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HASHING
Thanks to:

Rajaraman and Ullman, “Mining Massive Datasets”
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Motivating problem
• Find duplicate and near-duplicate documents 
from a web crawl.

• If we wanted exact duplicates we could do this by 
hashing
• We will see how to adapt this technique for near 

duplicate documents



Main issues
• What is the right representation of the document 
when we check for similarity?
• E.g., representing a document as a set of characters 

will not do (why?)
• When we have billions of documents, keeping the 
full text in memory is not an option.
• We need to find a shorter representation

• How do we do pairwise comparisons of billions of 
documents?
• If exact match was the issue it would be ok, can we 

replicate this idea?
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The Big Picture

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Minhash-
ing

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.



Shingling
• Shingle: a sequence of k contiguous characters

a rose is 
rose is a
rose is a 
ose is a r
se is a ro
e is a ros
is a rose
is a rose 
s a rose i
a rose is

1111
2222
3333
4444
5555
6666
7777
8888
9999
0000

Set of Shingles Set of 64-bit integersHash function
(Rabin’s fingerprints)
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Basic Data Model: Sets
• Document: A document is represented as a set
shingles (more accurately, hashes of shingles)

• Document similarity: Jaccard similarity of the sets 
of shingles.
• Common shingles over the union of shingles
• Sim (C1, C2) = |C1ÇC2|/|C1ÈC2|.

• Applicable to any kind of sets.
• E.g., similar customers or items.



Signatures
• Key idea: “hash” each set S to a small signature Sig 
(S), such that:

1. Sig (S) is small enough that we can fit a signature in main 
memory for each set.

2. Sim (S1, S2) is (almost) the same as the “similarity” of Sig 
(S1) and Sig (S2). (signature preserves similarity).

• Warning: This method can produce false negatives, 
and false positives (if an additional check is not 
made).
• False negatives: Similar items deemed as non-similar
• False positives: Non-similar items deemed as similar
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From Sets to Boolean Matrices

• Represent the data as a boolean matrix M
• Rows = the universe of all possible set elements 

• In our case, shingle fingerprints take values in [0…264-1]
• Columns = the sets 

• In our case, documents, sets of shingle fingerprints
• M(r,S) = 1 in row r and column S if and only if r is a 

member of S.

• Typical matrix is sparse.
• We do not really materialize the matrix
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Minhashing
• Pick a random permutation of the rows (the 
universe U).

• Define “hash” function for set S
• h(S) = the index of the first row (in the permuted order) 

in which column S has 1.
• OR
• h(S) = the index of the first element of S in the permuted 

order.
• Use k (e.g., k = 100) independent random 
permutations to create a signature.



