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ABSTRACT

Modern trading and cluster applications require microsecond laten-
cies and almost no losses in data centers. This paper introduces an
algorithm called FineComb that can estimate fine-grain end-to-end
loss and latency measurements between edge routers in these data
center networks. Such a mechanism can allow managers to dis-
tinguish between latencies and loss singularities caused by servers
and those caused by the network. Compared to prior work, such as
Lossy Difference Aggregator (LDA), that focused on switch-level
latency measurements, the requirement of end-to-end latency mea-
surements introduces the challenge of reordering that occurs com-
monly in IP networks due to churn. The problem is even more acute
in switches across data center networks that employ multipath rout-
ing algorithms to exploit the inherent path diversity. Without proper
care, a loss estimation algorithm can confound loss and reordering;
further, any attempt to aggregate delay estimates in the presence
of reordering results in severe errors. FineComb deals with these
problems using order-agnostic packet digests and a simple new idea
we call stash recovery. Our evaluation demonstrates that FineComb
can provide orders of magnitude better accuracy in loss and delay
estimates in the presence of reordering compared to LDA.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network manage-
ment

General Terms

Measurement, algorithms

Keywords

Passive measurement, latency, packet loss, reordering

1. INTRODUCTION
Recent trends in data centers have led to requirements for mi-

crosecond latencies. Fundamentally, this is because programs re-
spond to network messages, not humans. For example, an auto-
mated trading program can buy millions of shares cheaply with
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faster access to a low stock price; similarly, a cluster application can
execute 1000’s more instructions if latencies are trimmed by 100
µsecs. Further, all these applications are deployed in data centers
that span a small geographical area and where links and switches
are carefully chosen to have minimal latencies (e.g., [30]). It is un-
likely that this trend toward low latency networks is going to stop
any time soon; indeed, analysts are already discussing applications
that would require even more stringent latency guarantees in the
order of nanoseconds [6].

Despite the most careful selection of network components, there
is no easy way for network operators to guarantee that conges-
tion in switches never causes latencies to increase beyond accept-
able thresholds. First, there are no traffic models for different ap-
plications that allow a manager to predict which applications can
cause problems. Second, new applications must be deployed and
their behavior is often unforeseen. For example, the effects of
barrier-synchronized workloads overflowing switch buffers leading
to packet loss and high latency was recently discovered as the well-
known “in-cast” problem [29]. While solutions and work-arounds
may often exist for specific problems, network operators need to
perform latency measurements on a continuous basis to detect and
fix such problems, either by re-routing the offending application or
upgrading links to a higher capacity, or by some other means.

At a minimum, there are two types of measurements network
operators typically need. First, they need end-to-end measurements
in the network to check whether end-to-end latencies and losses are
within satisfactory limits for a given customer or an application that
are often specified in the form of service-level agreements (SLAs).
Second, if a customer or application experiences bad performance
(delay spikes or packet losses), it is important to quickly diagnose
the root cause of the problem; this means obtaining switch-level

measurements to localize the offending switch along the path. In
many respects, these measurement requirements are similar to what
ISPs face; the key difference, however, is that end-to-end delays in
data centers are in the order of a few microseconds compared to
milliseconds in ISP networks. Thus, standard approach using end-
to-end active probes and tomography (for obtaining hop-level mea-
surements) are not effective due to their huge probe requirements
(e.g., ∼10,000 per second [16]).

Recognizing these challenges, researchers have already begun to
propose scalable data structures such as LDA [16] for fine-grained
switch-level latency measurements. Unfortunately, detecting end-
to-end latency spikes by using LDA at the switch-level is impracti-
cal, as individual switch delays are not easily summable (see §2.3).
Besides, this approach incurs significant deployment cost as each
switch needs to be equipped with an LDA. Therefore, scalably mea-
suring end-to-end latency is still a requirement not satisfied with
existing solutions such as LDA.
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Figure 1: Low end-to-end latency applications.

