MIN-HASHING AND LOCALITY SENSITIVE HASHING

Thanks to:

Rajaraman and Ullman, "Mining Massive Datasets" Evimaria Terzi, slides for Data Mining Course.

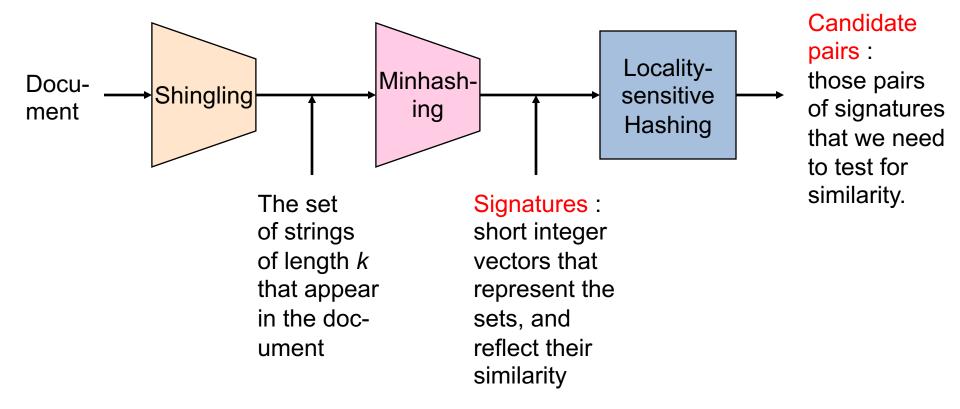
Motivating problem

- Find duplicate and near-duplicate documents from a web crawl.
- If we wanted exact duplicates we could do this by hashing
 - We will see how to adapt this technique for near duplicate documents

Main issues

- What is the right representation of the document when we check for similarity?
 - E.g., representing a document as a set of characters will not do (why?)
- When we have billions of documents, keeping the full text in memory is not an option.
 - We need to find a shorter representation
- How do we do pairwise comparisons of billions of documents?
 - If exact match was the issue it would be ok, can we replicate this idea?

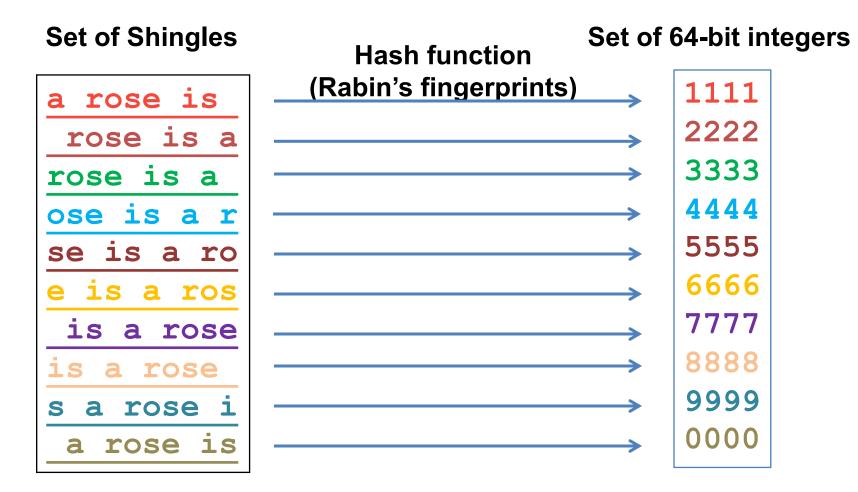
The Big Picture



4

Shingling

Shingle: a sequence of k contiguous characters



Basic Data Model: Sets

- Document: A document is represented as a set shingles (more accurately, hashes of shingles)
- Document similarity: Jaccard similarity of the sets of shingles.
 - Common shingles over the union of shingles
 - Sim (C₁, C₂) = $|C_1 \cap C_2| / |C_1 \cup C_2|$.

Applicable to any kind of sets.

• E.g., similar customers or items.

