
Database Systems
Index: Hashing
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Hashing

n Hash-based indexes are best for equality selections. Cannot support range searches.

n Static and dynamic hashing techniques exist.
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Static Hashing
n # primary pages fixed, allocated sequentially, never de-allocated; overflow pages if 

needed.
n h(k) MOD N= bucket to which data entry with key k belongs. (N = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

1
0

N-1
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Static Hashing (Contd.)
n Buckets contain data entries.
n Hash function works on search key field of record r.  Use its value MOD N to distribute 

values over  range 0 ... N-1.
– h(key) = (a * key + b) mod P (for some prime P and a, b randomly chosen from the field of P) usually works well.
– a and b are constants;  lots known about how to tune h.
– more on this subject later

n Long overflow chains can develop and degrade performance.  
– Extendible and Linear Hashing: Dynamic techniques to fix this problem.
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Extendible Hashing
n Situation: Bucket (primary page) becomes full. Why not re-organize file by doubling # 

of buckets?
– Reading and writing all pages is expensive!

n Idea:  Use directory of pointers to buckets, double # of buckets by doubling the 
directory, splitting just the bucket that overflowed!

– Directory much smaller than file, so doubling it is much cheaper.  Only one page of data entries is split.  No
overflow page!

– Trick lies in how hash function is adjusted!
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Example

13*00
01
10
11

2

2

1

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C10*

1* 7*

4* 12* 32* 16*

5*

we denote r by h(r).

• Directory is array of size 4.
• Bucket for record r has entry with index = `global depth’ least significant bits of h(r);

– If h(r) = 5 = binary 101,  it is in bucket pointed to by 01.
– If h(r) = 7 = binary 111,  it is in bucket pointed to by 11.
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Handling Inserts

n Find bucket where record belongs.
n If there’s room, put it there.
n Else, if bucket is full, split it:

– increment local depth of original page
– allocate new page with new local depth
– re-distribute records from original page.
– add entry for the new page to the directory
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Example: Insert 21, then 19, 15

13*00
01
10
11

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

2
Bucket D

DATA PAGES

10*

1* 7*

2
4* 12* 32* 16*

15*7* 19*

5*

n 21 = 10101
n 19 = 10011
n 15 = 01111

12
21*
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2
4* 12* 32*16*

Insert h(r)=20 (Causes Doubling)

00
01
10
11

2 2

2

2

LOCAL DEPTH

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21*13*

10*

15* 7* 19*

(`split image'
of Bucket A)

20*

3
Bucket A24* 12*

of Bucket A)

3
Bucket A2

(`split image'
4* 20*12*

2

Bucket B1* 5* 21*13*

10*

2

19*

2

Bucket D15* 7*

3

32*16*
LOCAL DEPTH

000
001
010
011
100
101

110
111

3
GLOBAL DEPTH

3

32*16*
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Points to Note

n 20 = binary 10100.  Last 2 bits (00) tell us r belongs in either A or A2.  Last 3 bits 
needed to tell which.

– Global depth of directory: Max # of  bits needed to tell which bucket an entry belongs to.

– Local depth of a bucket: # of bits used to determine if an entry belongs to this bucket.

n When does bucket split cause directory doubling?
– Before insert, local depth of bucket = global depth.  Insert causes local depth to become > global depth; 

directory is doubled by copying it over and `fixing’ pointer to split image page.  
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Comments on Extendible Hashing
n If directory fits in memory, equality search answered with one disk access; else two.

– Directory grows in spurts, and, if the distribution of hash values is skewed, directory can grow large.
– Multiple entries with same hash value cause problems!

n Delete:  If removal of data entry makes bucket empty, can be merged with `split 
image’.  If each directory element points to same bucket as its split image, can halve 
directory. 
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Linear Hashing
n A dynamic hashing scheme that handles the problem of long overflow chains without 

using a directory.

n Directory avoided in LH by using temporary overflow pages, and choosing the bucket to 
split in a round-robin fashion.

n When any bucket overflows split the bucket that is currently pointed to by the “Next” 
pointer and then increment that pointer to the next bucket.

12



Linear Hashing – The Main Idea

n Use a family of hash functions h0, h1, h2, ...

n hi(key) = h(key) mod(2iN)
– N = initial # buckets

– h is some hash function 

n hi+1 doubles the range of hi (similar to directory doubling)
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Linear Hashing (Contd.)
n Algorithm proceeds in `rounds’. Current round number is “Level”.
n There are NLevel (= N * 2Level) buckets at the beginning of a round
n Buckets 0 to Next-1 have been split;  Next to NLevel have not been split yet this round.
n Round ends when all initial buckets have been  split (i.e. Next = NLevel). 
n To start next round:

Level++; 
Next = 0;
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Linear Hashing - Insert
n Find appropriate bucket 

n If bucket to insert into is full:

– Add overflow page and insert data entry.

– Split Next bucket and increment Next.
• Note: This is likely NOT the bucket being inserted to!!!