Depending on the particular scenario, the two end points be-
tween which latency and loss measurements are required vary. For
example, in a market data network architecture [2] (shown in Fig-
ure 1(a)), data feeds from content providers (e.g., stock exchanges)
are often provided to individual brokerages using financial service
providers (FSPs). In this scenario, the FSPs may want to pro-
vide a latency SLA of a few microseconds through their network
from the content provider to the brokerage; hence measurements
between these edges are crucial. In a typical data center network
running low-latency applications, there are clusters of servers in-
terconnected with storage servers, tape arrays and other such in-
frastructure [1] (as shown in Figure 1(b)). In such cases, one could
easily imagine stringent latency requirements between server and
storage cluster, or across two different server rack switches, or even
from an edge router to another edge router within a multi-rooted
tree topology (e.g., a fat-tree [7]).
In this paper, we consider a passive approach for measuring end-

to-end delays. Instead of injecting active probes for measurement,
we focus on measuring the latencies of actual packets that travel
between the endpoints. This approach results in two immediate
benefits. First, it does not interfere with regular traffic. Second,
SLA violations apply to actual packets; so, measuring actual packet
latencies will reflect the SLA violations better than using artificial
probes. At first glance, this problem then reduces to the same ab-
straction as conducting latency measurements within a switch, such
as the approach taken by LDA in [16], where they measure actual
packet latencies across a switch. The key difference, however, lies
in the fact that LDA crucially assumes FIFO ordering (i.e., in-order
arrival) of packets between the two measurement end-points—an
assumption that may not hold well in our setting.
In our end-to-end setting, we need to allow for the presence

of packet reordering across the two measurement endpoints. Be-
cause multiple flows are present between the two, and maintain-
ing per-flow state (for a large number of flows) is costly, our goal
is to obtain aggregate measurements of all packets across flows.
Thus, while switch vendors typically ensure that there is no reorder-
ing across flows between two interfaces (otherwise, TCP may not
work well), no such guarantee is provided by an IP network across
routers that are not directly connected. In fact, many commercial
data centers rely on exploiting the path diversity inherently present
within data centers using ECMP (equal cost multipath) where flows

are split across multiple paths. Of course, while ECMP still en-
sures packets within a flow are not reordered, reordering commonly
occurs across flows. In addition, churn in the network (e.g., link
failures) can cause temporary routing loops that may introduce re-
ordering by causing some packets to arrive faster than the others.

Furthermore, while our immediate motivation is end-to-end re-
ordering that can happen in IP networks, we believe it is very likely
that future switches will allow reordering within switches for im-
proved load-balancing. Anecdotal evidence suggests that many
switch vendors (e.g., Cisco) have internal settings by which pack-
ets can be load-balanced across multiple equal paths using packet
spraying (which can reorder packets as opposed to flow hashing
which preserves order). The reason these settings are never used
is because standard TCP implementations are perceived to interact
poorly with reordering, especially the interaction with fast retrans-
mit and congestion control that can cause window sizes to shrink
unduly by conflating loss and misordering. However, a number of
researchers have been looking at creating reordering-tolerant TCP,
at least for use in data centers; for example, Multipath-TCP [23]
may be a point of departure for such ideas. While these ideas ap-
pear radical, packet spraying with reordering-tolerant TCP at the
edges can greatly improve the utilization and costs of future data
center networks. If these ideas gain currency, as we believe they
will, making scalable latency measurement resilient to reordering
will be essential not just end-to-end, but also within switches.

The state-of-the-art solution LDA [16], which assumes FIFO
packet ordering, will not work well in these environments, as it can
confuse reordered packets with lost packets. To address this prob-
lem, this paper describes an efficient data structure called FineComb
that is robust to reordering, and can be easily implemented at the
network edges to spot microscopic delay variations (in the order
of microseconds) and losses (10s per million) with small amount
of state and processing costs. We evaluate FineComb extensively
both analytically, and via simulation on various delay models and
real router traces (with synthetic workloads); our experiments in-
dicate FineComb can achieve 10x lower relative error for latency
estimates and 200x lower relative error for loss estimates compared
to LDA, even under small amounts of reordering.

2. PRELIMINARIES
We describe the basic measurement goals, constraints and as-

sumptions in our problem setting, and explain a set of existing so-
lutions that do not work well for our problem.

2.1 Measurement Goals
Figure 1 shows two canonical low-latency network scenarios. In

both kinds of scenarios, our goal is to measure the aggregate per-
formance between two edge routers, say E1 and E2 in Figure 1.
We divide time into intervals (a few seconds) for which we are in-
terested in obtaining performance measures. As a first step, we
consider three basic measures across all packets: average latency,
variance, and loss rate.

