
The VLDB Journal (2003) / Digital Object Identifier (DOI) 10.1007/s00778-003-0090-4

Selectivity estimators for multidimensional range queries over real attributes

Dimitrios Gunopulos�1, George Kollios��2, Vassilis J. Tsotras���1, Carlotta Domeniconi3

1 University of California, Riverside, Department of Computer Science and Engineering, Bourns College of Engineering, Riverside,
CA 92521, USA; e-mail: {dg, tsotras}@cs.ucr.edu

2 Boston University, Department of Computer Science, Boston, MA 02215, USA; e-mail: gkollios@cs.bu.edu
3 George Mason University, Department of Information and Software Engineering, Fairfax, VA 22030, USA; e-mail:carlotta@ise.gmu.edu

Edited by Y. Ioannidis. Received: ♣/ Accepted: ♣
Published online: ♣♣ 2003 – c© Springer-Verlag 2003

Abstract. Estimating the selectivity of multidimensional
range queries over real valued attributes has significant appli-
cations in data exploration and database query optimization.
In this paper, we consider the following problem: given a ta-
ble of d attributes whose domain is the real numbers and a
query that specifies a range in each dimension, find a good ap-
proximation of the number of records in the table that satisfy
the query. The simplest approach to tackle this problem is to
assume that the attributes are independent. More accurate esti-
mators try to capture the joint data distribution of the attributes.
In databases, such estimators include the construction of mul-
tidimensional histograms, random sampling, or the wavelet
transform. In statistics, kernel estimation techniques are being
used. Many traditional approaches assume that attribute val-
ues come from discrete, finite domains, where different values
have high frequencies. However, for many novel applications
(as in temporal, spatial, and multimedia databases) attribute
values come from the infinite domain of real numbers. Conse-
quently, each value appears very infrequently, a characteristic
that affects the behavior and effectiveness of the estimator.
Moreover, real-life data exhibit attribute correlations that also
affect the estimator.We present a new histogram technique that
is designed to approximate the density of multidimensional
datasets with real attributes. Our technique defines buckets of
variable size and allows the buckets to overlap. The size of the
cells is based on the local density of the data. The use of over-
lapping buckets allows a more compact approximation of the
data distribution. We also show how to generalize kernel den-
sity estimators and how to apply them to the multidimensional
query approximation problem. Finally, we compare the accu-
racy of the proposed techniques with existing techniques using
real and synthetic datasets. The experimental results show that
the proposed techniques behave more accurately in high di-
mensionalities than previous approaches.

� Supported by NSF ITR-0220148, NSF IIS-9907477 CAREER
Award, NSF IIS-9984729, and NRDRP.
�� Supported by NSF IIS-0133825 CAREER Award.

��� Supported by NSF IIS-9907477 and the US Dept. of Defense.

1 Introduction

Computing the selectivity of multidimensional range queries
is a problem that arises in query optimization, data mining, and
data warehousing. The query optimizer requires accurate esti-
mations of the sizes of intermediate query results in the eval-
uation of different execution plans. Recent work also shows
that top-k queries can be mapped to multidimensional queries
[5,9]. Hence, selectivity estimation techniques can be used to
optimize top-k queries as well.

In data mining, answering range queries is one of the sim-
pler data exploration tasks. In this context, the user defines a
specific region of the dataset that is worth exploring and asks
queries to find the characteristics of this region (like the num-
ber of points in the interior of the region, the average value, or
the sum of the values of attributes in the region). Consider for
example a dataset that records readings of different environ-
mental variables, such as types of pollution, at various space
locations. In exploring this dataset, the user may be interested
in answering range queries similar to: “find how many loca-
tions exist for which the values of given pollution variables are
within a specified range.” The user may want to restrict the
answers to a given geographical range, too. The size of such
datasets makes exact answers intractable, and only an efficient
approximation algorithm can make this data exploration task
interactive.

In data warehousing, datasets are typically very large. An-
swering aggregate queries exactly can be computationally ex-
pensive. It is therefore very important to find approximate an-
swers to aggregate queries quickly in order to allow the user
to explore the data.

In this paper, we address the problem of estimating the se-
lectivity of multidimensional range queries when the datasets
have numerical attributes with real values. The range queries
we consider are intersections of ranges, each range being de-
fined on a single attribute. In the multidimensional attribute
space, the queries are then hyperrectangles with faces parallel
to the axes. Solving such a range query exactly involves count-
ing how many points fall in the interior of the query. When the
number of dimensions increases, recent results [39] show that
the query time is linear to the size of the dataset.

2 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

We should emphasize that this problem is different from
the traditional definition of selectivity estimation, where it has
been generally assumed that each numerical attribute has a
finite discrete domain. In many applications, however, the at-
tribute domain is the real numbers. This is typically the case in
spatial, temporal, and multimedia databases where the objects
are represented as feature vectors (for example climatic data
like humidity, wind speed, and precipitation).

Real domains have two important characteristics. First,
the number of possible queries is infinite in the case of real
domains but finite when considering a finite discrete domain.
Of course, the number of possible distinct query answers is
finite in both cases, since the dataset is finite. Second, with real
domains it is unlikely that many attribute values will appear
more than once in the database. Nevertheless, some techniques
that have been developed to solve the discrete finite domain
case are still applicable, if properly modified.

The main approach to solving the selectivity estimation
problem has been to compute a nonparametric density estima-
tor for the distribution function of the data. The methods sug-
gested in the literature employ different techniques to find the
density estimator for attributes with finite discrete domains.
They include computing multidimensional histograms [29,1,
20,2], using the wavelet transformation [37,23], SVD [29],
the discrete cosine transform [22], or kernel estimators [3],
and sampling [27,21,13].

Since the approximate solution to a query must be derived
quickly, the description of the approximation function is kept
in memory. Typically, an optimizer would maintain a sepa-
rate approximation function for each of many datasets. Hence
function descriptions cannot be very large. The success of the
different methods depends on the simplicity of the function,
the time it takes to find the function parameters, and the num-
ber of parameters stored for a given approximation quality.

Multidimensional density estimation techniques are typi-
cally generalizations of very successful one-dimensional den-
sity estimators. In general, in one dimension, estimators of
small size (histograms, kernels, sampling) can be used to ef-
fectively approximate the data distribution. Indeed, one of the
techniques used to solve the multidimensional problem is to
assume that the attributes are independent, and therefore an
estimator for multiple dimensions can be obtained by multi-
plying one-dimensional estimators.

Furthermore, we note that finding density estimators for
combinations of attributes can be used to verify whether or
not the independence assumption holds for a set of attributes.
This is of independent importance for the query optimizer:
many optimizers [32] compute query execution costs under the
attribute independence assumption. If an optimizer can realize
that this assumption does not hold for a set of attributes, more
accurate statistics for this set should then be utilized.

1.1 Our contribution

In this paper, we give efficient techniques for finding den-
sity estimators for multidimensional datasets with real values.
These techniques were originally introduced in [12] along with
preliminary experimental results.

First, we describe GENHIST, an approach designed to find
multidimensional histograms for datasets from real domains.

The basic feature of our technique is the overlapping of his-
togram buckets. Like other approaches, GENHIST uses more
and smaller buckets to approximate the data distribution where
the data density is higher and fewer and larger buckets where
the density decreases. The difference is that these buckets are
allowed to overlap, so that the data distribution at a given lo-
cation is computed by considering all buckets that include this
location.

Second, we show how to use multidimensional kernel den-
sity estimators to solve the multidimensional range query se-
lectivity problem. Our solution generalizes in multiple dimen-
sions the technique given in [3]. Kernel estimation is a general-
ization of sampling. Like sampling, finding a kernel estimator
is efficient and can be performed in one pass. In addition,
kernel estimators produce a smoother density approximation
function, thereby producing a better approximation of the data
density distribution.

Third, we present an extensive comparison between the
proposed techniques (GENHIST and multidimensional ker-
nel density estimators) and most of the existing approaches for
estimating the selectivity of multidimensional range queries
for real attributes (wavelet transform [37], multidimensional
histogram MHIST [29], Min-Skew histograms [2], one-
dimensional estimation techniques with the attribute indepen-
dence assumption, and sampling [13]).We include the attribute
independence assumption in our study as a baseline compar-
ison. To the best of our knowledge this is the first work com-
paring a wide variety of selectivity estimators for multidimen-
sional real-valued data.

The experimental results show that we can efficiently
build selectivity estimators for multidimensional datasets with
real attributes. Although the accuracy of all techniques drops
rapidly as the dimensionality increases, the estimators are
quite accurate up to ten dimensions. GENHIST is the most
robust and accurate technique among the approaches that we
have tested (MHIST, Min-Skew, kernels, sampling, and in-
dependence assumption) for space dimensionalities between
three and ten. Among the other techniques, multidimensional
kernel estimators are quite competitive with GENHIST in ac-
curacy. An advantage of kernel estimators is that they can be
computed in one dataset pass, just like sampling. However,
they work better than sampling for the dimensionalities we
tried. Therefore, multidimensional kernel estimators are the
obvious choice when the selectivity estimator must be com-
puted quickly.

In the next section (Sect. 2), we formally define the prob-
lem. In Sect. 3, we briefly describe the multidimensional his-
togram and wavelet decomposition approaches. GENHIST is
introduced in Sect. 4, while Sect. 5 describes how to use kernel
estimators for multidimensional data. Section 6 presents our
experimental results, and Sect. 7 concludes the paper.

2 Problem description

Let R be a relation (dataset) with d attributes and n tuples.
Let A = {A1, A2, . . . , Ad} be the set of these attributes. The
domain of each attribute Ai is scaled to the real interval [0, 1].
Assuming an ordering of the attributes, each tuple is a point
in the d-dimensional space defined by the attributes. Let Vi be
the set of values of Ai that are present in R. Since the values

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 3

are real, each could be distinct and therefore |Vi| can be as
large as n.