Signatures

- Key idea: "hash" each set S to a small signature Sig (S), such that:
 - 1. Sig (S) is small enough that we can fit a signature in main memory for each set.
 - 2. Sim (S_1, S_2) is (almost) the same as the "similarity" of Sig (S_1) and Sig (S_2) . (signature preserves similarity).
- Warning: This method can produce false negatives, and false positives (if an additional check is not made).
 - False negatives: Similar items deemed as non-similar
 - False positives: Non-similar items deemed as similar

From Sets to Boolean Matrices

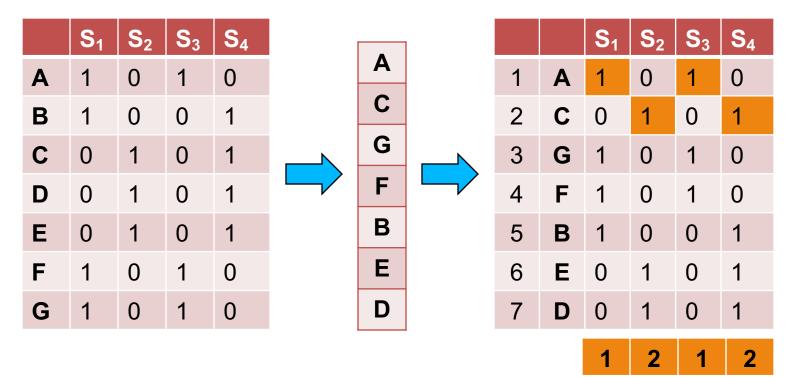
- Represent the data as a boolean matrix M
 - Rows = the universe of all possible set elements
 - In our case, shingle fingerprints take values in [0...2⁶⁴-1]
 - Columns = the sets
 - In our case, documents, sets of shingle fingerprints
 - M(r,S) = 1 in row r and column S if and only if r is a member of S.

- Typical matrix is sparse.
 - We do not really materialize the matrix

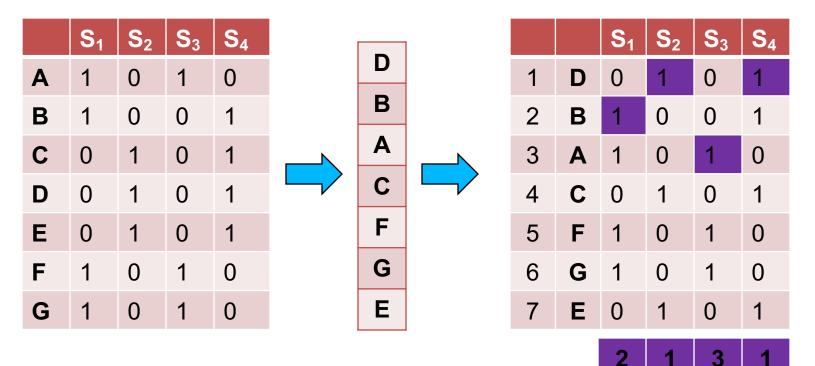
Minhashing

- Pick a random permutation of the rows (the universe U).
- Define "hash" function for set S
 - h(S) = the index of the first row (in the permuted order) in which column S has 1.
 - OR
 - h(S) = the index of the first element of S in the permuted order.
- Use k (e.g., k = 100) independent random permutations to create a signature.

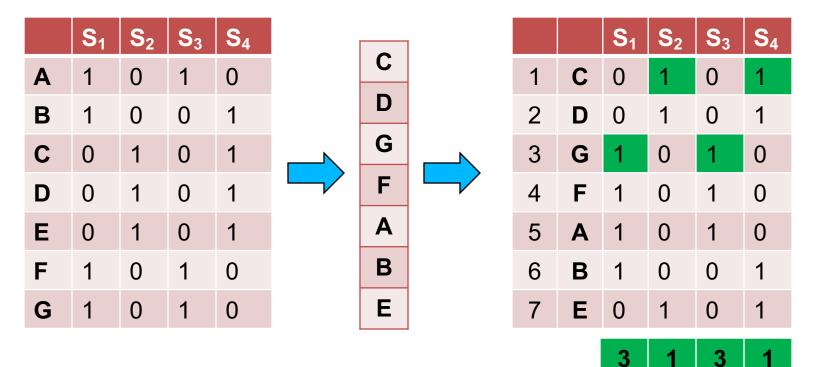
Input matrix



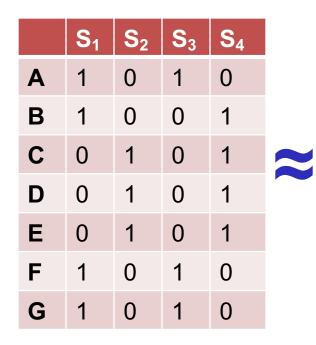
Input matrix



Input matrix



Input matrix



Signature matrix

	S ₁	S ₂	S ₃	S ₄
h ₁	1	2	1	2
h ₂	2	1	3	1
h ₃	3	1	3	1

- Sig(S) = vector of hash values
 - e.g., Sig(S₂) = [2,1,1]
- Sig(S,i) = value of the i-th hash function for set S
 - E.g., $Sig(S_2,3) = 1$

Hash function Property

$Pr(h(S_1) = h(S_2)) = Sim(S_1, S_2)$

 where the probability is over all choices of permutations.