• to split a bucket, create a new bucket and use hLevel+1 to re-distribute entries.

n Since buckets are split round-robin, long overflow chains don’t develop!
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Overview of Linear Hashing - Insert
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Example: Insert 43  (101011)
Level=0, N=4

Next=0

PRIMARY
PAGES

Level=0
Next=1

PRIMARY
PAGES

OVERFLOW
PAGES

44* 36*32*

25*9* 5*

14* 18*10* 30*

31* 35* 11*7*

44*36*

32*

25*9* 5*

14*18*10*30*

31*35* 11*7* 43*
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Example:  End of a Round

22*

Next=3

Level=0, Next = 3
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

37*

Next=0

PRIMARY
PAGES

OVERFLOW
PAGES

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Insert 50 (110010) Level=1, Next = 0
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LH Search Algorithm

n To find bucket for data entry r, find hLevel(r):
– If hLevel(r) >= Next (i.e., hLevel(r) is a bucket that hasn’t been involved in a split this round) then r  

belongs in that bucket for sure. 
– Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NLevel must apply hLevel+1(r) to find out.
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Example: Search 44 (11100), 9 (01001) 
Level=0,  Next=0, N=4

PRIMARY
PAGES

44* 36*32*

25*9* 5*

14* 18*10* 30*

31* 35* 11*7*
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Level=0, Next = 1, N=4

PRIMARY
PAGES

OVERFLOW
PAGES

44*36*

32*

25*9* 5*

14*18*10*30*

31*35* 11*7* 43*

Example: Search 44 (11100), 9 (01001) 
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Comments on Linear Hashing
n If insertions are skewed by the hash function, leading to long overflow buckets

– Worst case: one split will not fix the overflow bucket

n Delete:  The reverse of the insertion algorithm
– Exercise: work out the details of the deletion algorithm for LH.
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Designing Good Hash Functions

n Formal set up: let [N] denote the numbers {0, 1, 2, . . . , N − 1}.  For any set S ⊆ U 
such that |S|=n, we want to support:

– add(x): add the key x to S
– query(x):  is the key q ∈ S?
– delete(x): remove the key x from S
efficiently!

We consider the static case here (fixed set S). Note that even though S is fixed, we don’t 
know S ahead of time. Imagine it’s chosen by an adversary from #

$ possible choices.

Our hash function needs to work well for any such (fixed) set S. 
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Static vs Dynamic

n Static: Given a set S of items, we want to store them so that we can do lookups 
quickly. E.g., a fixed dictionary. 

n Dynamic: here we have a sequence of insert, lookup, and perhaps delete requests. 
We want to do these all efficiently. 
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Hash Function Basics
n We will perform inserts and lookups by having an array A of some size M, and a 

hash function h : U → {0,... ,M − 1} (i.e., h : U → [M]). Given an element x, the idea 
of hashing is we want to store it in A[h(x)].

– If N=|U| is small, this problem is trivial. But in practice, N is often big.

n Collision happens when h(x)=h(y)
– handle collisions by having each entry in A be a linked list. 
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Desirable Properties

n Small probability of distinct keys colliding: if x ≠ y ∈ S then Prh←H [h(x) = h(y)] is “small”. 
– h←H means the random choice over a family H of hash functions. 

n Small range: we want M to be small. At odds with first desired property; ideally 
M=O(N).

n Small number of bits to store a hash function h. This is at least O(log2|H|).

n h is easy to compute

n Given this, the time to lookup an item x is O(length of list A[h(x)])
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Bad News

n One way to spread elements out nicely is to spread them randomly. Unfortunately, 
we can’t just use a random number generator to decide where the next element 
goes because then we would never be able to find it again. So, we want h to be 
something “pseudorandom” in some formal sense.

n (Bad news) For any deterministic hash function h (i.e., |H|=1), if |U| ≥ (N − 1)M + 1, 
there exists a set S of N elements that all hash to the same location.

– simple pigeon hole argument.

27



Randomness to the Rescue
n Introduce a family of hash functions, H with |H|>1, that h will be randomly chosen 

from for each key (but use the same choice for the same key).

n Universal Hashing: if x ≠ y ∈ S then Prh←H [h(x) = h(y)] ≤ 1/M.

n If H is universal, then for any set S ⊆ U of size N, for any x ∈ U (e.g., that we might 
want to lookup, x may not come from S), if we construct h at random according to a 
universal hash family H, the expected number of collisions between x and other 
elements in S is at most N/M.
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Property of Universal Hashing
n Proof: 

– Each y ∈ S (y ≠ x) has at most a 1/M chance of colliding with x by the definition of 
“universal”. So

– Let Cxy = 1 if x and y collide and 0 otherwise. 
– Let Cx denote the total number of collisions for x. So, Cx = ∑y∈S,y ≠ x Cxy.
– We know E[Cxy] = Pr(x and y collide) ≤ 1/M.
– So, by linearity of expectation, E[Cx] = ∑ y E[Cxy] < N/M.
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How to Construct Universal Hashing?
n Consider the case where |U| = 2u and M = 2m

n Take an u × m matrix A and fill it with random bits. For x ∈ U, view x as a u-bit vector 
in {0, 1} u , and define h(x) := Ax where the calculations are done modulo 2.