2.1 Range query approximation

The range queries we consider are of the form (a1 ≤ R.A1 ≤
b1) ∧ · · · ∧ (ad ≤ R.Ad ≤ bd). All ai, bi are assumed to be
in [0, 1]. Such a query is a hyperrectangle with faces parallel
to the axes. The selectivity of the query, namely sel(R,Q), is
the number of tuples in the interior of the hyperrectangle.

Since n can be very large, the main problem in approx-
imating sel(R,Q) is how to preprocess R so that accurate
estimations can be derived from a smaller representation of
R without scanning the entire relation or counting the exact
number of points in the interior of Q.

Let f(x1, . . . xd) be a d-dimensional, nonnegative func-
tion defined in [0, 1]d and with the property∫

[0,1]d
f(x1, . . . xd)dx1 . . . dxd = 1

We call f a probability density function. The value of f at a
specific point x = (x1, . . . xd) of the d-dimensional space is
the limit of the probability that a tuple exists in area U around
x over the volume of U , when U shrinks to x.

For a given f with these properties, to find the selectivity
of query (a1 ≤ R.A1 ≤ b1) ∧ · · · ∧ (ad ≤ R.Ad ≤ bd) we
compute the integral of f in the interior of the query Q:

σ(f,Q) =
∫

[a1,b1]×···×[ad,bd]
f(x1, . . . xd)dx1 . . . dxd

Given R and f , f is a good estimator of R with respect to
range queries if, for any range query Q, the selectivity of Q
onR and the selectivity ofQ on f multiplied by n are similar.
To formalize this notion, we utilize various error metrics (also
used by [37]).

The absolute error of a query Q is simply the difference
between the real value and the estimated value of its selectivity:

εabs(Q,R, f) = |sel(R,Q) − n σ(f,Q)|

The relative error of a queryQ is generally defined as the ratio
of the absolute error over the selectivity of the query. Since
in our case a query can be empty, we follow [37] in defining
the relative error as the ratio of the absolute error over the
maximum of the selectivity of Q and 1:

εrel(Q,R, f) =
|sel(R,Q) − n σ(f,Q)|

max(1, sel(R,Q))

To represent the error of a set of queries, we define
the p-norm average error. Given R, f , a query workload
{Q1, . . . , Qk} comprised of k queries, and an error metric
ε that can be any of the above defined metrics, the p-norm
average error for this workload is:

‖ ε ‖p= (
1
k

∑
1≤i≤k

ε(Qi, R, f)p)
1
p

2.2 Aggregate range query approximation

Consider the case that each tuple in the database is a point in
a d-dimensional space that also has a weight. For example,
this weight can be the temperature that a set of fixed sensors
reports. The set of attributes is then A = {A1, . . . , Ad,W}.
An aggregate range query has the form: “What is the sum
(or average) of the weights of all the points inside a range
query Q?”; here Q is again a range query defined on the d
attributes {A1, . . . , Ad}. To allow the user to specify online
which attribute is the weight, we define an aggregate range
query as the sum of one given attribute for all tuples that satisfy
the range query:

sum(R,Q, i) =
∑

(x1,...xd)∈R and (∧1≤j≤d(aj≤xj≤bj))

xi

or the average of one attribute:

ave(R,Q, i) =
sum(R,Q, i)
sel(R,Q)

.

where the query range is specified as: (a1 ≤ R.A1 ≤ b1) ∧
· · · ∧ (ad ≤ R.Ad ≤ bd). Using this general definition the
user can specify the attribute Ai to aggregate and choose the
ranges of all attributes. If the user does not want to specify
a range for attribute Ai, this range can be replaced by the
maximum and minimum values ofAi. Following [33], we can
approximate such an aggregate query using a density estimator
f by computing the integral:

sum(f,Q, i) =
∫

Q

xi f(x1, . . . , xd)dx1 . . . dxd

3 Multidimensional density estimators

In this section, we briefly examine existing techniques to esti-
mate the selectivity of a query. We group them into histograms
(one-dimensional and multidimensional), discrete decompo-
sition techniques, and statistical estimators.

Multidimensional density estimation techniques are typi-
cally generalizations of very successful one-dimensional den-
sity estimators. Unfortunately, if the independence assumption
does not hold, as frequently happens, the problem of estimat-
ing the result of range queries in multiple dimensions becomes
tougher as the dimensionality increases. One of the reasons is
that the volume of the space increases exponentially with the
dimensionality, and datasets of any size become sparse and do
not allow accurate density estimation in any local area. This
problem is referred to as the curse of dimensionality [39].

3.1 One-dimensional histograms

In system R [32], density estimators for each attribute are com-
bined under the attribute independence assumption to produce
a multidimensional density estimator. To estimate the selectiv-
ity of a multidimensional query as a fraction of the size of rela-
tionR, first the query is projected on each attribute and the se-
lectivity of each one-dimensional query is estimated, and then
the selectivities are multiplied. Typically one-dimensional his-
tograms are used. This technique is still widely employed.

4 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

3.2 Multidimensional histograms

Multidimensional histograms were introduced in [25]. Mul-
tidimensional histograms attempt to partition the data space
into b nonoverlapping buckets. In each bucket, the data distri-
bution is assumed to be uniform. Partitioning a d-dimensional
space into buckets is a difficult problem: finding an optimal
equidepth histogram with b buckets is NP-complete even in
two dimensions [18], although the problem is easily solved
in one dimension (in an equidepth histogram, the sum of the
tuples in each bucket is approximately the same).

Two new algorithms are presented in [29], PHASED and
MHIST-2, the second being an “adaptive” version of the first.
In PHASED, the order in which the dimensions are to be split is
decided only once at the beginning and arbitrarily; in MHIST-
2, at each step the most “critical” attribute is chosen for par-
tition. For a MaxDiff histogram, at each step MHIST-2 finds
the attribute with the largest difference in source values (e.g.,
spread, frequency, or area) between adjacent values and places
a bucket boundary between those values. Therefore, when fre-
quency is used as a source parameter, the resulting MaxDiff
histogram approximates the minimization of the variance of
value frequencies within each bucket. Of the two techniques,
MHIST-2 is shown to be more accurate and performs better
than previous approaches [29].

Both algorithms can be used directly on a dataset with real-
valued attributes. When MHIST-2 is run on real attribute data,
the processing time of the method increases. This is because
with real data there are many possible positions in which to
place a bucket boundary. Every different value that appears in
the dataset corresponds to a possible boundary position that
MHIST-2 tries to evaluate when it finds the best split. Another
problem is that for real-valued data, the different values in the
dataset have frequency one because each represented value
appears once. It is unlikely that good splits can be found for
such a frequency distribution. To solve these problems, we
first use a regular partitioning of the space using a grid.

Min-Skew is a multidimensional histogram for spatial
datasets (sets of rectangles on the plane) that was proposed
in [2]. Min-Skew approximates the original dataset using a
regular grid (bining) and computes the number of rectangles
that fall inside each cell of the grid. It then partitions the array
produced by the grid to create the buckets of the histogram.
The buckets cover the whole data space, and the goal is to
minimize the variance (or spatial skew) inside each bucket.
The optimal solution to that problem is demonstrably NP-
hard [26], and a technique to decrease the complexity of the
problem is to search for a special type of partitioning called
binary space partitioning (BSP). Even then the complexity
of the optimal algorithm increases exponentially with the di-
mensionality. Therefore, Min-Skew first finds for each bucket
a good dimension to split using the one-dimensional marginal
distributions. For each bucket, the best split is found and fi-
nally the split that gives the highest reduction in variance is
chosen. The variance is normalized with the number of objects
inside each bucket. Although the technique was proposed for
two-dimensional sets of rectangles, it can be easily extended
to consider two- or higher-dimensional points, essentially by
considering each point as a special-case rectangle.

3.3 Discrete decomposition techniques

The d-dimensional data distribution of a dataset R with at-
tributes A1, . . . Ad can be represented by a d-dimensional ar-
rayDwith

∏
1≤i≤d |Vi| slots (recall thatVi is the set of distinct

values of attributeAi). The value in each slot is the number of
times this value combination appears in R.

One approach to finding an approximation of the joint data
distribution is to approximate the arrayD directly.A number of
decomposition techniques have been proposed in the literature
to find such an approximation. These include the singular value
decomposition (SVD) [29], the wavelet transform [37], and,
recently, the discrete cosine transform (DCT) [22].

The basic operation of all decomposition techniques is
essentially to perform a change of bases. Each value in the
original array D is then computed as a combination of the
new basis. For the three methods mentioned, this combination
is linear. The coefficients in this combination are stored in a
new array, D′, that has the same size as D. The important
observation is that many coefficients in the new array D′ may
be close to zero. Therefore, the contribution of each of these
coefficients in the evaluation of a value ofD is small, and they
can be set to zero with little loss of accuracy.

These techniques compute the transformation and keep
the b largest coefficients for a given input parameter b. The
remaining coefficients are set to zero. This results in an array
D′′ with b nonzero values (i.e., O(b) space). To estimate a
value of D, the inverse transformation on D′′ is computed.
The accuracy depends on the distribution of the values of the
coefficients. If the transformation results in many large coef-
ficients, the error will be large for all practical values of b.
The feasibility of the approach depends on the time it takes
to perform the transformation and the inverse transformation.
Of the three techniques we mentioned, SVD can be used only
in two dimensions ([29]). Wavelets and, recently, DCT have
been shown to give good results in high dimensionalities [37,
23,22]. In our comparisons, we include the wavelet transform.

