
Database Systems
Index: B+ Tree

(the best data structure everJ)

Based on slides by Feifei Li, University of Utah



Index Entries

An index entry has the following format: (search key value, page id). The following shows an index 
page with m index entries (pay attention to the special “left-most pointer”)

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

2

20 33



Tree-based Indexes
n Recall: 3 alternatives for data entries k*:

• Data record with key value k
• <k, rid of data record with search key value k>
• <k, list of rids of data records with search key k>

n Choice is orthogonal to the indexing technique used to locate data entries k*.
n Tree-structured indexing techniques support both range searches and equality 

searches.
n ISAM: static structure;  B+ tree:  dynamic, adjusts gracefully under inserts and 

deletes.
n ISAM = ???

Indexed Sequential Access Method
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A Note of Caution

n ISAM is an old-fashioned idea
– B+-trees are usually better, as we’ll see

n But, it’s a good place to start
– Simpler than B+-tree, but many of the same ideas

n Upshot
– Don’t brag about being an ISAM expert on your resume
– Do understand how they work, and tradeoffs with B+-trees
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Range Searches
n ``Find all students with gpa > 3.0’’

– If data is in sorted file, do binary search to find first such student, then scan to find others.
– Cost of binary search can be quite high.

n Simple idea:  Create an `index’ file.
– Level of indirection again!

☛ Can do binary search on (smaller) index file!

Page 1 Page 2 Page 3 Data File
With Data Pages

Index File:
Take the smallest search 
key value from each 
leaf page to build the 
index entries!

5

k’2 k’Mk’1
Leaf Pages with 
Data Entries:
1) One data entry 
per record!
2) Sort data entries

Page N

k2k1 k4k3 Leaf Page 2 Leaf Page 3 Leaf Page M



ISAM

n Index file may still be quite large.  But we can apply the idea repeatedly!

☛ Leaf pages contain data entries.

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
Overflow 

page
Primary pages

Leaf
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Example ISAM Tree

n Each node can hold 2 entries; no need for `next-leaf-page’ pointers.  (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root
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Comments on ISAM
n File creation:  Data pages first. Leaf (data) pages allocated  sequentially, 

sorted by search key.
Then index pages allocated.
Then space for overflow pages.

n Index entries:  <search key value, page id>;  they `direct’ search for data entries, which are in leaf 
pages.

n Search:  Start at root; use key comparisons to go to leaf.  Cost        log F N ; F = # entries per index 
page, N = # leaf pages

n Insert:  Find leaf where data entry belongs,  put it there.
(Could be on an overflow page).

n Delete:  Find and remove from leaf; if empty overflow page, de-allocate. 

☛ Static tree structure:  inserts/deletes affect only leaf pages.

µ
Data Pages

Index Pages

Overflow pages
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Example ISAM Tree

n Each node can hold 2 entries; no need for `next-leaf-page’ pointers.  (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root
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After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40
Root

23* 48* 41*

42*

Overflow
Pages

Leaf

Index
Pages

Pages

Primary
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... then Deleting 42*, 51*, 97*

☛ Note that 51 appears in index levels, but 51* not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40
Root

23* 48* 41*
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B+ Tree:  The Most Widely Used Index

n Insert/delete at log F N cost; keep tree height-balanced.   
(F = fanout, N = # leaf pages)

n Minimum 50% occupancy (except for root).  Each node contains d <=  m <= 2d
entries.  The parameter d is called the order of the tree.

n Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

File with pages containing the records (for Data Entries of Format 2 or 3)12



B+ Tree Indexes

v Leaf pages contain data entries, and are chained (prev & next)
v Non-leaf pages have index entries; only used to direct searches:

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages 
(Sorted by search key)

Leaf
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1717

Example B+ Tree

n Find 28*? 29*? All > 15* and < 30*

n Insert/delete:  Find data entry in leaf, then change it. Need to adjust parent 
sometimes.