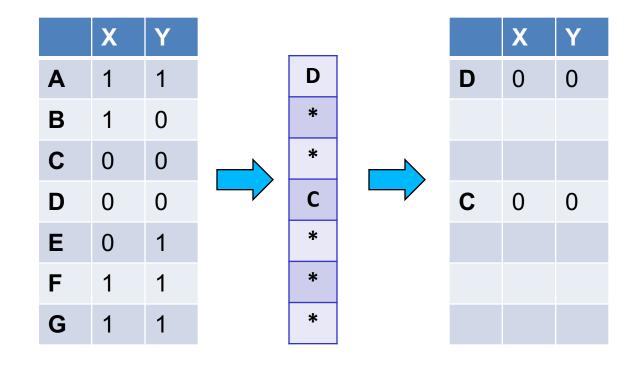
• Why?

- The first row where one of the two sets has value 1 belongs to the union.
 - Recall that union contains rows with at least one 1.
- We have equality if both sets have value 1, and this row belongs to the intersection

- Universe: U = {A,B,C,D,E,F,G}
- X = {A,B,F,G}
- $Y = \{A, E, F, G\}$

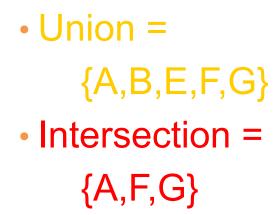
Rows C,D could be anywhere they do not affect the probability

Union = {A,B,E,F,G}
Intersection = {A,F,G}



- Universe: U = {A,B,C,D,E,F,G}
- X = {A,B,F,G}
- $Y = \{A, E, F, G\}$

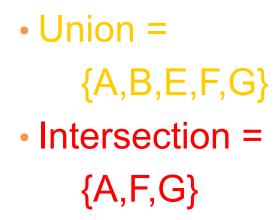
The * rows belong to the union

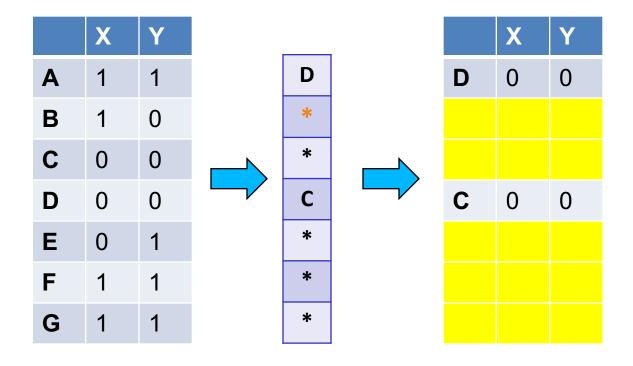




- Universe: U = {A,B,C,D,E,F,G}
- X = {A,B,F,G}
- $Y = \{A, E, F, G\}$

The question is what is the value of the first * element





- Universe: U = {A,B,C,D,E,F,G}
- $X = \{A, B, F, G\}$
- $Y = \{A, E, F, G\}$

 $\{A,F,G\}$

• Union =

If it belongs to the intersection then h(X) = h(Y)

X X Y Y D 1 1 0 Α D 0 $\{A,B,E,F,G\}$ * B 1 0 * С 0 0 Intersection = С С 0 0 0 0 D * Ε 0 1 F * 1 1 * G 1 1

- Universe: U = {A,B,C,D,E,F,G}
- X = {A,B,F,G}
- Y = {A,E,F,G}

Every element of the union is equally likely to be the * element $Pr(h(X) = h(Y)) = \frac{|\{A, F, G\}|}{|\{A, B, E, F, G\}|} = \frac{3}{5} = Sim(X, Y)$

Union = {A,B,E,F,G}
Intersection =

 $\{A,F,G\}$

X Y X Y D 1 1 Α D 0 0 * R 1 0 * С 0 0 С С 0 0 0 0 D * F 1 0 F * 1 1 * G 1 1

Similarity for Signatures

 The similarity of signatures is the fraction of the hash functions in which they agree.

