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Introduction

Interdomain routing, the primary method of com-

munication on the internet, is known to be vulnerable

to class of attack called prefix hijack. Several studies

[10] [9] have made claims that state BGP prefix hijack

attacks are more effective on tier 1 (T1) origins than

tier 2 (T2) or stub origins. However, to our knowl-

edge all of the claims have been based on modeling

studies, without empirical evidence. Thus, the point

of this study is to investigate the hypothesis using

empirical data from an actual prefix hijack event.

On December 24th, 2004, AS9121 (TTNET Turk

Telekomunikasyon Anonim Sirketi) started announc-

ing ownership of well over 100,000 prefixes. This was

a true break from form, as in the week leading up to

12/24/2004 AS9121 announced about 100 prefixes.

Unfortunately for most internet users, many large

networks believed at least some of the routes, with

AS6762 (Telecom Italia Seabone) believing nearly all

of them. The end result was that for most end users,

huge chunks of the internet were unreachable for at

least several hours. [11]

We find no evidence to prove or disprove the claim

that T1 origins are the most vulnerable. We believe

that our results are inconclusive for two reasons: first,

the attacking AS, AS9121, is a T2 AS which could

(TODO: FIX) mean any attack it launches is too

effective [10], drowning out the effect we expect to

see. Second, and more importantly, we don’t believe

that the data we analyzed has enough visibility into

the network to make any strong conclusion. For in-

stance, we were only able to directly observe hundreds

of ASes falling for this attack, even though there are

about 40,000 ASes in the internet.

Background

The internet is comprised of thousands of

autonomous systems (ASes) networked together to

form a giant graph. At its core, there are between 11

and 15 large Tier 1 ASes which are highly connected.

Traveling outward are the Tier 2 ASes, which are

typically strongly connected, but not quite as large

as Tier 1 ASes. Finally, most ASes are stub ASes,

typically only connecting to one or two T1 or T2 ASes

- they are the ”leaves” in the graph.

A typical packet travels through several ASes be-

fore it reaches its destination AS. Smaller ASes al-

most always pay larger ASes for service. That is, a

small AS pays for all traffic which it wants to send

through a larger AS, and for all traffic that the larger

AS carries through to itself. Some peering arrange-

ments occur, specifically all the T1 ASes carry traffic

for each other free of charge.

Border Gateway Protocol (BGP) is the protocol

which governs how ASes inform each other about con-

nectivity. Each AS sends and receives messages all

day, notifying each other of their current routes to

specific prefixes. For each prefix, an AS is typically

faced with a set of routes to choose from.

The classical economic model ([10] [4] [5] [2] [3])

states that ASes generally follow the following set of

rules when choosing a route:

1. Separate all routes which would earn money

and choose the shortest

2. If no routes earn money, choose the shortest

route which doesn’t cost money

3. If no routes are free, then choose the shortest

route you know.

In BGP when an AS receives a BGP update it has no

way of verifying the information it contains. As a re-

sult, AS routers nearly always accept the contents of

BGP updates as fact. All this means that an AS can

lie about which IP prefixes it owns and draw traffic

to itself. Such an event is called a BGP prefix hijack

attack, and several have been documented over the

last decade with varying amounts of success.

This project is about understanding which type

of AS is most vulnerable to prefix hijack. At first

glance the routing rules seem to offer up an intuitive

solution: IP addresses originating in stub ASes will

typically already generate money, so an attacker will

have more trouble convincing other ASes to route to

him instead of the true origin. In contrast, a larger

(T1) AS will be associated with high cost, so it should

be easier for an attacker to draw traffic away from the

bigger, ”more powerful” ASes. [10]

Data Collection

The first step was to collect all the data we could

from Ripe [6] and Routeviews [8] in the week lead-

ing up to the attack. We use BGP updates as our

primary data source.
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We also use UCLA’s Cyclops [1] data set as our

AS graph. This data was leveraged exclusively to

determine AS size (how many neighbors it has).

Finally, we use the Routing Report [7] data to

determine prefix ownership. Another way we might

have done this was to look at BGP updates and rout-

ing tables to determine ownership.

Terminology

We use the following terms in this paper.

1. AS: Autonomous System

2. Attacking AS: AS9121 - the AS which launched

the prefix hijack

3. Origin AS: The AS who is the true origin (owner)

of a prefix which was hijacked by AS9121

4. Tricked AS (or victim AS): an AS who was rout-

ing to the attacking AS instead of the Origin

AS

5. Attacked prefix: A prefix not belonging to AS9121

which was announced by AS9121 on 12/24/2004.

Process and Results

Our first step was to try and discover the set of

attacked prefixes. To do this, we determined which

prefixes we saw leading to the attacking AS on 12/24

(about 105,000 total). Next, we simply subtracted

out every prefix which we saw going to the attacking

AS in the week leading up to the attack (only about

100 or so).