If the attributes have real values, the size of the arrayD can
be nd, where n is the size ofR. Since each of these approaches
involves operations on the arrayD, we cannot use the raw data,
and therefore we perform a ξ regular partitioning of the data
space first. Hence we partition the domain of each attribute
into ξ nonoverlapping intervals. The width of each interval is
1/ξ, so that we obtain an equiwidth partitioning, resulting in
ξd d-dimensional nonoverlapping buckets that cover the entire
data space.

If the value xi of a tuple x ∈ R falls in the j-th interval of
attribute Ai, then it is replaced by j. Thus the domain of each
attribute becomes {1, . . . , ξ}. We call the new dataset R′. We
define the frequency of a tuple t= (t1, . . . , td) ∈ {1, . . . , ξ}d

to be the number of tuples x ∈ R that are mapped to t (Fig. 1).
We denote the resulting ξd size array with Dξ. We can then
use the wavelet transform to obtain an approximation for R′.

Note, however, that queries do not have to fall on bucket
boundaries. In one dimension, a query may contain a number
of buckets completely and partially intersect at most two. In
two dimensions, a query can intersect up to 4(ξ − 1) buckets.
In general, in d dimensions a query can intersect O(d ξd−1)
buckets (out of a total number of ξd buckets). We assume that
the points are uniformly distributed in the interior of a bucket.

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 5

0 1

1

2 3 4

2

3

4 2 1

1

1

3

1

1
Fig. 1. A 4-regular partitioning of a two-dimensional dataset and the
tuple frequencies

To estimate the selectivity of a query, we use the approxi-
mation ofR′ to find the approximate values for every bucket of
the ξ regular partitioning that intersects the query. If the bucket
is completely inside the query, we just add up the approximate
value. Otherwise we use the uniform distribution assumption
to estimate the fraction of tuples that lie in the interior of the
bucket and also in the interior of the query. In this case, the
data distribution is approximated by the average data density
within each bucket. The average data density (or simply data
density) of a bucket is defined as the number of tuples in the
bucket over the volume of the bucket.

It becomes clear that the quality of the approximation de-
pends critically on how closely the actual point distribution
resembles the uniform distribution inside each bucket.

We can compute the wavelet decomposition of either Dξ

or the partial sum arrayDs
ξ ofDξ. In the partial sum, the value

of an array slot is replaced by the sum of all preceding slots:

Ds
ξ [i1, . . . , id] =

∑
j1≤i1,...,jd≤id

Dξ[j1, . . . , jd]

We ran experiments to determine which of the two methods
should be used. The results indicate that wavelets on the partial
sum matrix provide a more accurate approximation for our
datasets because this results in a smaller number of significant
wavelet coefficients. This result agrees with [37], who also
suggest that the partial sum method is more accurate because
this operation smooths up the data distribution.

3.4 Self-tuning histograms

Another very interesting alternative to multidimensional his-
tograms are the self-tuning histograms (STH) presented in [1].
The idea is to start with a very simple initial histogram, then
use the feedback from a query execution engine regarding the
actual selectivity of range queries, and refine the histograms
accordingly. Thus the cost of building these histograms is low
since it is independent of the data size. However, experimen-
tal results presented in [1,4] show that STH histograms are
less accurate than GENHIST or MHIST-2 for high dimen-
sions (experiments in dimensionalities 2 to 4 were reported)
and skewed data.

To improve the performance of STHs, the STHoles his-
togram technique was recently proposed [4]. STHoles are also
built by analyzing query results rather than by examining the
dataset. They allow bucket nesting (a restricted variation of

overlapping) and have been shown to perform comparably to
GENHIST and superior to STHs and MHIST in experiments
presented in [4].

Compared to traditional multidimensional histograms and
discrete decomposition techniques, STHs and STHoles offer
the significant advantage that they gracefully adapt to updates.
On the other hand, the estimator is built over a sequence of
queries to the dataset, which means that in the beginning no
estimator is available and the time it takes to create an accurate
estimator depends on the distribution of the queries.

3.5 Statistical estimators

The simplest statistical method for selectivity estimation is
sampling. One finds a random subset S of size b of the tuples
in R. Given a query Q, the selectivity sel(S,Q) is computed.
The value |R|

b sel(S,Q) is used to estimate sel(R,Q). Sam-
pling is simple and easy to perform, so the estimator can be
computed fast. Computing the selectivity is also simple, al-
though not necessarily more efficient than other methods. As
a result it is widely used for estimating selectivity [32,6,10] or
for online aggregation [14]. Sampling can be used to estimate
the selectivity of a query regardless of the dimensionality of
the space and can be applied directly to real domains.

More sophisticated kernel estimation statistical techniques
[38,7] have rarely been applied in database problems. One of
the reasons is that in statistics a dataset is considered as an
instance of a probability distribution function, and the goal
is to approximate the probability distribution function itself.
On the other hand, in databases the goal is simply to approxi-
mate the dataset. Recently kernels were used by [3] to estimate
the selectivity of one-dimensional range queries on metric at-
tributes.

One similar statistical technique is clustering the dataset
and using a Gaussian function to model each cluster [33]. This
technique can be quite accurate if the clusters themselves can
be accurately modeled by multidimensional Gaussian func-
tions. However, even assuming that this is the case, the tech-
nique requires clustering the dataset, a task that is much less
efficient than simple sampling.

4 A new multidimensional histogram construction

In this section, we present a new density estimation technique,
GENHIST (for GENeralized HISTograms). As in other his-
togram algorithms, we want to produce a density estimator
for a given dataset R using rectangular buckets. The impor-
tant difference is that we allow the buckets to overlap.

Histogram techniques typically partition the space into
buckets and assume that the data distribution inside each
bucket is uniform (if uniformity within each bucket is not
assumed, additional information about the data distribution
must be kept, at a higher storage cost). The problem with
partitioning the space into buckets is that ideally we need rel-
atively small buckets to accurately capture the variations in
the data distribution. However, assuming a constant number
of buckets, when the dimensionality of the space increases,
the buckets of the partition must have increasingly larger one-
dimensional projections. Even a partitioning scheme that par-

6 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

0 1

1

a b a b

cd

a+d

a+b

b+c

c+d

 a+b+
c+d

1 1

0 1 0 1

a b

cd

a+d
c+b

 a+b+d

b

 c+d
a+c+d

a+b+c+d

b+c+d
b+d

d c

Fig. 2. The same two-dimensional space is partitioned first into four regions, using four nonoverlapping buckets (average densities are a, b, c,
and d), then into nine regions, using four overlapping equal-sized buckets (densities are a, b, c, d, a+b, b+c, c+d, d+a, a+b+c+d), and finally
into 13 regions, using four overlapping buckets of varying sizes

titions each attribute into four one-dimensional buckets gen-
erates 45 = 1024 five-dimensional buckets. Since the data
points become sparser in higher dimensions, it is very likely
that the actual data distribution deviates significantly from the
uniform distribution within each of these buckets.

The problem becomes severe in higher dimensions be-
cause the number of buckets a query can partially intersect
increases exponentially with the dimensionality. For example,
consider a ξ regular partitioning of a d-dimensional space. A
range query in d dimensions can intersectO(ξd−1) buckets. In
the 4-regular partitioning of a two-dimensional space, a range
query can intersect up to 12 of the 16 buckets; in the 4-regular
partitioning of a five-dimensional space, a range query can
intersect up to 992 of the 1024 buckets, that is, all the buck-
ets except the 25 buckets that do not touch any boundary. An
example of such a query is a range query where all the one-
dimensional intervals cover the entire range of the attributes,
except for very small intervals next to the minimum and the
maximum values.

Clearly, to achieve acceptable accuracy a technique must
ensure either that the data distribution within each bucket is
close to uniform or that each bucket contains a small number of
points and therefore the error for each bucket is small. Note that
nonoverlapping partitions into b buckets allow only b different
values for estimating the data density. To increase the num-
ber of values, one has to increase the number of buckets. This
has conflicting results. On the one hand, the accuracy within
each bucket becomes better. On the other hand, each time a
bucket is intersected partially we must make the assumption
that the data distribution is uniform inside the bucket. When
this assumption is not accurate, an additional error is intro-
duced. This error can be additive and therefore can increase if
the number of intersected buckets is increased.

Our approach to solving this problem is to allow overlap-
ping buckets. The intuition is the following. As in previous
approaches, we assume that within each bucket the data dis-
tribution can be approximated by the average data density of
the bucket. But when two buckets overlap, in their intersect-
ing area we assume that the data density is the sum of the two
densities. If more than two buckets overlap, the data density
in their intersecting area will be approximated by the sum of
the data densities of the overlapping buckets. Clearly, for our
scheme to work, we have to be careful when we compute the
average density within each bucket. In particular, if a tuple lies
in the intersection of many buckets, we must count it in the
computation of the average density of only one of the buckets.

A simple two-dimensional example shows that we can
achieve more using overlapping buckets (Fig. 2). In the ex-
ample, we partition [0, 1] using four buckets. If the buckets
are nonoverlapping, this results in a partitioning into four re-
gions. We have to assume that the data distribution is uniform
within each region. If we use four overlapping buckets of the
same size, we can partition [0, 1] into a total of nine regions.
Although we again keep only four numbers, each of the nine
regions is the intersection of different buckets whose density
is estimated differently. Moreover, if we use four rectangu-
lar buckets of different sizes, we can partition [0, 1] into 13
regions, each with a different estimated density. The number
of intersections increases exponentially with the dimension-
ality. This implies that the advantage of overlapping buckets
increases with the dimensionality. On the other hand, this ex-
ponential increase makes the problem of finding the optimal
size and location of the buckets and the values of the average
densities in each bucket computationally hard. To tackle this
problem, we present an efficient heuristic algorithm that works
in linear time and performs a constant number of database
passes.