	S ₁	S ₂	S ₃	S ₄	Signature matrix						
Α	1	0	1	0							(S ₁ , S ₂)
В	1	0	0	1		S ₁	S ₂	S ₃	S ₄		(S ₁ , S ₃)
C	0	1	0	1		1	2	1	2		(S ₁ , S ₄)
D	0	1	0	1		2	1	3	1		(S_2, S_3)
Е	0	1	0	1		3	1	3	1		(S_2, S_4)
F	1	0	1	0				_			(S_3, S_4)
G	1	0	1	0	Zero similarity is preserved (33, 34) High similarity is well approximated						

 With multiple signatures we get a good approximation Actual

0

3/5

1/7

3/4

0

0

Sig

2/3

0

0

0

1

0

Is it now feasible?

- Assume a billion rows
- Hard to pick a random permutation of 1...billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permuted order? ③

Being more practical

- Instead of permuting the rows we will apply a hash function that maps the rows to a new (possibly larger) space
 - The value of the hash function is the position of the row in the new order (permutation).
 - Each set is represented by the smallest hash value among the elements in the set
- The space of the hash functions should be such that if we select one at random each element (row) has equal probability to have the smallest value
 - Min-wise independent hash functions

Algorithm – One set, one hash function

Computing Sig(S,i) for a single column S and single hash function h_i

In practice only the rows (shingles)
that appear in the datafor each row rIn practice only the rows (shingles)
that appear in the datacompute h_i (r) h_i (r) = index of row r in permutationif column S that has 1 in row rS contains row rif h_i (r) is a smaller value than Sig(S,i) thenSig(S,i) = h_i (r);Find the row r with minimum index

Sig(S,i) will become the smallest value of h_i(r) among all rows (shingles) for which column S has value 1 (shingle belongs in S); *i*.e., h_i(r) gives the min index for the *i*-th permutation

Algorithm – All sets, k hash functions

Pick k=100 hash functions (h₁,...,h_k)

In practice this means selecting the hash function parameters

Sig(S,i) = h_i (r);

S1

 $h(x) = x + 1 \mod 5$

 $g(x) = 2x + 3 \mod 5$

S2

g(Row)Row<u>S1_S2</u>

В

Е

С

Α

D

h(x)

g(x)

Row

Α

В

С

D

Ε

Χ

h(Row) Row S1 S2 Ε

Α

В

С

D

Sig1 Sig2

0

h(0) = 1	1	-
g(0) = 3	3	-

$$h(1) = 2$$
 1
 $g(1) = 0$ 3

$$h(2) = 3$$
 1
 $g(2) = 2$ 2

$$h(3) = 4$$
 1 2
 $g(3) = 4$ 2 0

$$\begin{array}{c} h(4) = 0 & 1 & 0 \\ g(4) = 1 & 2 & 0 \end{array}$$

Implementation

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- And always compute h_i(r) only once for each row.

Finding similar pairs

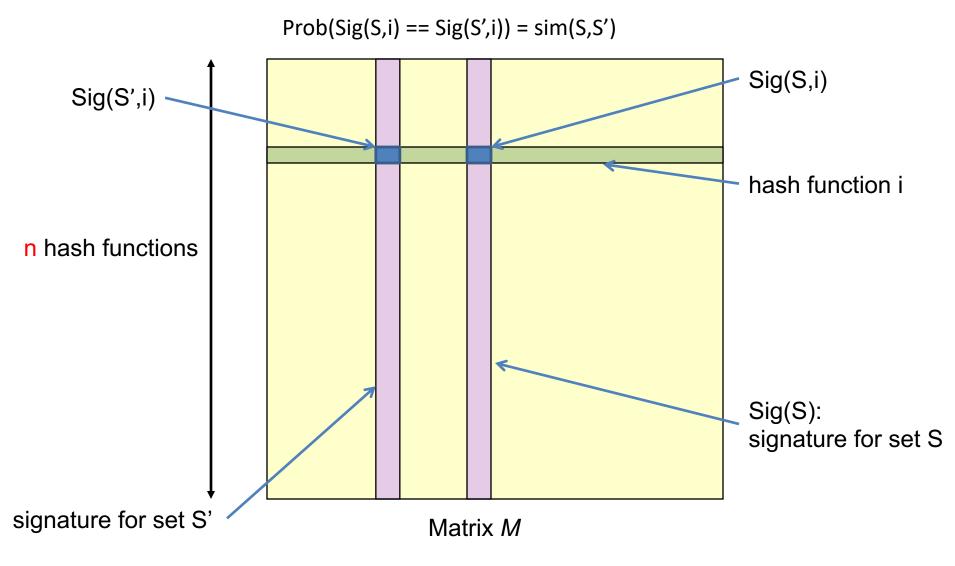
- Problem: Find all pairs of documents with similarity at least t = 0.8
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Example: 10⁶ columns implies 5*10¹¹ columncomparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- What we want: a function f(X,Y) that tells whether or not X and Y is a candidate pair: a pair of elements whose similarity must be evaluated.
- A simple idea: X and Y are a candidate pair if they have the same min-hash signature.
 - Easy to test by hashing the signatures.
 - Similar sets are more likely to have the same signature.
 - Likely to produce many false negatives.
 - Requiring full match of signature is strict, some similar sets will be lost.
- Improvement: Compute multiple signatures; candidate pairs should have at least one common signature.
 - Reduce the probability for false negatives.