Example of minhash signatures
• Input matrix

S1 S2 S3 S4
A 1 0 1 0
B 1 0 0 1
C 0 1 0 1
D 0 1 0 1
E 0 1 0 1
F 1 0 1 0
G 1 0 1 0

A
C
G
F
B
E
D

S1 S2 S3 S4
1 A 1 0 1 0
2 C 0 1 0 1
3 G 1 0 1 0
4 F 1 0 1 0
5 B 1 0 0 1
6 E 0 1 0 1
7 D 0 1 0 1

1 2 1 2



Example of minhash signatures
• Input matrix

S1 S2 S3 S4
A 1 0 1 0
B 1 0 0 1
C 0 1 0 1
D 0 1 0 1
E 0 1 0 1
F 1 0 1 0
G 1 0 1 0

D
B
A
C
F
G
E

S1 S2 S3 S4
1 D 0 1 0 1
2 B 1 0 0 1
3 A 1 0 1 0
4 C 0 1 0 1
5 F 1 0 1 0
6 G 1 0 1 0
7 E 0 1 0 1

2 1 3 1



Example of minhash signatures
• Input matrix

S1 S2 S3 S4
A 1 0 1 0
B 1 0 0 1
C 0 1 0 1
D 0 1 0 1
E 0 1 0 1
F 1 0 1 0
G 1 0 1 0

C
D
G
F
A
B
E

S1 S2 S3 S4
1 C 0 1 0 1
2 D 0 1 0 1
3 G 1 0 1 0
4 F 1 0 1 0
5 A 1 0 1 0
6 B 1 0 0 1
7 E 0 1 0 1

3 1 3 1



Example of minhash signatures
• Input matrix

S1 S2 S3 S4
A 1 0 1 0
B 1 0 0 1
C 0 1 0 1
D 0 1 0 1
E 0 1 0 1
F 1 0 1 0
G 1 0 1 0

S1 S2 S3 S4
h1 1 2 1 2
h2 2 1 3 1
h3 3 1 3 1

≈
• Sig(S) = vector of hash values 

• e.g., Sig(S2) = [2,1,1]
• Sig(S,i) = value of the i-th hash 

function for set S
• E.g., Sig(S2,3) = 1

Signature matrix
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Hash function Property

Pr(h(S1) = h(S2)) = Sim(S1,S2)

• where the probability is over all choices of  
permutations. 

• Why?
• The first row where one of the two sets has value 1

belongs to the union.
• Recall that union contains rows with at least one 1.

• We have equality if both sets have value 1, and this row 
belongs to the intersection



Example
• Universe: U = {A,B,C,D,E,F,G}
• X = {A,B,F,G}
• Y = {A,E,F,G}

• Union = 
{A,B,E,F,G}

• Intersection = 
{A,F,G}

X Y
A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D
*
*
C
*
*
*

X Y
D 0 0

C 0 0

Rows C,D could be anywhere 
they do not affect the probability



Example
• Universe: U = {A,B,C,D,E,F,G}
• X = {A,B,F,G}
• Y = {A,E,F,G}

• Union = 
{A,B,E,F,G}

• Intersection = 
{A,F,G}

X Y
A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D
*
*
C
*
*
*

X Y
D 0 0

C 0 0

The * rows belong to the union



Example
• Universe: U = {A,B,C,D,E,F,G}
• X = {A,B,F,G}
• Y = {A,E,F,G}

• Union = 
{A,B,E,F,G}

• Intersection = 
{A,F,G}

X Y
A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*
*
C
*
*
*

X Y
D 0 0

C 0 0

The question is what is the value 
of the first * element



Example
• Universe: U = {A,B,C,D,E,F,G}
• X = {A,B,F,G}
• Y = {A,E,F,G}

• Union = 
{A,B,E,F,G}

• Intersection = 
{A,F,G}

X Y
A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*
*
C
*
*
*

X Y
D 0 0

C 0 0

If it belongs to the intersection 
then h(X) = h(Y)



Example
• Universe: U = {A,B,C,D,E,F,G}
• X = {A,B,F,G}
• Y = {A,E,F,G}

• Union = 
{A,B,E,F,G}

• Intersection = 
{A,F,G}

X Y
A 1 1

B 1 0

C 0 0

D 0 0

E 0 1

F 1 1

G 1 1

D

*
*
C
*
*
*

X Y
D 0 0

C 0 0

Every element of the union is equally likely 
to be the * element
Pr(h(X) = h(Y)) = | A,F,G |

| A,B,E,F,G |=
3
5= Sim(X,Y)



Zero similarity is preserved
High similarity is well approximated
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Similarity for Signatures
• The similarity of signatures  is the fraction of the 
hash functions in which they agree.

• With multiple signatures we get a good 
approximation

S1 S2 S3 S4
A 1 0 1 0
B 1 0 0 1
C 0 1 0 1
D 0 1 0 1
E 0 1 0 1
F 1 0 1 0
G 1 0 1 0

S1 S2 S3 S4
1 2 1 2
2 1 3 1
3 1 3 1

≈

Actual Sig
(S1, S2) 0 0
(S1, S3) 3/5 2/3
(S1, S4) 1/7 0
(S2, S3) 0 0
(S2, S4) 3/4 1
(S3, S4) 0 0

Signature matrix



Is it now feasible?