4.1 Heuristic for finding generalized multidimensional
histograms

Our heuristic approach partitions a d-dimensional space using
b overlapping buckets of different sizes. The main idea of the
algorithm is to iteratively compute an approximation of the
density function using a grid. In each iteration, the algorithm
tries to find and approximate the dense areas. Our approach to
finding dense areas is to partition the space using a regular grid
and find which buckets have the larger average density. Buck-
ets with high count are in areas where the density is large.
However, instead of removing the entire dense buckets, we
only remove enough points from each bucket so that the den-
sity of this bucket is approximately equal to its surrounding
area. Tuples are removed at random to ensure that the density
decreases uniformly to the level of the density of neighboring
buckets (Fig. 3).

The density of the entire dataset is now smoother because
the high bumps have been removed. This means that the re-
maining bumps are also smoother and can be approximated
using a coarser grid. In the successive iteration, we have to
approximate the new smoother data density in the entire data
space. To solve this problem, we naturally use the same tech-
nique, namely, using a grid to find dense buckets.

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 7

Dataset Bucket 1 Bucket 2
Fig. 3. An example of where the density of a two-dimensional dataset
can be efficiently approximated by two overlapping buckets

Step i Step i+1

dense cells dense cells

Fig. 4. At step i, a set of grid cells (in the 5-regular grid in this
example) are selected to be added in the GENHIST estimator. At
step i + 1, a new set of cells, from a coarser grid (3-regular in this
example) are selected to be added in the GENHIST estimator. Buckets
from different grids can overlap

Due to the overall smoothing effect, a coarser grid is used
in each successive iteration. The buckets with the largest den-
sities are kept in the estimator, along with their average density
values set to the fraction of points removed from each. Clearly,
buckets produced from different iterations can overlap. This
ensures that the density of regions in the intersection of many
buckets is correctly estimated by adding up the average den-
sities of each one (Fig. 4).

Thus GENHIST can be classified as a generalization of the
biased histograms [30]. Biased histograms keep in singleton
buckets the values with the highest frequencies and partition
the remaining values in a number of buckets. Like biased his-
tograms, GENHIST uses buckets to approximate the areas
where the density is highest. In addition, it repeats the same
process after the smoothing step.

The possible bucket overlapping effectively partitions the
data space into a much larger number of regions than simply
the number of buckets (Fig. 2). In this respect, the technique
is similar to the wavelet transform. Just as the wavelet trans-
form provides more resolution in areas where the variation in
the frequencies is highest, GENHIST provides more detail in
areas where more points are concentrated (the areas of higher
density).

We next describe the algorithm in detail. There are three
input parameters: the initial value of ξ, the number of buckets
kept at each iteration, and the value of α that controls the rate
by which ξ decreases. We describe how to set these parameters

after the presentation of the algorithm. The output of the algo-
rithm is a set of buckets E along with their average densities.
This set can be used as a density estimator for R. Figure 5
gives the outline of the algorithm.

We use α = (1/2)1/d to ensure that at each iteration we
use roughly half as many buckets to partition the space as in
the preceding operation (the new buckets have approximately
twice the volume of the previous ones). Unless we remove
more than half the tuples of R in each iteration, the average
number of tuples per bucket increases slightly as we decrease
the number of buckets. This is counterbalanced by the over-
all smoothing effect we achieve in each iteration. S counts
the number of points we remove during an iteration. If this
number is large (|R|

|R|+S < αd), we decrease ξ faster and we
do not allow the average bucket density to decrease between
operations.

The number of buckets that we remove in each iteration
is constant. Since ξ is replaced by �αξ� in each operation,
we expect to perform approximately log 1

α
ξ iterations, and

in each iteration we keep approximately bξ =
b/ log 1
α
ξ�

buckets. The value of b is provided by the user.
The choice of ξ is important. If ξ is set too large, the buckets

in the first iterations are practically empty. If ξ is set too low,
then we lose much detail in the approximation of the density
function. Since we have to provide b buckets, we set ξ so that
in the first iteration the percentage of the points that we remove
from R is at least 1/ log 1

α
ξ.

4.2 Storing the GENHIST estimator

GENHIST uses only cells from the grids as buckets in the
estimator. This offers an important advantage: each bucket can
be stored using only two numbers. For a given initial value of
ξ and a given α, the sequence of grids that the algorithm is
using is deterministic. Therefore, all grid cells can be totally
ordered in a single ordering. Since each bucket c is a cell in one
of the grids, we can use one number to identify the location
of each bucket in the total ordering of cells. This allows us to
find the bounds of the bucket. We use another number to keep
the density of c, dc − avc.

4.3 Running time

The algorithm makes log 1
α
ξ iterations. The number of itera-

tions is therefore constant if ξ and α are constants. Each iter-
ation performs one pass over the data and takes linear time.
Therefore, the running time of the algorithm is linear to the
size of the data. One pass over the data is performed each
time the size of the grid changes. Since ξ is set to a small con-
stant, the actual number of passes over the data is small. In our
experiments the number of passes was between five and ten.
During each pass, to compute the number of points that fall
in each bucket, we use a hashing scheme: nonempty buckets
are kept in a hash table. For each point, we compute the slot
it should be in and probe the hash table. If this bucket is in
the hash table, we increment its counter; otherwise we insert
the bucket into the hash table. This simple scheme allows us
to compute the bucket counts for large values of ξ in memory,
even when the dataset has millions of points.

8 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

Given a d-dimensional dataset R with n points and input parameters b, ξ, and α,
1. Set E to empty.
2. Compute a ξ-regular partitioning of [0, 1]d and find the average density of each bucket

(i.e., number of points within each bucket divided by n).
3. Find the bξ = �b/ log 1

α
ξ� buckets with the highest density.

4. For each bucket c of the bξ buckets with the highest density:

(a) Let dc be the density of c.
Compute the average density avc of c’s neighboring buckets.

(b) If the density of c is larger than the average density avc of its neighboring buckets:

i. Remove from R a randomly chosen set of (dc − avc)n tuples that lie in c.
ii. Add bucket c into the set E and set its density to dc − avc.

5. Set S =
∑

c∈bξ
(dc − avc)n (S is the number of removed points).

Set α′ = min((|R|
|R|+S

)
1
d , α).

Set ξ = �α′ ξ	.
6. If R is empty, return the set of buckets E.

Else if R is nonempty and ξ > 1 return to step 2.
Else if ξ ≤ 1, add bucket [0, 1]d with density |R|

n
to E and output the set of buckets E.

Fig. 5. The GENHIST algorithm

4.4 Eliminating writes

Implementing step 4.b.i of the algorithm can slow down the
process because we have to designate that some points in the
dataset are deleted, and to do so we have to modify the dataset.

The following technique allows us to estimate accurately,
at each step of the algorithm, the number of remaining points
that fall in each bucket without having to write on the disk.

Assume that we are scanning the dataset R at the i-th it-
eration, and in the previous i − 1 iterations we have already
computed a set of buckets that we are keeping in the estimator.
Each of these buckets was a grid cell in some previous itera-
tion. During the i-th scan of dataset R we want to determine
the number of points that fall in the interior of each cell in the
grid. However, each of the buckets already in the estimator
overlaps with some of the cells in the grid we are using in the
i-th scan. To count accurately how many points fall in each
cell of the grid of the i-th iteration, we have to account for
the points that have been removed from the interior of each
bucket already in the estimator. For each such bucketBj in the
estimator, we keep the total number of dataset points that lie
in its interior (let that number be tot(Bj)) and the number of
points we would remove fromBj in step 4.b.i (let that number
be r(Bj)).

During the scan ofD, if a point p lies in a bucketBj that we
have already included in the estimator, then with probability
r(Bj)

tot(Bj)
we do not use this point in the computation of densities

of the grid buckets. The following lemma derives from the
above discussion.

Lemma 4.1. The expected density of a bucket that is com-
puted using this process in the i-th iteration is equal to the
expected density of the bucket if we had physically removed
from the dataset the required number of points in the previous
iterations.

Proof.We have to show that the probability that a point is not
counted in the i-th iteration is the same as the probability that
the same point has been removed in an earlier iteration. This
is true if the point lies in the interior of only one bucket in the

estimator. If it is not, then we have to consider the buckets in
the order in which they were added to the estimator. Assume
that p is in the interior ofBi andBj , andBi was added before

Bj . Then we do not use p with probability r(Bi)
tot(Bi)

+ (1 −
r(Bi)

tot(Bi)
) r(Bj)

tot(Bj)
.

��

4.5 Estimating the selectivity of range queries
using GENHIST

The estimation of the selectivity of a range query using over-
lapping buckets is similar to the nonoverlapping case. We
check every bucket against the query to see if there is any over-
lap. We add up the overlapping contributions, again assuming
uniform distribution inside each bucket. More formally, given
a set of buckets G = (B1, . . . , Bb) and a range query Q, the
estimated selectivity of the query is:

sel(G,Q) =
∑
B∈G

Bcount

V ol(B)
V ol(Q ∩B)

whereBcount is the number of points inside bucketB,V ol(B)
is the volume of bucket B, and V ol(Q ∩B) is the volume of
the intersection between query Q and bucket B.

4.6 Estimating the selectivity of aggregate range queries
using GENHIST

To estimate the selectivity of an aggregate range query Q and
an attribute Ai, we have to compute the integral

sum(f,Q, i) =
∫

Q

xi f(x1, . . . , xd)dx1 . . . dxd

For GENHIST the approximation f is the sum of b constant
functions, corresponding to the b buckets B1, . . . Bb of the

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 9

estimator. Each function is nonzero only within the area of the
cell. The integral is equal to

sum(f,Q, i) =
∑
B∈G

∫
B∩Q

Bcountxidx1 . . . dxd

which can be computed analytically in O(db) time.