For most of this paper, we assume hardware implementations to
keep up with high line rates; however, we briefly discuss software
implementations. Thus our implementations need to satisfy the fol-
lowing constraints. We require that our data structure scale well in
terms of control bandwidth, processing time, and storage. This is
especially important as these metrics must be measured for each
destination edge router. Of the three measures, storage may possi-
bly be increased in a software implementation, but processing time
and control bandwidth need to be kept a minimum. Further, as we
mentioned before, the solution should be robust to packet reorder-
ing that may occur in these environments.



2.2 Assumptions
Wemake three key assumptions in our work and justify why they

hold well in our setting.
Time synchronization. We assume that the two edge routers E1

and E2 can be time-synchronized within µseconds, for example,
using GPS clocks that many ISPs have already begun to deploy.
This is a general requirement for any one-way delay measurement
scheme, and in fact is employed by existing edge monitoring solu-
tion such as Corvil [3].
Packet filtering. Packets that arrive at a given ingress edge router

will potentially exit via different destination edge routers. We as-
sume some simple way to determine which packets are destined to
or from a particular edge router, for example by prefix matching.
One could easily construct a simple layer-4 packet filter (using IPs
and ports) that clearly specifies the set of packets that traverse from
E1 to E2 so that both E1 and E2 could precisely identify the set
of packets over which the metrics need to be computed.
No header changes. Measuring latencies would be easy if we

could embed a timestamp within each packet. However, IP pack-
ets do not have a timestamp field and TCP timestamp options are
restricted to carrying true end-to-end delays where ends are the ac-
tual sockets running on the host machines. Adding a new field is
unlikely to happen as it would require intrusive changes to a large
number of components in the data path of switches.

2.3 Issues with earlier solutions
Active probes: Active probes are insufficient for three reasons:

First, to measure microsecond latencies, a large number of active
probes need to be injected as prior work [16] indicated. Second,
active probes do not measure the true delay experienced by regu-
lar data packets. Third, active probes may take one among many
different paths that may potentially exist between the pairs of edge
routers. See §5 for a quantitative argument.
Storing timestamps locally: An alternative is to allow the sender

and receiver edge monitors to store packet digests and timestamps
locally, and only to exchange these timestamps at the end of a mea-
surement interval. However, the storage and communication over-
head for this scheme is extremely high. 10 Gigabit capacity at 10%
utilization between two edge routers translates to roughly 1 million
packets on a per second basis, assuming an average packet of size
125 bytes. One could maintain timestamps only for a small sample
of packets; but, as we show in §5.3, this reduces bandwidth at the
cost of accuracy. While we are not certain, it appears that vendors
such as Corvil [3] and NetScout [5] use variants of this approach.
The lack of scalability may be indicated by the fact that the 10G
Corvil solution [3] costs 90,000 U.K pounds.1

LDA: The LDA [16], a recent proposal for measuring fine grain
delays, suggests a way of greatly increasing the number of latency
samples using aggregation. LDA requires the sender to send a syn-
chronization message at the start of every measurement interval that
is injected in the same stream as the regular data packets. A crucial

assumption that makes LDA work is that the synchronization mes-
sages and packets are delivered in order at the receiver so that the
sender and receiver compute delay estimates over the same set of
packets; this FIFO assumption makes LDA unsuitable for our set-
ting. As we show in §5.3, even a few reordered packets can cause
LDA to incur a large error in both loss and latency estimation.
Why Per-Path LDA does not work ? The obvious fix to LDA

is to extend it to operate on a per-path basis. Unfortunately, neither
senders nor receivers know which path a given flow will take and

1Of course, Corvil solution may enable more detailed analysis, but
a significant cost comes from packet capture, processing and stor-
age overheads.
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Figure 2: Four types of reordering that can occur.

so, separation by path is difficult. While we can exploit the fact that
ECMP does not reorder TCP flows, LDA for potentially millions of
separate TCP flows would pose a scaling problem. Sampling a suf-
ficiently large number of flows to ensure (with high probability)
that at least one flow is sampled per path is possible. However, be-
sides the extra multiplicative factor in memory (to cover the number
of paths and the extra factor to ensure high probability coverage),
the sampling scheme has a fatal flaw. The sampled flows may have
too few packets and thus the number of LDA samples can be too
small to provide sufficient accuracy. Increasing the number of sam-
ples will require either more memory (by sampling more flows) or
assuming very skewed distribution of flows (and mechanisms to
capture such flows).