– And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <=  17 Entries >  17

Note how data entries
in leaf level are sorted

Pointers to 
Actual Data 
Pages  (rid)
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Analysis of B+ Tree
n Suppose Page size is P (bytes), each record is r (bytes), search key is 4 bytes, each 

pointer/record id/page id is 4 bytes, and N records in total, alt 2 is used for a data 

entry.

n Bottom-up analysis:

– Number of pages in the data file: M=N /  P/r ⎦
¨ Example: N=1M, P=4kbytes, r=100 bytes => P/r =40, M= 1M/40 = 25000

– Number of data entries: N (one per record)

– Size of a data entry: 8 bytes

– Number of pages in leaf level:

• N’=N/  P/8⎦
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Analysis of B+ Tree (contd)
n Index Level:

– Number of index entries per page: f=((P-4)/8)*u (u is the average utilization ratio: [0.5, 1])

– Number of entries in the index level right above the leaf level: N’ (one entry per leaf-level 

page)

– Number of pages required in this level: N’/f

– Number of entries in the level above: N’/f

– Number of pages in the level above: N’/f2

– Recursively pages in each level:

• N’, N’/f, N’/f2 , N’/f3 …. 1=N’/fh

• So h=logfN’ (the height of the tree will be h or h+1 depending if you count the root level 

or not), total number of pages N’+N’/f+…+1=O(N’)
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Example B+ Tree
n Search begins at root, and key comparisons direct it to a leaf (as in ISAM).
n Search for 5*, 15*, all data entries >= 24* ...

☛ Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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Index Classification

n Clustered vs. unclustered:  If order of data records is the same as, or `close to’, 
order of index data entries, then called clustered index.

– A file can be clustered on at most one search key.
– Cost of retrieving data records through index varies greatly based on whether index is 

clustered or not!
– Alternative 1 implies clustered, but not vice-versa.
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Clustered vs. Unclustered Index
n Suppose that Alternative (2) is used for data entries, and that the data records are 

stored in a Heap file.
– To build clustered index, first sort the Heap file (with some free space on each block for 

future inserts).  
– Overflow blocks may be needed for inserts.  (Thus, order of data recs is `close to’, but not 

identical to, the sort order.)

Index entries

Data entries

direct search for 

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

19



Unclustered vs. Clustered Indexes

n What are the tradeoffs????
n Clustered Pros

– Efficient for range searches
– May be able to do some types of compression
– Possible locality benefits (related data?)

n Clustered Cons
– Expensive to maintain (on the fly or sloppy with reorganization)
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Clustered Files

n We usually refer a clustered Index using Alternative 1 as clustered files, i.e., data 
entries in the leaf-level are records themselves! Data File itself becomes your level 
pages.

n Pages are usually about 67 percent occupancy
– No. of physical data pages is about 1.5N/B (if N/B pages is required for storing all the 

data when each page is fully utilized)
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Example of B+ Tree (contd)

n All records >= 24. Clustered Index. 6 IOs

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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Example of B+ Tree (contd)

n All records >= 24. Unclustered Index: 10 IOs

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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B+ Tree in MySQL Continued.

n Now try the same queries with a tree-index built.
– CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name [index_type] 

ON tbl_name (index_col_name,...) 
[index_type] 

index_col_name: col_name [(length)] [ASC | DESC]
index_type: USING {BTREE | HASH} 

n Many engines create a clustered index on your primary key automatically.
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B+ Trees in Practice
n Typical order: 100 (B = 200).  Typical fill-factor: 67%.

– average fanout = 133
n Typical capacities:

– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 =     2,352,637 records

n Can often hold top levels in buffer pool (in almost all systems, root level will 
always be buffered):

– Level 1 =           1 page  =     8 Kbytes
– Level 2 =      133 pages =     1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes
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Inserting a Data Entry into a B+ Tree

n Find correct leaf L.
n Put data entry onto L.

– If L has enough space, done!

– Else, must split L (into L and a new node L2)
• Redistribute entries evenly, copy up middle key.

• Insert index entry pointing to L2 into parent of L.

n This can happen recursively

– To split index node, redistribute entries evenly, but push up middle key.  (Contrast with 
leaf splits.)

n Splits “grow” tree; root split increases height.  
– Tree growth: gets wider or one level taller at top.
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Example B+ Tree - Inserting 8*

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13
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Example B+ Tree - Inserting 8*

❖ Notice that root was split, leading to increase in height.
❖ In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice.

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*
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Inserting 8* into Example B+ Tree

n Observe how minimum 
occupancy is guaranteed 
in both leaf and index pg 
splits.

n Note difference between 
copy-up and push-up; be 
sure you understand the 
reasons for this.