5 Multidimensional kernel density estimators

The problem of estimating an underlying data distribution has
been studied extensively in statistics [31,38]. Kernel estima-
tors are statistical techniques that approximate a probability
distribution and are thus applicable to address the query se-
lectivity problem.

Kernel estimation is a generalized form of sampling. The
basic step is to produce a uniform random sample from the
dataset. As in random sampling, each sample point has weight
one. In kernel estimation, however, each point distributes its
weight in the space around it.

A kernel function describes the form of the weight dis-
tribution. Generally, a kernel function distributes most of the
weight of the point over the area near it and tapers off smoothly
to zero as the distance from the point increases. If two kernel
centers are close together, there may be a considerable region
where the nonzero areas of the kernel functions overlap, and
both distribute their weight over this area. Therefore, a given
location in space gets a contribution from each kernel centered
at a point that is close enough so that the corresponding ker-
nel function has a nonzero value. Summing up all the kernel
functions, we obtain a density function for the dataset.

Let us consider the one-dimensional case first.Assume that
R contains tuples with one attributeAwhose domain is [0, 1].
Let S be a random subset of R (our sample). Also assume
that there is a function ki(x) for each tuple ti in S, with the
property that

∫
[0,1] ki(x)dx = 1. Then the function

f(x) =
1
n

∑
ti∈S

ki(x− ti)

is an approximation of the underlying probability distribution
according to which R was drawn.

To approximate the selectivity of a queryQof the forma ≤
R.A ≤ b, one has to compute the integral of the probability
function f in the interval [a, b]:

σ(f,Q) =
∫

[a,b]
f(x) =

1
n

∑
ti∈S

∫
[a,b]

ki(x− ti)

As defined, kernel estimation is a very general technique.
In [31], it is shown that any nonparametric technique for esti-
mating the probability distribution, including histograms, can
be recast as a kernel estimation technique for appropriately
chosen kernel functions.

In practice, the functions ki(x) are all identical. The ap-
proximation can be simplified to

f(x) =
1
n

∑
ti∈S

k(x− ti)

One-dimensional kernel estimators were examined in [3].
To use kernels in d dimensions, we have to provide a d-
dimensional kernel function.

For a dataset R, let S be a set of tuples drawn from
R at random. Assume there exists a d-dimensional function
k(x1, . . . , xd), the kernel function, with the property that∫

[0,1]d
k(x1, . . . , xd)dx1 . . . dxd = 1

The approximation of the underlying probability distribution
of R is

f(x) =
1
n

∑
ti∈S

k(x1 − ti1 , . . . , xd − tid
)

and the estimation of the selectivity of a d-dimensional range
query Q is

σ(f,Q) =
∫

[0,1]d∩Q

f(x1, . . . , xd)

=
1
n

∑
ti∈S

∫
[0,1]d∩Q

k(x1 − ti1 , . . . , xd − tid
)dx1 . . . dxd

It has been shown that the shape of the kernel function does
not affect the approximation substantially [7]. It is the stan-
dard deviation, or bandwidth, of the function that is important.
Therefore, we choose a kernel function that is easy to integrate.
The Epanechnikov kernel function has this property [7]. The
d-dimensional Epanechnikov kernel function centered at 0 is

k(x1, . . . , xd) = (
3
4
)d 1
B1B2 . . . Bd

∏
1≤i≤d

(1 − (
xi

Bi
)2)

if, for all i, | xi

Bi
| < 1, and 0 otherwise (Fig. 6).

The d parameters B1, . . . , Bd are the bandwidth of the
kernel function along each of thed dimensions. The magnitude
of the bandwidth controls how far from the sample point we
distribute the weight of the point. As the bandwidth becomes
smaller, the nonzero diameter of the kernel becomes smaller.

We need to identify two problems before we can use the
multidimensional kernel estimation method. The first is set-
ting the bandwidth parameters. The second problem is that in
high dimensions many tuples, and therefore many samples,
are likely to be close to one of the faces of the [0, 1]d cube.
If a kernel is close to the space boundary and its bandwidth
goes beyond it, then part of the volume it covers lies outside
the data (and the query) space. The result is that these points
distribute less than a unit weight over the area around them,
and so

∫
[0,1]d f(x1, . . . , xd)dx1 . . . dxd < 1. This problem is

referred to as the boundary problem.
Both problems have been addressed before in statis-

tics [38]. No efficient solution exists for finding the opti-
mal bandwidths. To get an initial estimate for the band-
width, we use Scott’s rule [31] in d-dimensional space: Bi =√

5 si |S|− 1
d+4 , where si is the standard deviation of the sam-

ple on the i-th attribute. This rule is derived under the assump-
tion that the data distribution is a multidimensional normal
and so in many cases smooths the function too much. To solve
the second problem, we project the parts of the kernel func-
tion that lie outside [0, 1]d back into the data space [38]. The

10 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

-1 10 -1 -.5 0 .5 1

f(x) = 3/4 (1-x^2) f(x) = 3/2 (1 - ((x-.5)/2)^2)

1.5

1
3/4

1

Fig. 6. The one-dimensional Epanechnikov kernel,
with B = 1 centered around the origin and B = 2
centered at 0.5

complexity of this projection increases with the dimensional-
ity because each d-dimensional corner of [0, 1]d partitions Rd

into 2d quadrangles, and we have to find the intersection of
the kernel function with each quadrangle.

5.1 Computing the selectivity

Since the d-dimensional Epanechnikov kernel function is the
product of d one-dimensional degree-2 polynomials, its in-
tegral within a rectangular region can be computed in O(d)
time:

σ(f, [a1, b1] × · · · × [ad, bd])

=
1
n

∫
[a1,b1]×···×[ad,bd]


∑

1≤i≤b

ki(x1, . . . , xd)dx1 . . . dxd




=
1
n

∫
[a1,b1]×···×[ad,bd]

∑
1≤i≤b

(
3
4

)d 1
B1B2 . . . Bd

×
∏

1≤j≤d

(
1 −

(
xj −Xij

Bj

)2
)

) dx1 . . . dxd

=
1
n

(
3
4

)d 1
B1B2 . . . Bd

∑
1≤i≤b

∫
[a1,b1]

×
(

1 −
(
x1 −Xi1

B1

)2
)
. . .

. . .

∫
[ad,bd]

(
1 −

(
xd −Xid

Bd

)2
)

dxd . . . dx1

It follows that, for a sample of |S| tuples, σ(f,Q) can be
computed in O(d|S|) time.

5.2 Running time

Computing a kernel density estimator with n kernels can be
done in one dataset pass, during which two functions are per-
formed:

1. A random sample of size n is taken (where n is an input
parameter).

2. An approximation of the standard deviation for each at-
tribute is computed.

Kernel estimation has the very important advantage that
the estimator can be computed very efficiently, in one dataset

pass. Therefore, the cost of computing a kernel estimator is
comparable to the cost of finding a random sample. In addition,
for the dimensionalities we used in our experimental study, it
is always better to use a multidimensional kernel estimator
rather than random sampling for selectivity estimation.

6 Experimental results

In our experiments, we want to compare the behavior of the
different selectivity estimation techniques on synthetic and
real-life datasets with real-valued attributes. There are three
issues we want to address through the experiments.

First, one characteristic of the applications we have in mind
(GIS, temporal, and multimedia applications) is that attributes
are highly correlated. For example, the precipitation and hu-
midity readings in climatic data are definitely correlated at-
tributes. Therefore, we created synthetic datasets that expe-
rienced significant correlations among attributes. In addition,
our real-life datasets (Forest Cover and multimedia data) also
have correlations among attributes.

Second, we want to evaluate the accuracy of the various
methods as the dimensionality increases. We thus try datasets
with three, four, five, eight, and ten dimensions. Interestingly,
after five dimensions, accuracy dropped significantly for all
methods in the correlated datasets we experimented with.

Third, we want to examine how the accuracy of the various
methods varies as a function of the available space for the
estimator. However, since we expect that a system will have
to store many estimators in memory, we concentrate on the
accuracy of estimators of small size.

6.1 Techniques

We compare the new techniques (GENHIST and multidimen-
sional kernels) with the following existing techniques: ran-
dom sampling, one-dimensional estimation with the attribute
independence assumption, wavelet transform, MHIST-2, and
Min-Skew.

Random sampling is a simple and widely used technique.
In particular, we want to compare sampling against kernels to
measure the improvement gained by using kernels.

We use the attribute value independence (AVI) assumption
as a baseline. Any multidimensional technique has to be com-
pared to AVI to see if it is able to take into account correlations
between attributes and therefore improve performance. On the
other hand, if there is no correlation among the attributes, we
can measure how much we lose by using a multidimensional
technique.

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 11

We also consider the wavelet transform for discrete valued
attributes since Vitter et al. [37] show that wavelets perform
better than MHIST-2 and other multidimensional techniques.

Finally, we consider MHIST-2 as the current state-of-the-
art representative of multidimensional histogram approaches
to density estimation and the Min-Skew histogram since it can
be used for nonspatial datasets as well.

Below we describe in more detail our implementation of
the different techniques.

6.1.1 GENHIST histograms

We implemented the GENHIST algorithm as described in
Sect. 4, using a main memory hash table, to maintain statistics
for every bucket. In our implementation, we only considered
buckets that contain more than 0.1% of the remaining points.
We varied the initial value of ξ between 8 and 20. We stored
two numbers for each bucket in the estimator: we used one
number to identify the location of each bucket in the total or-
dering of cells and the other number to keep the number of
tuples in the bucket.