To address these shortcomings, we propose a new data structure
called FineComb, that only keeps storage per destination switch
and yet has very high sample efficiency (if no loss, every packet
from a source to a destination is included in latency calculation).

3. FINECOMB
FineComb assumes a stream of packets going from a sender Snd

(e.g., E1 in Figure 1) to a receiver Rcv (e.g., E2). Time is divided
into measurement intervals that are marked by interval start and
end messages that are transmitted from Snd to Rcv. FineComb,
like LDA, starts with the following simple idea: Suppose Snd and
Rcv agree on a set of packets in the stream over which they want
to measure delay. Then, they could compute the average delay by
each locally maintaining a sum of packet timestamps (a timestamp
accumulator) and a count of the number of packets in the interval
(a counter). The average delay is then the difference between the
timestamp accumulator at Snd and timestamp accumulator atRcv,
divided by the number of packets in the counter. But how should
Snd and Rcv agree on the set of packets, in the presence of packet
loss and reordering, without marking or modifying packets? This
is exactly the challenge addressed by FineComb.

3.1 The challenge of reordering
In FineComb, Snd and Rcv agree upon an interval of T packets

that they would like to measure delays over. To do this, Sndmarks
off intervals by sending a special ‘sync’ control message each time
it sends T packets to Rcv. (Note that Snd could choose to mark
the intervals based on time as well, but we define interval as T
packets for ease of exposition.) All packets ‘bookended’ by a pair
of sync messages belong in a single interval. For convenience, we
shall refer to the first sync message in an interval as an interval-start
message, and the end sync message as an interval-end message.

Figure 2 shows packets arriving out of order when traversing
the network. The ordering of packets that are both transmitted
and received within the interval end ‘bookends’ does not affect
FineComb (or LDA), since the timestamp accumulators and coun-
ters are order-agnostic (addition is commutative). However, we
must deal with the following type of problematic reordering, namely
packets that start out in one interval at Snd, drift into an another



interval at Rcv. This situation is problematic since the timestamp
accumulators at Snd and Rcv may be computed based on two dif-
ferent sets of packets, and this difference can affect the delay esti-
mates significantly.
Specifically, there are four types of reordering (as shown at the

bottom of Figure 2) that can be problematic. First, packets sent at
the end of interval u − 1 can be routed on a high latency path and
hence arrive at Rcv after the interval-start message. This can pol-
lute interval u with extra packets; we call such packets post-start
packets. Second, packets from the start of interval u can be routed
on a low latency path and hence arrive at Rcv before the interval-
start message for interval u, so these pre-start packets from inter-
val u are effectively missing. Similar problematic reordering could
also occur around the end of the interval (analogously referred to as
post-end and pre-end packets). We say ρ = R/T is the reordering
rate for the interval u, where R is the total number of reordered
packets (sum of all the four types).
It is crucial to note that R is almost always much smaller than

T , the number of packets sent in an interval, even if there is per-
sistent reordering. This is because problematic reordering is con-
fined to the reordering that occurs relative to the interval-start and
interval-end messages. For example, suppose the interval-start and
end packets are routed on one path (high or low latency) and the
rest of the packets are sent on the other path. Thus R ≤ 2CL,
where C is the transmission speed and L is the maximum differ-
ence in latencies of paths. For example, if C is 10 Gbps, L = 100
µsecs and an average packet size is 1,000 bits, R is around 2,000
packets. By contrast, T , the number of packets sent in the interval,
may be as large as 5 million.
In addition to reordering, packets can also get dropped in the

network, which can cause the Snd and Rcv state to become in-
consistent. We assume at most βT packets from interval u will be
dropped as they traverse the network from Snd to Rcv, where β is
the loss rate for the interval u.
Now, if we compare the two streams of packets that belong to

an interval u at the Snd and Rcv sides, the difference between
them is at most βT + R packets. If we could somehow correct
for these βT + R bad packets that prevent the Snd and Rcv from
agreeing, we could make use of the simple timestamp accumulator
and counter idea described above.

3.2 Key ideas
As in LDA, FineComb keeps an array ofM timestamp accumu-

lators and counters at the sender and receiver; a hash function com-
puted over packet contents is used to map each incoming packet to
a bucket containing a (timestamp accumulator, counter) pair. If the
sender and receiver use the same hash function, then they will map
packets to buckets in an identical fashion. We say that a bucket

is useful, if it contains the same set of packets at both the sender
and receiver, and thus can be used to compute the delay estimate.
Notice that a bucket is useful as long as none of the βT + R bad
packets hash to that bucket. FineComb corrects for the βT +R bad
packets using the following three ideas.