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

…

…
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Deleting a Data Entry from a B+ Tree
n Start at root, find leaf L where entry belongs.
n Remove the entry.

– If L is at least half-full, done! 
– If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent node with same parent as 
L).

• If re-distribution fails, merge L and sibling.
n If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
n Merge could propagate to root, decreasing height.
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Example Tree (including 8*)  Delete 19* and 20* ...

n Deleting 19* is easy.

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*
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Example Tree (including 8*)  Delete 19* and 20* ...

n Deleting 19* is easy.
n Deleting 20* is done with re-distribution. Notice how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*
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... And Then Deleting 24*

n Must merge.
n Observe `toss’ of index entry (on right), 

and `pull down’ of index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17
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Example of Non-leaf Re-distribution

n Tree is shown below during deletion of 24*. (What could be a possible initial tree?)
n In contrast to previous example, can re-distribute entry from left child of root to right 

child.  

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*
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After Re-distribution

n Intuitively, entries are re-distributed by `pushing through’ the splitting entry in the 
parent node.

n It suffices to re-distribute index entry with key 20; we’ve re-distributed 17 as well for 
illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22
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Example Tree (including 8*)  Delete 19* and 20* ...

n Deleting 19* is easy.

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*
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Example Tree (including 8*) Delete 19* and 20* ...

n Deleting 19* is easy.
n Deleting 20* is done with re-distribution. Notice how middle key is copied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

37



... And Then Deleting 24*

n Must merge.
n Observe `toss’ of index entry (on right), 

and `pull down’ of index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17
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Example Tree Delete 24* ...

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

39



Example of Non-leaf Re-distribution

n Tree is shown below during deletion of 24*. (What could be a possible initial tree?)
n In contrast to previous example, can re-distribute entry from left child of root to right 

child.  

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*
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After Re-distribution

n Intuitively, entries are re-distributed by `pushing through’ the splitting entry in the 
parent node.

n It suffices to re-distribute index entry with key 20; we’ve re-distributed 17 as well for 
illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22
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Bulk Loading of a B+ Tree

n If we have a large collection of records, and we want to create a B+ tree on some 
field, doing so by repeatedly inserting records is very slow.

– Also leads to minimal leaf utilization --- why?
n Bulk Loading can be done much more efficiently.
n Initialization:  Sort all data entries, insert pointer to first (leaf) page in a new (root) 

page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root
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Bulk Loading (Contd.)

n Index entries for leaf pages always 
entered into right-most index page 
just above leaf level.  When this fills 
up, it splits.  (Split may go up right-
most path to the root.)

n Much faster than repeated inserts, 
especially when one considers 
locking!

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Root

Data entry pages 
not yet in B+ tree3523126

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages 
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Summary of Bulk Loading

n Option 1: multiple inserts.
– Slow.
– Does not give sequential storage of leaves.

n Option 2: Bulk Loading
– Has advantages for concurrency control.
– Fewer I/Os during build.
– Leaves will be stored sequentially (and linked, of course).
– Can control “fill factor” on pages.
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A Note on `Order’
n Order (d) concept replaced by physical space criterion in practice (`at least half-full’).

– Variable sized records and search keys mean different nodes will contain different 
numbers of entries.

– Even with fixed length fields, multiple records with the same search key value 
(duplicates) can lead to variable-sized data entries (if we use Alternative (3)).

n Many real systems are even sloppier than this --- only reclaim space when a page is 
completely empty.
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Summary

n Tree-structured indexes are ideal for range-searches, also good for equality searches.
n ISAM is a static structure.

– Only leaf pages modified; overflow pages needed.
– Overflow chains can degrade performance unless size of data set and data distribution 

stay constant.
n B+ tree is a dynamic structure.

– Inserts/deletes leave tree height-balanced; log F N cost.
– High fanout (F) means depth rarely more than 3 or 4.
– Almost always better than maintaining a sorted file.
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Summary (Contd.)

– Typically, 67% occupancy on average.
– Usually preferable to ISAM, adjusts to growth gracefully.
– If data entries are data records, splits can change rids!

n Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large 
data set.

n Most widely used index in database management systems because of its versatility.  
One of the most optimized components of a DBMS.
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