Our next step was to collect every BGP announce-

ment which included any of the attacked prefixes and

begin analysis. The first metric we looked at was

prefix vs number of tricked ASes (see Figure 1). See

appendix Figure 5 to see the same data split by ori-

gin size. The most striking thing about the figure

was not the shape of the graph, it was that for most

prefixes, our data we only observe 20 or less ASes be-

ing tricked. Even more striking, at the highest end

we only see about 150 ASes tricked, a highly unlikely

number considering the reported scale of the hijack.

Since we weren’t seeing nearly as many ASes as we

expected, we decided to extrapolate who else might

have been tricked using an AS graph[1]. We inflated

Figure 1: Histogram of Number of ASes

tricked (by prefix)

the number of tricked ASes using the following met-

ric: After generating the list of tricked ASes from the

BGP update data, we inspect the set of neighbors of

every AS and added any it to the tricked set if all

of its neighbors were also tricked. For example, any

stub with a single provider is classified as tricked if

its provider is tricked. We believe this to be a con-

servative metric, giving us a strict lower bound on

tricked ASes. Figure 2 shows the results. Note: we

see as many as 4000 ASes tricked in this graph. See

appendix Figures 7, 8 to see the results split up by

origin size.

Figure 2: Histogram of Number of ASes

tricked (by prefix, extrapolated)

As we didn’t see any clear trends by analyzing

the origin size, the next angle we tackled the problem

from was origin distance. See appendix Figures 10,

11 for the results. In summary, we discover that the

distance the origin is from the attacker appears to

have no affect on how widespread the attack is.

Finally, we tried one more method. We attempted

to quantify whether any particular AS being tricked

meant that the attack would be largely successful.

Figure 3 shows AS vs (number of routes that AS

shows up in / number of prefixes in group). Each

data point roughly represents how often a specific AS
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shows up in tricked routes, with prefixes aggregated

by the size of the tricked set. One possible bias in

the data is that ASes closer to the attacker are most

likely to show up in routes. So, Figure 4 shows the

same plot, but only includes ASes which are exactly

one hop from the attacker.

Figure 3: AS vs Number of Routes

Figure 4: AS vs Number of Routes (one hop)

Figure 4 says something interesting - if AS6762

was tricked, it is much more likely that many ASes

would be tricked as well.

See the appendix to see everything we tried to

analyze the data.

Conclusions

During the course of this study we looked at the

data from many angles. The evidence we provide in

this paper reveals very little. As a result, we are un-

able to prove or disprove the original hypothesis. We

believe we were unable to conclude anything not be-

cause nothing is there, but because of two obstructing

factors.

First, AS9121 is a large T2 AS with many con-

nections. Initially we thought this would help, as we

would have more data to look in to. However, we ob-

serve that this is not the case. We believe that we see

an effect mentioned in [10], that T2 ASes can launch

the most successful attacks. It is possible that this

effect eclipses the effect we hoped to see.

The second and more problematic factor is one

of vantage point. Our data comes from several ( 10-

12) collectors which listen to all the traffic they can

hear on a link between a pair of ASes. Obviously,

the internet graph is much larger than 12 edges, so

we aren’t able to see the lions share of updates that

travel the internet. Even worse, only the biggest ASes

actually advertise routes to prefixes - stub ASes (the

ones end users actually connect to) almost never ad-

vertise routes to IP addresses, unless they are the

origin. Thus, we will never know to where stub ASes

route without extrapolating - a technique which got

us somewhere, but not far enough.
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Appendix

In the following figures, AS sizes are split in one of two ways. If the graph refers to prefixes, then they

are grouped by Origin AS size (unless otherwise specified).

1. ALL : All ASes are included

2. SMALL : ASes with 20 or fewer neighbors

3. MED : ASes with 21 - 100 neighbors

4. BIG : ASes with more than 100 neighbors (but not a T1 AS)

5. T1: Tier 1 ASes (6461, 7018, 2686, 5623, 3549, 3356, 701, 702, 703, 2914, 3561, 1239, 6453, 209, 3561,

3320 , 2828, 6762, 3257, 1299, 12956, 6461, 1299)

OR

1. <20 : ASes with 20 or fewer neighbors

2. 20+ : ASes with 21 - 50 neighbors

3. 50+ : ASes with 50 - 100 neighbors

4. 100+ : ASes with 100 or more neighbors (but not T1)

5. T1: Tier 1 ASes (6461, 7018, 2686, 5623, 3549, 3356, 701, 702, 703, 2914, 3561, 1239, 6453, 209, 3561,

3320 , 2828, 6762, 3257, 1299, 12956, 6461, 1299)
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Prefixes versus Number of ASes Tricked (directly from data)

Figure 5

This section represents our first pass at analyzing the data - comparing each prefix versus the number of

ASes which were tricked during the day. This is a naive comparison, using only the ASes that we observed

on routes leading to the attacked AS.