1) Incremental stream digests: With reordering, we cannot sim-
ply compare counters at sender and receiver and conclude that a
bucket is useful; this follows from the fact that a dropped packet
that hashes into a bucket can be replaced by a (different) misor-
dered packet from another interval. Even one such event can throw
off the delay estimate considerably. The misordered packet may
have been sent just before the start of interval u but may hash into
the same bucket as a lost packet sent towards the end of interval u.
Thus the induced error can be as large as the size of a measurement
interval (say 1 second).

To detect such cases, we augment the counter in each bucket with
what we call an incremental stream digest. An incremental stream
digest on a stream of packets pkt1, ..., pktt is computed as follows:

H(pkt1)⊙H(pkt2)⊙ ...⊙H(pktt) (1)

where ⊙ is an invertible commutative operation, and H is a hash
function. We refer to H(pktt) as a digest. Our incremental packet
digests are similar to the incremental collision-free hash functions
proposed in cryptography [9]. However, since we are not operating
in an adversarial setting, we can let H be a simpler hash function
such as BOB [14] or H3 [25], and⊙ as XOR; we do not require the
full power of a cryptographic hash function such as SHA-1.

The incremental stream digest has three useful properties. First,
two streams containing different packets will hash to different val-
ues with high probability while packets may cancel each other out
in an adversary setting. Second, because ⊙ is commutative, two
streams containing the same set of packets in different order still
hash to the same value. Thus we can determine if a bucket is useful
by verifying that the incremental stream digests match at the sender
and receiver. Finally, we can easily add or subtract packets from the
incremental stream digest by computing the XORs of their digests
with the incremental stream digest. This third property is the basis
of stash recovery which we describe next.

2) Stash recovery: By a stash, we simply mean that we keep a
copy of the timestamp, the bucket index, and incremental stream
digest of a small number of packets that arrive before and after the
sync messages that delimit an interval. As we have seen,R is small
(say 1,000). Since these are the most likely messages to have been
reordered, stash recovery simply attempts to add or subtract the
incremental stream digest of each stashed message from the corre-
sponding bucket into which that stashed message hashes. Note that
if the stash were as big as T , we would be back to the naive algo-
rithm of storing all local timsetamps. Thus the fact that R is much
smaller than T is crucial to the efficiency of stash recovery.

To show a concrete example of stash recovery, suppose a post-
start packet P from interval u− 1 is hashed into the 20th bucket in
interval u, making it useless. Assuming P is stored in the stash at
the receiver because it arrived shortly after the interval-start mes-
sage, stash recovery will look up the bucket 20, and try to subtract
the incremental stream digest for P from the incremental stream
digest at the receiver. If the resulting incremental stream digest
matches the incremental stream digest of bucket 20 at the sender,
bucket 20 can be made useful again by subtracting the timestamp of
P from the receiver timestamp sum. While we have lost 1 sample
from the bucket, we have saved perhaps 10,000 remaining samples
that aggregate into bucket 20 that would have been lost otherwise.

Given memory S, however, it is not clear whether to allocate
more stash (and hence, to recover from more reordered packets) or
to use more buckets (and hence, to be more resilient to loss); we
will investigate this tradeoff analytically and experimentally.

3) Packet sampling: In many practical situations, the number of
bad packets βT + R is going to be far greater than the number
of buckets M . Given packets are randomly hashed to buckets, that
means, that all theM buckets could become useless. Even if some-
how, we manage to recover all the reordered packets in a given in-
terval, the number of lost packets alone βT could be bigger than
M . In FineComb, we sample packets at rate p, so that the expected
number of bad packets that can cause buckets to become useless
drops to p(βT + R). On the one hand, selecting a high value of p
will mean that the number of bad packets, and in turn useless buck-
ets, will increase. On the other hand, selecting a low value of p will
make each bucket aggregate fewer samples. Determining the opti-
mal value of p that maximizes the number of useful samples over
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which measurements are computed is a key question that our later
analysis will address.