• Assume a billion rows
• Hard to pick a random permutation of 1…billion
• Even representing a random permutation 
requires 1 billion entries!!!

• How about accessing rows in permuted order? L



Being more practical
• Instead of permuting the rows we will apply a hash 
function that maps the rows to a new (possibly larger) 
space
• The value of the hash function is the position of the row in 

the new order (permutation).
• Each set is represented by the smallest hash value among 

the elements in the set

• The space of the hash functions should be such that 
if we select one at random each element (row) has 
equal probability to have the smallest value 
• Min-wise independent hash functions 



Algorithm – One set, one hash function
Computing Sig(S,i) for a single column S and 
single hash function hi

for each row r 
compute hi (r ) 
if column S that has 1 in row r

if hi (r ) is a smaller value than Sig(S,i) then
Sig(S,i) = hi (r);

Sig(S,i) will become the smallest value of hi(r) among all rows 
(shingles) for which column S has value 1 (shingle belongs in S); 
i.e., hi (r) gives the min index for the i-th permutation

In practice only the rows (shingles) 
that appear in the data

hi (r) = index of row r in permutation

S contains row r

Find the row r with minimum index



Algorithm – All sets, k hash functions
Pick k=100 hash functions (h1,…,hk)

for each row r 
for each hash function hi

compute hi (r ) 
for each column S that has 1 in row r

if hi (r ) is a smaller value than Sig(S,i) then
Sig(S,i) = hi (r);

In practice this means selecting the 
hash function parameters

Compute hi (r) only once for all sets
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Example

Row S1 S2
A 1 0
B 0 1
C 1 1
D 1 0
E 0 1

h(x) = x+1 mod 5
g(x) = 2x+3 mod 5

h(0) = 1 1 -
g(0) = 3 3 -

h(1) = 2 1 2
g(1) = 0 3 0

h(2) = 3 1 2
g(2) = 2 2 0

h(3) = 4 1 2
g(3) = 4 2 0

h(4) = 0 1 0
g(4) = 1 2 0

Sig1 Sig2

Row S1 S2
E    0 1
A    1 0
B    0 1
C    1 1
D    1 0

Row S1 S2
B    0 1
E    0 1 
C    1 0
A    1 1
D   1 0

x
0
1
2
3
4

h(Row)
0
1
2
3
4

g(Row)
0
1
2
3
4

h(x)
1
2
3
4
0

g(x)
3
0
2
4
1
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Implementation
• Often, data is given by column, not row.

• E.g., columns = documents, rows = shingles.
• If so, sort matrix once so it is by row.
• And always compute hi (r ) only once for each 
row.



27

Finding similar pairs
• Problem: Find all pairs of documents with 
similarity at least t = 0.8

• While the signatures of all columns may fit in 
main memory, comparing the signatures of all 
pairs of columns is quadratic in the number of 
columns.

• Example: 106 columns implies 5*1011 column-
comparisons.

• At 1 microsecond/comparison: 6 days.
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Locality-Sensitive Hashing
• What we want: a function f(X,Y) that tells whether or not X

and Y is a candidate pair: a pair of elements whose 
similarity must be evaluated.

• A simple idea: X and Y are a candidate pair if they have 
the same min-hash signature.
• Easy to test by hashing the signatures.
• Similar sets are more likely to have the same signature.
• Likely to produce many false negatives.

• Requiring full match of signature is strict, some similar sets will be lost.

• Improvement: Compute multiple signatures; candidate 
pairs should have at least one common signature. 
• Reduce the probability for false negatives.

! Multiple levels of Hashing!
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Signature matrix reminder

Matrix M

n hash functions

Sig(S):
signature for set S

hash function i

Sig(S,i)

signature for set S’

Sig(S’,i)

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)



30

Partition into Bands – (1)

• Divide the signature matrix Sig  into b bands of r
rows.
• Each band is a mini-signature with r hash functions.
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Partitioning into bands

Matrix Sig

r rows
per band

b bands

One
signature

n = b*r hash functions

b mini-signatures
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Partition into Bands – (2)

• Divide the signature matrix Sig  into b bands of r
rows.
• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash 
table with k buckets.
• Make k as large as possible so that mini-signatures that 

hash to the same bucket are almost certainly identical.