Note the small number of ASes: in the dozens instead of the thousands as we expected to see. This lead us

to attempt to extrapolate which other ASes might have been tricked.
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Figure 6 - AS versus Number of Prefixes Fallen For (by size)

This plot shows AS versus total number of prefixes it was tricked on, the datasets were ordered from

greatest to least for comparison.

Note: the x-axis here is different for each line, every point on the line is a different AS. Interestingly, we

see here that the largest ASes appear to be tricked on the most routes. However, this graph is not entirely

convincing because of our vantage point. The biggest ASes send out the most updates, but a small stub AS

may change its route without letting anyone else know. This line of thinking led us to try and extrapolate

which other ASes may have been tricked.
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Prefixes versus Number of ASes Tricked (with extrapolated data)

Figure 7

These histograms are generated in the same manner as above, with one exception. We inflated the

number of attacked ASes by analyzing an AS graph from 2004. After generating the list of tricked ASes

from the BGP update data, we looked at all ASes and added any AS to the ’tricked’ set if all of its neighbors

were also tricked. For example, any stub with a single provider is classified as tricked if its provider is tricked.

We believe this is an extremely conservative metric, and that any numbers we see here are a lower bound.

Note: the number of ASes inflates significantly - even into the thousands.
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Figure 8 - zoomed to under 100

Here we zoom in on Figure 7 to 100 or less ASes tricked.

This graphic implies that most prefixes ended up tricking between 40 and 100 ASes. Based on the severity

of the attack, and that ”for a large number of Internet users, some chunks of the Internet were unreachable

for at least a few hours on the morning of December 24 last year” [11], we believe that our data doesn’t fully

represent the extent of the attack. We believe the reason for this phenomenon is the way in which the data

is collected. RIPE and Routeviews each host multiple ”collectors” next to as many ASes as will let them.

These collectors sit on one link between two ASes and records everything that goes back and forth on the

link. Unfortunately, there are not nearly as many collectors (on the scale of dozens) as there are links in

the internet (millions). While we can infer quite a bit about the routing going on in the internet from our

vantage point, it is clear to us that there are many pieces which are missing.
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Data Grouped by Origin Size

Figure 9 - Frequency

To generate these plots, we classify prefixes by the size of their origin.

This figure plots the distribution of the relative frequency of ASes which were tricked. For example, a

prefix falls into the .2 bucket if 20% of the ASes we observed on routes relating to that prefix went to the

attacker.

We draw two conclusions from these plots. First, it doesn’t matter how big the origin AS is, the distribution

looks roughly the same. Second, only a small fraction of ASes appear to fall for this attack.
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Data Grouped By Distance

Figure 10 - Histogram - AS vs Prefix by Origin Distance

These plots show the relative frequency distribution again, but with prefixes grouped differently - instead

of origin size we use attacker distance from origin.

The conclusions we draw here are the same as above, the distance doesn’t appear to affect the number of

ASes which are tricked.
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Figure 11 - AS versus Number of Prefixes Fallen For (by distance from origin)

This plot shows AS versus total number of prefixes it was tricked on, by distance from the origin AS.

While conclusions are difficult to draw based only on this graph, there is a clear trend - its most likely that

an AS will fall for an attack if its more than one hop away. This makes sense, ASes closer to the origin are

least likely to change routes, as their existing routes are already short.
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Figure 12 - AS versus Number of Prefixes Fallen For (by distance from attacker)

This plot shows AS versus total number of prefixes it was tricked on, by distance from the attacker AS.

Note: the x-axis here is different for each line, every point on the line is a different AS.

This graph sends a clear signal, ASes which were two hops from the attacker were most likely to fall for the

attack. We believe this is a meaningful result, although we are hesitant to make strong claims using only

this as evidence.
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Data Grouped By Number of Tricked ASes

Figure 13 - AS versus number of Routes

This figure represents AS versus number of mentions in tricked routes. For each AS we collected every

route it was mentioned in which led to the attacker (a tricked route). Each data point represents the number

of tricked routes a specific AS showed up on, aggregated by the size of the tricked AS set.For example, the

blue line represents the total number of times an AS was mentioned for all IP addresses which had at least

1000 or more ASes tricked (normalized by the number of IP addresses in the set). Our goal was to try and

quantify whether or not any specific AS was highly correlated with widespread adoption of a bad route.
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Figure 14 - AS versus number of Routes Zoomed

Here we see the same graph above, but zoomed in on the ASes which were most ’tricked’.

We can infer a relatively concrete observation from this graph: AS 6762 shows up in most routes - this is to

say that if AS6762 was tricked, it is more likely that other ASes would also be tricked. However, one source

of bias in this plot is that ASes closer to the attacking AS, AS9121, are more likely to show up on routes.

This observation led us to graph the same data but only include ASes which are one hop from 9121.

Page 16 of 18



Adam Udi

Figure 15 - AS versus number of Routes (one hop)

This figure shows the same data from above, but only includes the 7 ASes which are exactly one hop

from AS9121

Note that we observe roughly the same effect here, AS6762 is highest correlated with bad routes.
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