3.3 Basic FineComb without a stash
We start by describing FineCombwithout a stash. Basic FineComb

(as shown in Figure 3) uses M buckets, each containing a times-
tamp accumulator, counter, and incremental stream digest. Each
packet is sampled with probability p, and then distributed to one
of the M buckets by a hash function. The pseudocode outlined il-
lustrates the steps involved in updating FineComb state at both the
sender and receiver for every sampled packet. Let TS[i] represent
the timestamp accumulator, C[i] the packet counter, and D[i] the
incremental stream digest for ith bucket and M represent the total
number of buckets.

1: procedure UPDATE STATE(pkt, τ )
2: D ← compute_hash(pkt) → Digest
3: i← D mod M
4: TS[i]← TS[i] + τ , C[i]← C[i] + 1
5: D[i]← D[i]⊙D →⊙ could be XOR
6: end procedure

After sending T packets (or, alternately after a fixed amount of
time), the sender sends its set of buckets to the receiver in the sync
message. When the receiver receives the sync message, it uses the
sender’s buckets along with its local buckets to compute the average
latency and loss as follows:

1) Estimating average latency: The receiver first determines the
set of useful buckets by checking which buckets have matching
incremental stream digests at sender and receiver. For all these
‘valid’ buckets, the receiver computes the difference between the
receiver’s and sender’s timestamp accumulator, sums them together
and divides it by the sum of all packet counters in these valid buck-
ets. The steps are outlined below.

1: N ← 0, D ← 0
2: for i=1, M do

3: if Cs[i] = Cr[i] and Ds[i] = Dr[i] then
4: D ← D + (TSr[i]− TSs[i]), N ← N + Cr[i]
5: end if

6: end for

7: Average delay = D/N

The main difference compared to LDA’s delay estimation algo-
rithm is the requirement of an extra check for a match of the sender

and receiver packet digests; just matching the packet counters alone
is not sufficient.

2) Estimating standard deviation: We compute standard devia-
tion in a similar fashion using a technique introduced in [8]. Con-
ceptually, we could maintain an additional counter to which each
sampled packet’s timestamp is added or subtracted with equal prob-
ability 1/2. Note that we need both the sender and receiver to
agree on the same decision (of adding or subtracting) consistently,
that can easily be achieved if the decision is based on the packet
hash itself (e.g., 1 or 0 in first bit position could indicate addition
or subtraction). Subtracting the sender and receiver counter and
then squaring leads to an unbiased estimator for delay variance [8].
Rather than wasting memory with an extra counter per bucket to
measure variance, we use a trick used in LDA where existing delay
buckets are paired and subtracted to simulate the adding or sub-
tracting with equal probability.

3) Loss measurement: Loss measurement becomes difficult in the
presence of reordering. Whereas the LDA operated in a setting
where there was no reordering, so that a single counter at the sender
and receiver suffices, FineComb must try to disentangle reordering
from real loss. To see why this is hard, consider what happens
at the end of an interval for a particular bucket if the sender-side
counter is smaller than the receiver-side counter. When there is no
reordering (as in the scenarios the LDA was designed for), this is
impossible. However, it can easily happen if a few packets drift
from one interval to the previous interval (i.e. pre-start packets that
overtake the interval-start message). These packets are not lost:
they are simply accounted for in the bucket of the previous interval.

We use stash recovery (detailed description next) to “clean up”
the effects of reordering wherever possible. If all effects of re-
ordering are removed, it is easy to see that the following simple
algorithm does the job.

1: N ← 0, L← 0
2: for i=1, M do

3: if Cs[i] ≥ Cr[i] then
4: L← L+ (Cs[i]− Cr[i]), N ← N + Cs[i]
5: end if

6: end for

7: loss rate = L/N

Note that the algorithm still checks whether a sender counter is
greater than the corresponding receiver counter. This is because
stash recovery can be imperfect. Further, if a lost packet and re-
ordered packet that is stored in the stash are both hashed to the
same bin, stash recovery will fail, because the lost packet has made
the bucket ‘useless’.

In more detail, assume that before stash recovery Cs[i] for some
bucket i was less than Cr[i] because of two post-start messages
P1 and P2 that were hashed into bucket i that were not counted
in this interval. Suppose further that a third packet P3 that hashes
into bucket i is lost. Then even if P1 and P2 are in the stash at
the receiver, there is no way for the receiver to correct bucket i
because, by definition, it does not have the digest for P3 which is
lost. Thus bucket i is not just useless from the point of view of
calculating delay, the algorithm cannot tell apart a loss of 1 packet
and a reordering of 2 packets in bucket i (as in the example) from a
loss of 2 and reordering of 3 packets (say). Thus, the loss estimation
algorithm above will ignore bucket i, and thus lose a data point for
loss estimation.