! Multiple levels of Hashing!

Signature matrix reminder

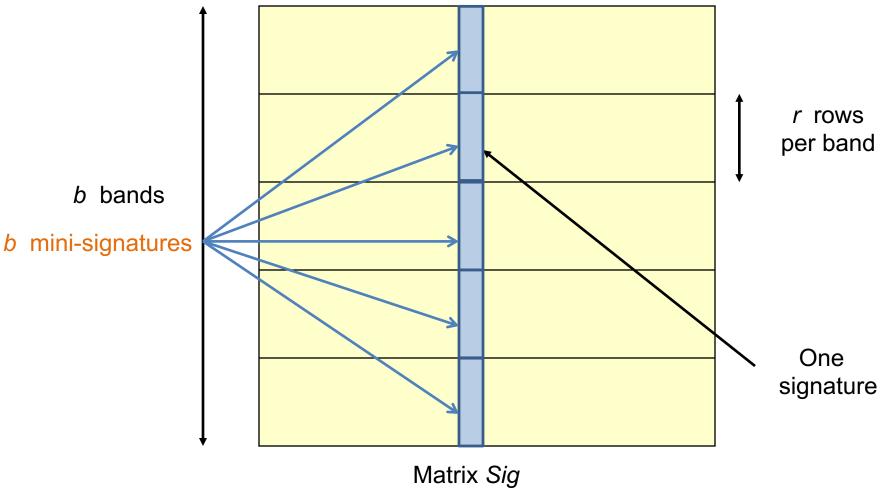


Partition into Bands -(1)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.

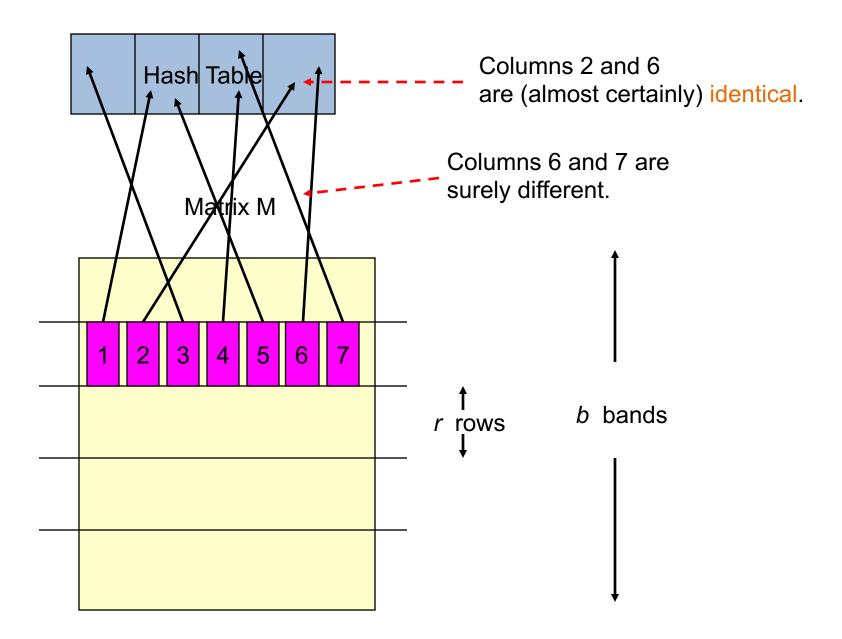
Partitioning into bands

 $n = b^{*}r$ hash functions



Partition into Bands – (2)