33

Matrix M

r rows b bands

321 5 64 7

Hash Table Columns 2 and 6
are (almost certainly) identical.

Columns 6 and 7 are
surely different.
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Partition into Bands – (3)

• Divide the signature matrix Sig  into b bands of r
rows.
• Each band is a mini-signature with r hash functions.

• For each band, hash the mini-signature to a hash table 
with k buckets.
• Make k as large as possible so that mini-signatures that hash 

to the same bucket are almost certainly identical.
• Candidate column pairs are those that hash to the 
same bucket for at least 1 band.

• Tune b and r to catch most similar pairs, but few non-
similar pairs.
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Analysis of LSH – What We Want

Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t
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What One Band of One Row Gives You

Similarity s of two sets

Probability
of sharing
a bucket

t

Remember:
probability of
equal hash-values
= similarity

Single hash signature

Prob(Sig(S,i) == Sig(S’,i)) = sim(S,S’)
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What b Bands of r Rows Gives You

Similarity s of two sets

Probability
of sharing
a bucket

t

s r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r 
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Example: b = 20; r = 5

s 1-(1-sr)b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996

t = 0.5
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Suppose S1, S2 are 80% Similar

• We want all 80%-similar pairs. Choose 20 bands of 5
integers/band.

• Probability S1, S2 identical in one particular band: 

(0.8)5 = 0.328.

• Probability S1, S2 are not  similar in any of the 20 bands:

(1-0.328)20 = 0.00035 

• i.e., about 1/3000-th of the 80%-similar column pairs are false negatives.

• Probability S1, S2 are similar in at least one of the 20 
bands: 

1-0.00035 = 0.999
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Suppose S1, S2 Only 40% Similar

• Probability S1, S2 identical in any one particular 
band: 

(0.4)5 = 0.01 .

• Probability S1, S2 identical in at least 1 of 20 
bands: 

≤ 20 * 0.01 = 0.2 .

• But false positives much lower for similarities 
<< 40%. 
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LSH Summary

• Tune to get almost all pairs with similar 
signatures, but eliminate most pairs that do not 
have similar signatures.

• Check in main memory that candidate pairs 
really do have similar signatures.

• Optional: In another pass through data, check 
that the remaining candidate pairs really 
represent similar sets .



Locality-sensitive hashing (LSH)
• Big Picture: Construct hash functions h: Rdà U 
such that for any pair of points p,q, for distance
function D we have:
• If D(p,q)≤r, then Pr[h(p)=h(q)] ≥ α is high
• If D(p,q)≥cr, then Pr[h(p)=h(q)] ≤ β is small

• Then, we can find close pairs by hashing

• LSH is a general framework: for a given distance
function D we need to find the right h
• h is (r,cr, α, β)-sensitive
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LSH for Cosine Distance

• For cosine distance, there is a technique 
analogous to minhashing for generating a 
(d1,d2,(1-d1/180),(1-d2/180))- sensitive family 
for any d1 and d2.

• Called random hyperplanes.
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Random Hyperplanes

• Pick a random vector v, which determines a 
hash function hv with two buckets.

• hv(x) = +1 if v.x > 0; = -1 if v.x < 0.
• LS-family H = set of all functions derived from 
any vector.

• Claim: Prob[h(x)=h(y)] = 1 – (angle between x 
and y divided by 180).
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Proof of Claim

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplanes
(normal to v )
for which h(x)
<> h(y)

v

Hyperplanes
for which
h(x) = h(y)
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Signatures for Cosine Distance

• Pick some number of vectors, and hash your 
data for each vector.

• The result is a signature (sketch ) of +1’s and –
1’s that can be used for LSH like the minhash
signatures for Jaccard distance.
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Simplification
• We need not pick from among all possible vectors 
v to form a component of a sketch.

• It suffices to consider only vectors v consisting of 
+1 and –1 components.