Since we are trying to measure small losses, this is potentially se-
rious. However, with careful sizing of the sampling probability (as
we show later in §5) the probability of both a lost, and a reordered
packet hashing to the same bucket is even smaller.



3.4 Managing the stash
We now describe the details of adding and recovering a stash.

Recall that the stash stores individual timestamps and digests for
the packets that are most likely to be problematically reordered.
We assume that only the receiver keeps a stash, that consists of W
entries. One nice feature of not keeping a stash at the sender is that
if we grow the stash size (especially in a DRAM implementation
of the stash), the control bandwidth does not grow with stash size:
the sender only needs to send its buckets to the receiver to compute
estimates. The stash is broken up into four substashes (pre-start,
post-start, pre-end, post-end stash) of size w, where 4w = W ,
corresponding to the four types of problematic reordering.

Populating the substashes. Even though the receiver does not
know when interval-start message will arrive, the receiver can still
populate the pre-start substash as follows. The receiver stores the
digest and timestamps in a cyclic queue of length w, such that a
new sampled packet causes the oldest packet in the queue to be
evicted if the queue is full. The receiver stops populating the stash
when the interval-start message arrives. Similarly, to populate the
post-start stash, the receiver keeps a queue of length w that starts
being populated once the interval-start message is received, and
stops populating when it is full. The other two stashes are managed
similarly, except they wait for interval-end instead of interval-start.

Stash recovery. For each useless bucket i, the receiver considers
all the entries (T) of the four substashes (S) that map to that bucket.
The receiver then considers all subsets (Z) of the stash entries that
correspond to this bucket. For each subset of stash entries, the re-
ceiver XORs the digests of the entries with the bucket’s incremental
stream digest. If the sender’s and receiver’s incremental stream di-
gest match for this subset of stash entries, then the receiver can re-
cover that bucket by subtracting (if the packet is from the post-start
stash or pre-end stash), or adding (if the packet is from the pre-
start stash or post-end stash) the timestamps of those stash entries
from/to the bucket’s timestamp accumulator.

1: T← build_stash_entry_set_for_bucket(i, S)
2: for all Z ⊂ T do

3: Dr ← Dr[i], TSr ← TSr[i], Cr ← Cr[i]
4: for all (D, τ, k) ∈ Z do

5: if k = pre-start or k = post-end then
6: Dr ← Dr ⊙D, TSr ← TSr + τ , Cr ← Cr + 1
7: else

8: Dr ← Dr ⊙D, TSr ← TSr − τ , Cr ← Cr − 1
9: end if

10: end for

11: if Ds[i] = Dr then

12: Dr[i]← Dr , TSr[i]← TSr , Cr[i]← Cr , return
13: end if

14: end for

Stash recovery appears to take exponential time because it may
seem that one has to consider all possible combinations (2W ) in
the worst case when W stash packets hash to a single bucket. For-
tunately, stash recovery is much faster because, with high prob-
ability, only O(W/M) stash packets can hash together into the
same bucket. Thus, the running time of the decoding algorithm
is O(M2W/M ), and since the typically stash size W < M num-
ber of buckets, it follows that stash recovery time is approximately
linear inM .
Thus the algorithms to calculate loss and latency are exactly as

before for basic FineComb except that we preface them by doing
stash recovery to potentially increase the number of useful buckets.
A stash should help improve latency estimates slightly (by increas-
ing the number of useful buckets), but will be much more critical

in obtaining reasonable loss estimates (allowing loss to be distin-
guished from reordering).

3.5 Handling unknown loss and reordering rates
If we know the exact reordering rate ρ and loss rate β a priori,

our theoretical results (shown in §4) allow us to configure the sam-
pling rate optimally. In practice, however, we do not know these
values a priori and may change over time. LDA also faces a simi-
lar problem with loss rate not being known, and hence it maintains
multiple banks each tuned to different loss rates. We can use a
similar trick in FineComb as well, except, we need to consider the
operating ranges of two different parameters β and ρ. We use mul-
tiple banks optimized for the four operating regions: (βmin, ρmin),
(βmin, ρmax), (βmax, ρmin), and (βmax, ρmax). Low values of
βmin and ρmin, mean that the sampling rate chosen could be high,
which in turn means the estimates are good. Once the loss rate or
reordering rate becomes high, this bank tuned for low loss rates
may produce no valid delay or loss estimates.

