles a power law. Cer-
tain ranges in the database are accessed far more fre-
quently than the rest. Again, the domain size is 10000.

• Adult: We generate the distribution of the query cen-
ter based on the age attribute of the Adult1 dataset.
The range of values of age is between 17 and 90. The
probability of each record in the database is equal to
the frequency with which that record appears in the
dataset.

• Covertype: This is a real dataset based on the elevation
attribute of the Covertype2. The range of values here
is between 1859 and 3858.

• SanFran: This is a spatial dataset3 of the California
Road Network’s nodes[24]. We use the longitude infor-
mation of the nodes, after binning the dataset in 10000
bins. The probability of each record then is equal to the
probability of picking the corresponding bin at random.

1https://archive.ics.uci.edu/ml/datasets/Adult
2https://archive.ics.uci.edu/ml/datasets/Covertype
3http://www.cs.utah.edu/~lifeifei/SpatialDataset.
htm

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Covertype
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

	Introduction
	 Contributions

	Background on (Modular) OPE
	Order-Preserving Encryption
	Modular Order-Preserving Encryption

	New Query Algorithms for MOPE
	Uniform Query Algorithm
	Periodic Query Algorithm

	Learning the Query Distribution
	System Architecture
	Multiple Range Query Execution
	Other Practical Considerations

	Experiments
	The Cost of Security
	The Uniform Query Algorithm
	The Periodic Query Algorithm

	Choosing the Query Length
	The TPC-H Benchmark
	Multiple Range Query Execution
	Learning the Query Distribution

	Security Analysis
	Background on (M)OPE Security
	New Security Models with Queries
	The Uniform Query Algorithm
	The Periodic Query Algorithm

	Related work
	Discussion and Future Work
	References
	Security Proofs
	Datasets