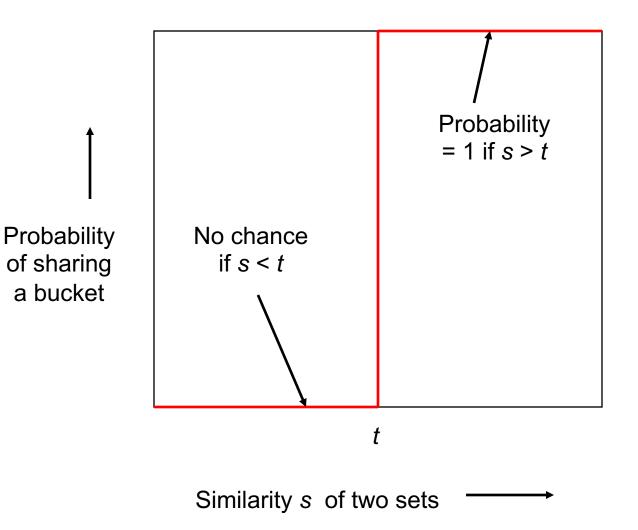
- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make *k* as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.



Partition into Bands – (3)

- Divide the signature matrix Sig into b bands of r rows.
 - Each band is a mini-signature with r hash functions.
- For each band, hash the mini-signature to a hash table with k buckets.
 - Make *k* as large as possible so that mini-signatures that hash to the same bucket are almost certainly identical.
- Candidate column pairs are those that hash to the same bucket for at least 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