n There are 2um hash functions in this family H

30 Note that                     , so picking a random function from H does not map each key to a random place  



Why it is a universal hash family?
n Proof: 

– We can think of it as adding some of the columns of h (doing vector addition mod 2) 
where the 1 bits in x indicate which ones to add

– take an arbitrary pair of keys x, y such that x ≠ y. They must differ someplace, so say 
they differ in the ith coordinate and for concreteness say xi = 0 and yi = 1

– Imagine we first choose all of h but the ith column. Over the remaining choices of ith
column, h(x) is fixed.

– However, each of the 2m different settings of the ith column gives a different value of 
h(y) (every time we flip a bit in that column, we flip the corresponding bit in h(y) as we 
are doing addition modulo 2!).

– So there is exactly a 1/2m chance that h(x) = h(y)!
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Perfect Hashing (for static case)

n We say a hash function is perfect for S if all lookups involve O(1) work.
n Naïve method: an O(N2 )-space solution
n Let H be universal and M = N2 . Then just pick a random h from H and try it out!

n Claim: If H is universal and M = N2 , then Prh∼H(no collisions in S) ≥ 1/2
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Naïve method: O(n2) space

n Proof:
– How many pairs (x,y) in S are there? Answer: 
– For each pair, the chance they collide is ≤ 1/M by definition of “universal”
– So, Pr(exists a collision) ≤ N(N-1)/2M = N(N-1)/2N2 < 1/2. 
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A O(n) space solution (for static S)

n first hash into a table of size N using universal hashing. This will produce some 
collisions (unless we are extraordinarily lucky)

n then rehash each bin using Method 1, squaring the size of the bin to get zero collisions

Formally:
n a first-level hash function h and first-level table A, 
n N second-level hash functions h1,... ,hN and N second-level tables A1,... ,AN
n To lookup an element x, we first compute i = h(x) and then find the element in Ai

[hi(x)].
n We omit the analysis of this method.
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Dynamic S?

n Cuckoo hashing: 
– Linear space
– Constant look up time

– Pagh, Rasmus; Rodler, Flemming Friche (2001). "Cuckoo Hashing". Algorithms — ESA 2001
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K-universal hashing and k-wise independent hashing

n A family H of hash functions mapping U to [M] is called k-universal if for any k 
distinct keys x1, x2, . . . , xk ∈ U, and any k values α1, α2, . . . , αk ∈ [M] (not 
necessarily distinct), we have

Prh←H [h(x1) = α1 ∧ h(x2) = α2 ∧ · · · ∧ h(xk) = αk] = 1/Mk . 

n Such a hash family is also called k-wise independent. The case of k = 2 is called 
pairwise independent. 

n Pairwise indepence: Pr[h(x)=a ∧ h(y)=b] = Pr[h(x)=a] ∧ Pr[h(y)=b]
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Simple facts about k-universal hash families

n Suppose H is a k-universal family. Then

n a) H is also (k − 1)-universal. 

n b) For any x ∈ U and α ∈ [M], Pr[h(x) = α] = 1/M. 

n c) H is universal.

n Exercise: prove these claims?

n 2-universal is indeed stronger than universal

n The previous construction for universal hashing DOES NOT give 2-universal (since 
Pr[                  ] = 1  and not 1/M as required above)
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How to construct k-wise universal hashing?

n pick a prime p, and let U = [p] and M = p as well. 
n p being a prime means that [p] has good algebraic properties: it forms the field Zp

(also denoted as GF(p))
n Pick two random numbers a, b ∈ Zp. For any x ∈ U, define:

h(x) := (bx + a) mod p
n Claim: h(x) is 2-universal (note that there are O(p2) hash functions, i.e., |H|=O(p2))
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Proof for 2-universal

n note that for x1  ≠  x2 ∈ U

n Since a, b are chosen randomly, the chance that each of them equals some specified 
values is at most 1/p x 1/p = 1/p2 , which is 1/M2 as desired for 2-universality.
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Apply it in practice and k-universal

n the same idea works for any field. So we could use the field GF(2u ) which has a 
correspondence with u-bit strings, and hence hash [2u ] → [2u ]. Now we could 
truncate the last u − m bits of the hash value to get a hash family mapping [2u ] to 
[2m] for m ≤ u

n i.e., construct h(x) as in last slide and then mod m.

n Pick k random numbers a0, a1, . . . , ak−1 ∈ Zp. For any x ∈ U, define
( mod p  ( then mod m)

Claim: the above construction forms a k-universal hash family. 
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Summary

n Many alternative hashing scheme exists, each appropriate in some situation.
n k-wise universal hashing is very useful, as it gives k-wise independence, but large k 

value means that it’s more expensive to describe the hash functions.
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