6.1.2 Wavelet decomposition

To implement the wavelets method, we followed the approach
presented in [37]. We used the Haar wavelets as our wavelet
basis functions. In the first step, we performed a ξ-regular
partitioning of the data space with ξ equal to 32, and then we
computed the partial sum matrixDs

ξ . We used ξ = 32 because
wavelets operate on arrays that are a power of 2 long, and the
next larger choice, 64, creates a very large partial sum array,
even in five dimensions. We used the standard wavelet decom-
position of a d-multidimensional array. That is, we performed
a one-dimensional wavelet transform on the first dimension
and replaced the original values with the resulting coefficients.
Then we did the same for the second dimension, treating the
modified matrix as the original matrix, and continued up to d
dimensions. We performed thresholding after normalization:
we weighed the wavelet coefficients and kept the C most im-
portant among them (with largest absolute value). To store
a coefficient we used two numbers, one to store the bucket
number and the other to store its value.

We ran experiments using both partial sums and the orig-
inal matrix. Our datasets are not very sparse, and the partial
sum method performed better. Therefore, we report the partial
sum matrix results only. Nevertheless, the partial sum ma-
trix method cannot be used in dimensionalities higher than
five since the space overhead is high. For example, for an
eight-dimensional dataset and using ξ = 8, we get an array
of 88 = 224 cells. For dimensionalities higher than five we
should use the original matrix. However, the performance of
this approach degenerates in eight and ten dimensions. As is
pointed out in [24], the accuracy of the two alternatives varies
with dataset and query type. It seems that for the real-valued
datasets that we used, the original matrix approach is not ap-
propriate. We obtained the code for wavelets from [15].

6.1.3 MHIST-2

We ran MHIST-2 using the binary code provided by the au-
thors [29]. The binary code worked for up to four dimensions,
so we could not run experiments for higher-dimensional data.
As above, we first performed a regular ξ partitioning with ξ
between 5 and 30 and then ran MHIST-2 using the result-
ing dataset (which can have up to ξd size) as input. We used
MaxDiff as a partition constraint, the attribute values as sort
parameter, and frequency as source parameter in our experi-
ments. We also tested area as source parameter and obtained
slightly worse results than for frequency. Therefore, we report
the results obtained for frequency and for the best ξ in each
case.

6.1.4 Min-Skew histograms

The implementation of Min-Skew is based on the description
in [2]. The method as originally proposed addresses the selec-
tivity estimation problem when the input is two-dimensional
(spatial) rectangles. Extending the algorithm for larger dimen-
sionalities is straightforward because it starts with a uniform
grid of regions. In [2], the authors note that Min-Skew is most
accurate when the optimal grid size is used instead of progres-
sive refinement. Since the number of regions in the grid is a
very important parameter for Min-Skew, in our experiments
we considered grids with different numbers of regions. In par-
ticular, we used regular grids with ξ between 3 and 30. We ran
the experiments for all different grid sizes and used the best
grid size to compare with the other methods. In most cases, the
best value of ξ is between 3 and 10. In our implementation, the
size of the main memory requirement for Min-Skew increases
as ξd. This is not an issue for the two-dimensional (spatial)
datasets for which the method was originally designed. Nev-
ertheless, it is a consideration for higher dimensionalities.

In is worth noting here that Min-Skew is significantly dif-
ferent from GENHIST. GENHIST creates overlapping buck-
ets for the density estimator; Min-Skew creates nonoverlaping
buckets (that form a partition of the space). All the buckets in
the GENHIST estimator are cells in some grid; Min-Skew may
combine regions into larger buckets. GENHIST approximates
the very dense regions first, using smaller buckets; Min-Skew
starts from a very simple partitioning and then splits buck-
ets into smaller buckets. GENHIST uses multiple overlapping
grids; Min-Skew uses one grid (if progressive refinement is
used, Min-Skew may entirely replace a region in the grid with
smaller regions that partition the same area).

6.1.5 Multidimensional kernels

For the kernels method we used the Epanechnikov product
kernel. We select a bandwidth using Scott’s rule. The storage
requirements of this method are the same as for sampling. That
is, we store for each sample the value of each attribute (thus for
five dimensions we used 5t numbers to store t samples). The
results we present in experiments for kernel and sampling are
averages for five different runs with randomly chosen sample
sets.

12 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

6.1.6 Attribute value independence (AVI)

Finally, we used the Attribute Value Independence (AVI) as-
sumption as a baseline. We did not use any particular method
to keep statistics for each attribute separately, but we com-
puted the selectivity of every query in each dimension exactly.
Thus the results presented here are the optimal results for this
method. If we used a specific method to compute the selec-
tivity for each attribute then we expect the error rates to be
higher. (However in one dimension there are methods with
high accuracy, so the error is not expected to be much higher,
given of course that we use sufficient space).

Essentially, the AVI line in the following experiments rep-
resents the upper bound on selectivity estimation accuracy that
one can achieve if there is no use of any information on cor-
relations between attributes but unlimited space is allowed to
estimate one-dimensional selectivities.

6.2 Datasets

6.2.1 Synthetic datasets

We generated three-, four-, five-, eight-, and ten-dimensional
datasets with many clusters and therefore significant correla-
tions between the attributes. In addition, the distribution was
nonuniform in each attribute. Each attribute took real values
in the interval [0, 1].

We used three synthetic data generators:
Dataset Generator 1 creates clustered datasets (called Type

1). The number of clusters is a parameter, set to 100 in our ex-
periments. Each cluster is defined as a hyperrectangle, and the
points in the interior of the cluster are uniformly distributed.
The clusters are randomly generated and therefore can over-
lap. This creates more complicated terrains. Datasets of Type
1 contain 10% to 20% uniformly distributed error.

Dataset Generator 2 is similar to the previous one, but the
generated clusters are in the (d − 1) or (d − 2)-dimensional
subspaces. This means that the d-way correlation is small in
datasets of Type 2. Therefore, these datasets present more dif-
ficulties for any algorithm that tries to approximate the joint
data distribution in the d-dimensional space. Type 2 datasets
contain 50 clusters and 10% to 20% uniformly distributed er-
ror.

Dataset Generator 3 is the TPC-D benchmark data. TPC-D
data have been used by [37,23] and are a popular benchmark.
We used a projection of three to five numerical attributes. In
particular, we used the tables LINEITEM and PARTSUPP.
First we performed a join between the two tables using the
foreign keys, and then we used the attributes QUANTITY,
EXTENDEDPRICE, DISCOUNT, TAX, and AVAILQTY to
generate our datasets. We did not change the resulting dataset
in any way.

All datasets include 106 points.

6.2.2 Real datasets

We use the Forest Cover dataset from the UCI KDD archive.1

This was obtained from the U.S. Forest Service (USFS). It
1 available from kdd.ics.uci.edu/summary.data.type.html

includes 590,000 points, and each point has 54 attributes, 10
of which are numerical. We normalize the numerical attributes
to a [0, 1] range, so the values become real values. We use
subsets of three, four, five, and eight numerical attributes for
our experiments. We also use the entire set of ten numerical
attributes. We normalize the coordinates for each dimension to
[0, 100], and therefore the values are stored as float numbers.
In this dataset, the distribution of the attributes is nonuniform,
and there are correlations between pairs of attributes.

6.3 Query workloads

To evaluate the techniques, we created workloads of four types
of queries. For each dataset, we create a workload 1 con-
taining random queries with selectivity approximately 10%
and a workload 2 with random queries having selectivity ap-
proximately 1%. These workloads comprise 104 queries each.
We chose the two numbers to estimate the performance of
the techniques for relatively large queries (10% selectivity)
and for relatively small queries (1% selectivity). We expected
that all techniques would perform significantly better for large
queries. Note that it is difficult to generate large numbers of
queries of very small selectivity in high-dimensional spaces.
Therefore, we did not experiment with query workloads where
the queries had smaller selectivity than 1%. Instead we created
a third workload (workload 3) of 20, 000 queries of the form
(R.A1 < a1) ∧ · · · ∧ (R.Ad < ad) for a randomly chosen
point (a1, . . . , ad) ∈ [0, 1]d. Such queries have very diverse
selectivities, including very small ones. For the datasets in ten
dimensions, we also create a workload 4 containing random
queries with selectivity approximately 1% and with the inter-
val for two randomly chosen attributes set to the whole range
[0, 1].

For each workload, we compute the average absolute error
‖ eabs ‖1 and the average relative ‖ emod ‖1 error.

6.4 Experimental comparison of the accuracy
of different methods

We performed an extensive study to evaluate the perfor-
mance of the methods for three-, four-, five-, eight- and ten-
dimensional data with the following exceptions. For MHIST-
2, the available binary could run for up to four dimensions.
We could have run wavelets for up to five dimensions because
the size of the partial sum array (32d) became prohibitive in
higher dimensionalities. Our extension of Min-Skew could
have run up to eight dimensions (beyond that the main mem-
ory requirements became prohibitive). For three-dimensional
datasets, there were small differences in accuracy among the
techniques. Interesting changes started appearing at four di-
mensions and are described below.