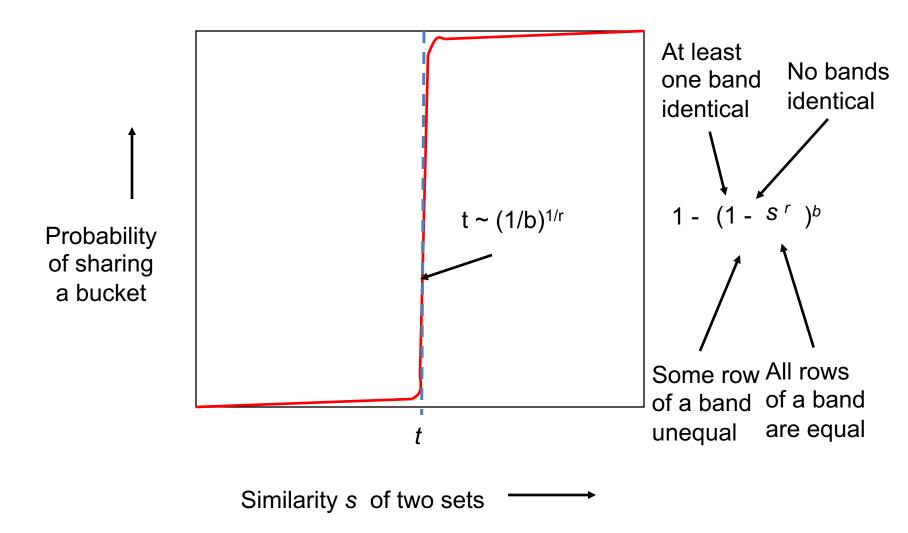
Analysis of LSH – What We Want



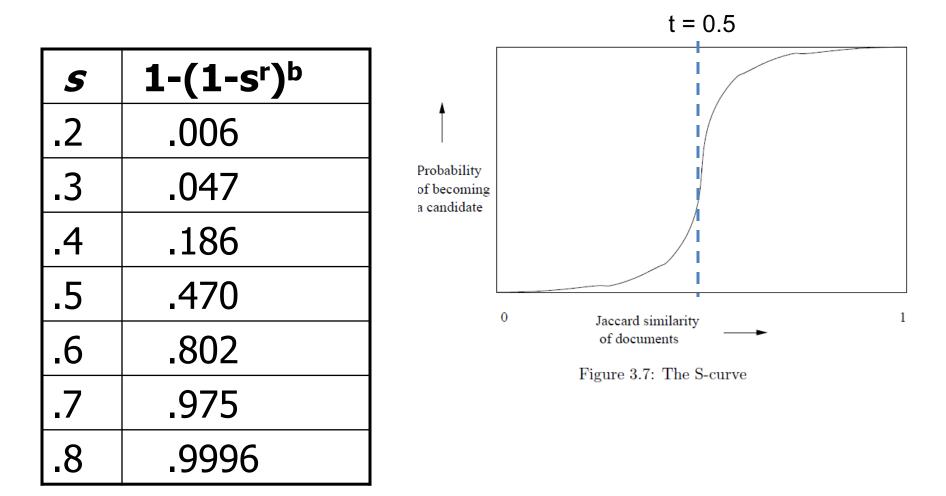
What One Band of One Row Gives You



What *b* Bands of *r* Rows Gives You



Example: b = 20; r = 5



Suppose S₁, S₂ are 80% Similar

- We want all 80%-similar pairs. Choose 20 bands of 5 integers/band.
- Probability S_1 , S_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability S_1 , S_2 are not similar in any of the 20 bands: (1-0.328)²⁰ = 0.00035
 - i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.
- Probability S₁, S₂ are similar in at least one of the 20 bands:

1-0.00035 = 0.999

Suppose S₁, S₂ Only 40% Similar

 Probability S₁, S₂ identical in any one particular band:

$$(0.4)^5 = 0.01$$
 .

 Probability S₁, S₂ identical in at least 1 of 20 bands:

$$\leq$$
 20 * 0.01 = 0.2 .

But false positives much lower for similarities << 40%.

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Locality-sensitive hashing (LSH)

- Big Picture: Construct hash functions h: R^d→ U such that for any pair of points p,q, for distance function D we have:
 - If $D(p,q) \le r$, then $Pr[h(p)=h(q)] \ge \alpha$ is high
 - If $D(p,q) \ge cr$, then $Pr[h(p)=h(q)] \le \beta$ is small
- Then, we can find close pairs by hashing
- LSH is a general framework: for a given distance function D we need to find the right h
 - h is (r,cr, α , β)-sensitive

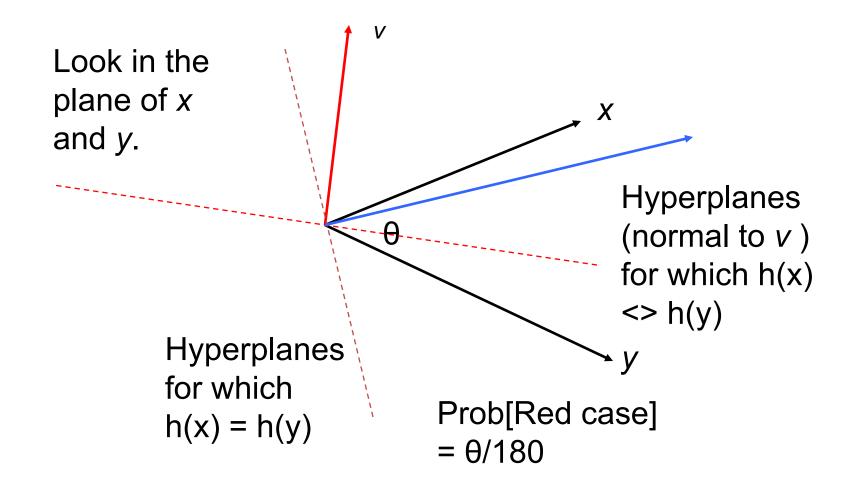
LSH for Cosine Distance

- For cosine distance, there is a technique analogous to minhashing for generating a (d₁,d₂,(1-d₁/180),(1-d₂/180))- sensitive family for any d₁ and d₂.
- Called random hyperplanes.

Random Hyperplanes

- Pick a random vector v, which determines a hash function h_v with two buckets.
- $h_v(x) = +1$ if v.x > 0; = -1 if v.x < 0.
- LS-family H = set of all functions derived from any vector.
- Claim: Prob[h(x)=h(y)] = 1 (angle between x and y divided by 180).

Proof of Claim



Signatures for Cosine Distance

- Pick some number of vectors, and hash your data for each vector.
- The result is a signature (sketch) of +1's and 1's that can be used for LSH like the minhash signatures for Jaccard distance.

Simplification

- We need not pick from among all possible vectors
 v to form a component of a sketch.
- It suffices to consider only vectors v consisting of +1 and -1 components.