6.4.1 Four-dimensional data

We first present the performance of all methods for four-
dimensional data in Figs. 7 and 8. We plot the 1-norm average
relative error for each method for different values of the avail-
able storage space to store the estimator. For brevity, we show

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 13

0

10

20

30

40

50

60

70

80

90

100

110

120

400 600 800 1000 1200 1400 1600 1800 2000 2200

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernels

AVI
MinSkew

MHIST

Fig. 7. DS1 dataset, query workload 3, 4D

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

400 600 800 1000 1200 1400 1600 1800 2000 2200

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernels

AVI
MinSkew

MHIST

Fig. 8. Forest cover dataset, query workload 3, 4D

0

10

20

30

40

50

60

70

80

90

100

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernel

AVI
MinSkew

Fig. 9. DS1 dataset, query workload 2, 5D

only the DS1 (type 1) and the Forest Cover datasets using
query workload 3. We obtained similar results for the other
datasets and query workloads. All techniques perform worse
in four dimensions than in three dimensions. The largest drop
in overall accuracy is for MHIST-2.

6.4.2 Five-dimensional data

For the experiments in five dimensions, we show four datasets
(DS1, DS2, TPC-D, and Forest Cover dataset) using query
workloads 2 and 3 on each one. The difference between DS1
andDS2 is that the clusters cover less space and therefore are
comparatively denser in DS1.

Figures 9–12 depict the 1-norm average relative error of
each method for query workload 2 (1% queries), while Fig-
ures 13–16 show the results for query workload 3. In general,
the GENHIST method performs better than all other methods

0

10

20

30

40

50

60

70

80

90

100

110

120

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernel

AVI
MinSkew

Fig. 10. DS2 dataset, query workload 2, 5D

0

10

20

30

40

50

60

70

80

90

100

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernels

AVI
MinSkew

Fig. 11. Forest Cover dataset, query workload 2, 5D

0

10

20

30

40

50

60

70

80

90

100

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernel

AVI
MinSkew

Fig. 12. TPC-D dataset, query workload 2, 5D

0

10

20

30

40

50

60

70

80

90

100

110

120

130

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernel

AVI
MinSkew

Fig. 13. DS1 dataset, query workload 3, 5D

14 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

0

10

20

30

40

50

60

70

80

90

100

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernel

AVI
MinSkew

Fig. 14. DS2 dataset, query workload 3, 5D

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernels

AVI
MinSkew

Fig. 15. Forest cover dataset, query workload 3, 5D

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernel

AVI
MinSkew

Fig. 16. TPC-D dataset, query workload 3, 5D

when the available space increases. For the TPC-D dataset on
query workload 3 and for the Forest Cover dataset on query
workload 1, multidimensional kernels are more accurate. For
the TPC-D dataset on query workload 2, Min-Skew is the most
accurate technique. However, even in these cases GENHIST
is very close in accuracy to the best technique and is in fact
the only technique among those that we tried that is the most
accurate or close to the most accurate in all the experiments.

Multidimensional kernels also perform well in general.
An interesting observation is that kernels perform better than
random sampling for all datasets.

Wavelets perform better than other methods when the
space used to store the approximation is very small. But in-
creasing the available space (that is, using more wavelet coef-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 A

bs
ol

ut
e

E
rr

or

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernels

AVI
MinSkew

Fig. 17. DS1 dataset, query workload 3, 5D, average absolute error

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 A

bs
ol

ut
e

E
rr

or

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernels

AVI
MinSkew

Fig. 18. DS2 dataset, query workload 3, 5D, average absolute error

0

10

20

30

40

50

60

70

80

90

100

400 700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000 4300

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Kernels
AVI

MinSkew

Fig. 19. Forest Cover dataset, query workload 2, 8D

ficients to approximate the density function) offers little im-
provement. The reason is that beyond a certain point, which
is reached quickly in our experiments, many coefficients have
approximately the same magnitude. Thus using more coeffi-
cients offers little help.

Min-Skew histograms perform well in two cases – for the
TPCD dataset and workload 2 and the Forest Cover dataset
and workload 3. In the other experiments, Min-Skew is in-
ferior to GENHIST and in most cases it is also inferior to
multidimensional kernels.

In Figs. 17 and 18, we plot the average absolute error
for DS1 and DS2 datasets and query workload 3. Since the
relative performance of the various methods is similar, in the
remainder of this paper we report only the average relative
error.

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 15

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

400 700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000 4300

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Kernels
AVI

MinSkew

Fig. 20. Forest Cover dataset, query workload 3, 8D

0

10

20

30

40

50

60

70

80

90

100

400 700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000 4300

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Kernels
AVI

Fig. 21. Forest Cover dataset, query workload 2, 10D

0

50

100

150

200

250

300

350

400

450

500

400 700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000 4300

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Kernels
AVI

Fig. 22. Forest Cover dataset, query workload 3, 10D

0

10

20

30

40

50

60

70

80

90

100

400 700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000 4300

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Kernels
AVI

Fig. 23. Forest Cover dataset, query workload 4, 10D

0

10

20

30

40

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
kernel

AVI
MinSkew

Fig. 24. DS2 dataset, query workload 1, 5D

0

10

20

30

40

50

60

70

80

90

100

110

120

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

1-
no

rm
 A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

in
 %

)

Number of Stored Values

GenHist
Random Sampling

Wavelets
Kernel

AVI
MinSkew

Fig. 25. DS2 dataset, query workload 2, 5D

6.4.3 Eight- and ten-dimensional datasets

For the experiments in eight and ten dimensions, we use the
DS1 and Forest Cover datasets with query workloads 2 and 3.
The results are very similar, and we report here only the results
for the Forest Cover dataset in Figs. 19–23. Also for the ten-
dimensional datasets we used workload 4, which consists of
lower-dimensional range queries of cardinality close to 1%.

All meaningful queries in high dimensions are likely to
be small. For example, in six dimensions a range query of
the form (R.A1 < 0.5) ∧ · · · ∧ (R.A6 < 0.5) only covers
100
26 % ≈ 2% of the space. As the results show, the accuracy

of the estimation of the selectivity drops further. For example,
the error for workload 3 is much larger in dimensionalities 8
and 10 (Figs. 20 and 23) because these queries are formed by
taking a random point in space, and so their volume and hence
selectivity is very small in expectation.

Nevertheless, the GENHIST and the multidimensional
kernel estimators are in general more accurate than random
sampling or AVI. Note, however, that Min-Skew is perform-
ing worse than AVI for query workload 2 in eight dimensions.
We do not report results for Min-Skew in ten dimensions be-
cause in our implementation the array that approximates the
original dataset becomes very large, even for small values of
ξ, and cannot be kept in main memory.

6.4.4 Impact of query size on accuracy

The results for query workloads 1 and 2 can be used to evaluate
the impact of the query size on the accuracy of the selectivity
estimators (Figs. 24 and 25). The relative error rate increases

16 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

Table 1. Standard deviation values of the 1-norm average relative error for random sampling
and kernels, DS1 dataset, query workload 2, number of stored values 800 and 2400, 5D, 8D,
10D

Method 800, 5D 2400, 5D 800, 8D 2400, 8D 800, 10D 2400, 10D

Random Sampling 0.068 0.036 0.08 0.04 0.14 0.07
Kernels 0.024 0.006 0.04 0.02 0.07 0.02

when the query size decreases. This is to be expected from
the definition of the relative error. Even a small difference in
absolute terms between the estimated and the actual query size
can lead to a large relative error if the actual query size is small.
Thus the performance of all methods decreases significantly
from workloads 1 to workloads 2.

Clearly at five dimensions the accuracy of all methods
decreases, for small queries in particular. GENHIST, the most
accurate of the methods we tested, offers an accuracy of 20%
to 30% for queries of size 1%. In addition, the curves for all
methods are rather flat, so accuracy is unlikely to increase
significantly even if we allocate much more space.

6.4.5 Stability of the techniques

In Table 1, we report the standard deviation values of the 1-
norm average relative error for random sampling and kernels
computed over the five runs we perform for these methods. We
use the DS1 dataset (five, eight, and ten dimensions), query
workload 2, and sizes 800 and 2400 of the estimator. We ob-
serve that the standard deviation values for kernels are smaller
in all cases, and their values reduce as the size of the estimator
increases.

6.5 Comparison of running times

Random sampling and multidimensional kernel estimators re-
quire only one pass through the data whereas GENHIST re-
quires five to ten passes. Therefore, a drawback of GENHIST
compared to random sampling and kernel estimators is that the
construction time is larger. However, for the kernel estimators
it is not very easy to tune the bandwidth and additional time
may be required to achieve a good value for this. The construc-
tion time for the wavelets estimators is larger because of the
computation of the transformation for each row of the matrix.
Note that in the worst case the construction time matches the
time for external memory sorting [37].

The time to compute the selectivity of a range query is
approximately the same for most methods since we have
to test the query against all buckets in GENHIST or sam-
ple points in random sampling and kernels. Even for a
multidimensional histogram with nonoverlapping buckets, a
d-dimensional range query can intersect O(b

d−1
d) buckets

(where b is the number of buckets). However, for the wavelets
approach, this time is larger because we have to compute the
inverse transform first.

We compare here the running times of the algorithms tested
for the five-dimensional datasets. We used the DS1 dataset,
20,000 queries of type 3 (anchored queries), and set the size
of the estimator to 2,000 stored values (8 KB).

Table 2. Running times in seconds

Method Construction time Estimation time

Random sampling 30 7
Kernels 31 35
GenHist 550 30
Wavelets 650 41
Min-Skew 500 28

The results for construction and estimation times are
shown in Table 2.As is expected, random sampling and kernels
give the shortest construction times. Random sampling also
has the best estimation time. However, the estimation times
for the other methods are very close (of the same magnitude).

7 Conclusions

In this paper, we have addressed the problem of estimating the
selectivity of a multidimensional range query when the query
attributes have real domains and exhibit correlations. In this
environment, each value appears very infrequently.

The contributions of the paper are: (1) We propose a
new generalized histogram technique, GENHIST, to solve
the problem. GENHIST differs from earlier partitioning tech-
niques in that it uses overlapping buckets of varying sizes.
(2) For the same problem we generalize a kernel estimator
technique to many dimensions. (3) We perform an experi-
mental study to evaluate and compare the GENHIST tech-
nique and the multidimensional kernel estimators over real
attributes, with a number of existing techniques: attribute in-
dependence assumption, wavelet decomposition, MHIST-2,
Min-Skew, and sampling.

Conclusions we can draw from our experimental results
include: (1) GENHIST typically outperforms other techniques
in the range of space dimensionality (three to ten) that we run
experiments on. GENHIST can be thought of as a multidi-
mensional histogram that allows for overlapping partitioning.

(2) Multidimensional kernel estimators offer good accu-
racy and very fast construction time. The kernel estimator ap-
proach outperformed random sampling in most of our exper-
iments.

(3) For the real-valued and correlated datasets we have
used, the accuracy of all techniques decreases when dimen-
sionality increases. However, the GENHIST and the multi-
dimensional kernel estimators are more robust and accurate
even in ten-dimensional spaces.

An interesting future problem is to compare how the var-
ious query estimators are maintained under different update
loads. Updating in random sampling can be achieved using
techniques from [11]. Such techniques can be extended to ap-

D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes 17

ply to kernel estimators, too. Most work for maintaining his-
tograms has concentrated on the one-dimensional case [11],
although recently [1] proposed a technique for maintaining
multidimensional histograms. Maintaining GENHIST is sim-
ilar to maintaining other multidimensional histograms: an in-
sertion or deletion will affect only one bucket. In particular,
for GENHIST if the updated point is in the interior of more
than one bucket, we chose to update the smallest-size bucket.

Acknowledgements. We would like to thank Johannes Gehrke for
providing the code of a dataset generator, and Vishy Poosala for
providing the binary for the MHIST algorithm.

References

1. Aboulnaga A, Chaudhuri S (1999) Self-tuning histograms:
building histograms without looking at data. In: Proceedings
of the 1999 ACM SIGMOD international conference on man-
agement of data, Philadelphia, June 1999

2. Acharya S, Poosala V, Ramaswamy S (1999) Selectivity esti-
mation in spatial databases. In: Proceedings of the 1999 ACM
SIGMOD international conference on management of data,
Philadelphia, June 1999

3. Blohsfeld B, Korus D, Seeger B (1999) A comparison of se-
lectivity estimators for range queries on metric attributes. In:
Proceedings of the 1999 ACM SIGMOD international confer-
ence on management of data, Philadelphia, June 1999

4. Bruno N, Chaudhuri S, Gravano L (2001) STHoles: a multi-
dimensional workload-aware histogram In: Proceedings of the
2001 ACM SIGMOD international conference on management
of data, Santa Barbara, May 2001

5. Chaudhuri S, Gravano L (1999) Evaluating top-K selection
queries. In: Proceedings of the 25th international conference on
very large data bases (VLDB-99), Edinburgh, September 1999

6. Chaudhuri S, Motwani R, Narasayya VR (1998) Random sam-
pling for histogram construction: how much is enough? In: Pro-
ceedings of the 1998 ACM SIGMOD international conference
on management of data, Seattle, June 1998

7. Cressie NQC (1993) Statistics for spatial data. Wiley, NewYork
8. Diggle PJ A kernel method for smoothing point process data.

Appl Stat 34:138–147
9. Donjerkovic D, Ramakrishnan R (1999) Probabilistic optimiza-

tion of top N queries. In: Proceedings of the 25th international
conference on very large data bases (VLDB-99), Edinburgh,
September 1999

10. Gibbons PB, Matias Y (1998) New sampling-based summary
statistics for improving approximate query answers. In: Pro-
ceedings of the 1998 ACM SIGMOD international conference
on management of data, Seattle, June 1998

11. Gibbons PB, Matias Y, Poosala V (1997) Fast incremental
maintenance of approximate histograms. In: Proceedings of the
23rd international conference on very large data bases, Athens,
Greece, August 1997

12. Gunopulos D, Kollios G, Tsotras V, Domeniconi C (2000) Ap-
proximating multi-dimensional aggregate range queries over
real attributes. In: Proceedings of the 2000 ACM SIMGOD
international conference on management of data, Dallas, May
2000

13. Haas PJ, Swami AN (1992) Sequential sampling procedures
for query size estimation. In: Proceedings of the 1992 ACM
SIGMOD international conference on management of data, San
Diego, June 1992

14. Hellerstein JM, Haas PJ, Wan H (1997) Online aggregation. In:
Proceedings of the 1997 ACM SIGMOD international confer-
ence on management of data, Tucson, AZ, May 1997

15. Imager Wavelet Library. www.cs.ubc.ca/nest/imager/contribu-
tions/bobl/wvlt/top.html

16. Ioannidis Y, Poosala V (1999) Histogram-based approxima-
tion of set-valued query-answers. In: Proceedings of the 25th
international conference on very large data bases (VLDB-99),
Edinburgh, September 1999

17. Jagadish HV, Koudas N, Muthukrishnan S, Poosala V, Sevcik
KC, Suel T (1998) Optimal histograms with quality guarantees.
In: Proceedings of the 24rd international conference on very
large data bases, August 1998

18. Khanna S, Muthukrishnan S, Patterson M (1998) On approxi-
mating rectangle tiling and packing. In: Proceedings of the 9th
annual symposium on discrete algorithms (SODA), San Fran-
cisco, January 1998

19. Konig A, Weikum G (1999) Combining histograms and para-
metric curve fitting for feedback-driven query result-size esti-
mation. In: Proceedings of the 25th international conference on
very large data bases (VLDB-99), Edinburgh, September 1999

20. Korn F, Johnson T, Jagadish H (1999) Range selectivity estima-
tion for continuous attributes. In: Proceedings of the 11th inter-
national conference on SSDBMs, Cleveland, OH, July 1999

21. Lipton RJ, Naughton JF, Schneider D (1990) Practical selectiv-
ity estimation through adaptive sampling. In: Proceedings of the
1990 ACM SIGMOD international conference on management
of data, Atlantic City, NJ, May 1990

22. Lee J, Kim D, Chung C (1999) Multi-dimensional selectivity
estimation using compressed histogram information. In: Pro-
ceedings of the 1999 ACM SIGMOD international conference
on management of data, Philadelphia, June 1999

23. Matias Y, Scott Vitter J, Wang M (1998) Wavelet-based his-
tograms for selectivity estimation. In: Proceedings of the 1998
ACM SIGMOD international conference on management of
data, Seattle, June 1998

24. Matias Y, Scott Vitter J, Wang M (2000) Dynamic maintenance
of wavelet-based histograms. In: Proceedings of the 26th in-
ternational conference on very large data bases (VLDB 2000),
Cairo, Egypt, September 2000

25. Muralikrishna M, DeWitt DJ (1988) Equi-depth histograms for
estimating selectivity factors for multi-dimensional queries. In:
Proceedings of the 1988 ACM SIGMOD international confer-
ence on management of data, Chicago, June 1988

26. Muthukrishnan S, Poosala V, Suel T (1999) On rectangular
partitionings in two dimensions: algorithms, complexity, and
applications. In: Proceedings of the ICDT 1999, Jerusalem,
January 1999, pp 236–256

27. Olken F, Rotem D (1990) Random sampling from database files:
a survey. In: Proceedings of the 5th international conference on
statistical and scientific database management, Charlotte, NC,
July 1990

28. Poosala V, Ganti V (1999) Fast approximate answers to ag-
gregate queries on a data cube. In: Proceedings of the 11th
international conference on scientific and statistical database
management, Cleveland, OH, July 1999

29. Poosala V, Ioannidis YE (1997) Selectivity estimation without
the attribute value independence assumption. In: Proceedings
of the 23rd international conference on very large data bases
(VLDB 1997), Athens, Greece, August 1997

30. Poosala V, Ioannidis YE, Haas PJ, Shekita EJ (1996) Improved
histograms for selectivity estimation of range predicates. In:
Proceedings of the 1996 ACM SIGMOD international confer-
ence on management of data, Montreal, May 1996

18 D. Gunopulos et al.: Selectivity estimators for multidimensional range queries over real attributes

31. Scott D (1992) Multivariate density estimation: theory, practice
and visualization. Wiley, New York

32. Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price
TG (1979) Access path selection in a relational database man-
agement system. In: Proceedings of the 1979 ACM SIGMOD
international conference on management of data, Boston, June
1979

33. Shanmugasundaram J, Fayyad U, Bradley P (1988) Compressed
data cubes for OLAP aggregate query approximation on con-
tinuous dimensions. In: Proceedings of the 5th ACM SIGKDD
international conference on knowledge discovery and data min-
ing, San Diego, August 1988

34. Silverman BW (1986) Density estimation for statistics and
data analysis. Monographs on statistics and applied probability,
Chapman & Hall, New York

35. TPC benchmark D (decision support) (1995)
36. Vitter JS, Wang M (1999) Approximate computation of multi-

dimensional aggregates of sparse data using wavelets. In: Pro-
ceedings of the 1999 ACM SIGMOD international conference
on management of data, Philadelphia, June 1999

37. Vitter JS, Wang M, Iyer BR (1998) Data cube approximation
and histograms via wavelets. In: Proceedings of the 1998 ACM
CIKM international conference on information and knowledge
management, Bethesda, MD, November 1998

38. Wand MP, Jones MC (1995) Kernel smoothing. Monographs on
statistics and applied probability, Chapman & Hall, New York

39. Webber R, Schek HJ, Blott S (1998) A quantitative analysis
and performance study for similarity search methods in high-
dimensional spaces. In: Proceedings of the 24rd international
conference on very large data bases, New York, August 1998