In FineComb, we use four banks, each using one fifth of the total
storage. We compute the optimal sampling probabilities and stash
size for each operating region independently and partition resources
statically. Each bank has different number of buckets from each
other. We then make the number of buckets of all banks equal using
the remaining one fifth of the total storage unused.

For estimating delay, we take maximum count among counts
from four buckets in the same row (same index) across banks and
its corresponding timestamp sum, and add each values with a total
count and a total timestamp sum, respectively. We repeat this step
for all rows. This procedure provides us with maximum total num-
ber of samples. For loss estimation, we pick the loss rate of a bank
whose estimate is closest to what it was tuned for. Intuitively, this
heuristic uses the observation that rate estimates are typically most
accurate when they are closest to what the bank is tuned for.

4. SETTING PARAMETERS
In the following analysis, our goal is to choose a sampling rate

p, and stash size W that will maximize the expected number of
delay samples that we extract from FineComb. That is, we would
like to maximize the expected number of packets that are hashed to
useful buckets, so that we can estimate delay as accurately as pos-
sible. The following analysis assumes that FineComb uses a single
sampling rate p, and that the number of entries in the stash and the
number of buckets in FineComb M is fixed, so that total storage is
S = M+W .2 Note that while we have formally proved the results
in this section, for brevity, we only state the main theorems, results,
and proof sketches. Additional proofs appear in [19].

4.1 Expected number of useful samples
Since our goal is to maximize E[X], the expected number of

useful samples we can extract from FineComb, our first step will
be to determine E[X].

Good and bad packets. Let us focus on interval u, and say a
packet sent by the sender in interval u is ‘good’ if it was received
by the receiver in with the boundaries of interval u (see §3.1 or
Figure 2), otherwise ‘bad’. Recalling that β is the packet loss rate
on the path, T is the number of packets the sender sends in an
interval, the number of good packets isG ≤ (1−β)T with equality
when R = 0, so that there are no packets that are problematically
reordered. Packets can become bad due to loss, or problematic

2We could instead fix the total storage of the system, so that S =
2M +W , since the sender has no stashes and thus requires storage
M , while the receive requires M +W storage.



reordering. The number of dropped and reordered packets in an
interval is βT and R = ρT respectively.

Conditional expectation of useful samples. Let L be the number
of bad packets that are sampled but not corrected during stash re-
covery. We can prove that the expected number of useful samples
is

E[X|L] = E[Good pkts per bucket]E[No. of useful buckets]

= p
M
G · (M − E[K|L])

= pG(1− 1
M
)L (2)

where, following [13], we let K be a random variable that denotes
the number of ‘useless’ buckets in the LDA, that results from the L
sampled bad packets hashing to buckets of the LDA. In [13], they
show that K is distributed as

Pr[K = k|L] = M !

(M − k)!

S(L, k)

ML
(3)

where S(L, k) is a Stirling number of the Second Kind. Using (3),
we obtain

E[K|L] = M(1− (1− 1
M
)L)

so that (2) follows by substitution.

Sampled uncorrected bad packets, L. We have βT dropped
packets, and R reordered packets; together, this gives us βT + R
bad packets, that we sample with rate p. We shall assume that ev-
ery packet that is stored in the stash is an out-of-order packet, so the
stashes will allow us to correct for exactlyW sampled out-of-order
packets. (We make this assumption because it is hard to predict the
distribution of problematically-reordered packets. Indeed, in prac-
tice we expect the stash to store some packets that arrived correctly
in an interval (these good packets waste space in the stash), as well
as some out-of-order packets. Thus, our analysis will size the stash
under the assumption that the stash does the ‘best it can’ to correct
for reordering.) Thus, the expected number of bad packets that are
sampled and not corrected is

E[L] = βpT +max{0, pR−W} (4)

Working with the conditional expectation. Because the distri-
bution of L is quite complicated, in this section, we work with
the conditional expectation E [X|L = E[L]], which is obtained by
plugging (4) into (2). By numerically plotting equations, we ob-
served the results obtained using E[X|L = E[L]] are quite close
to results obtained from the unconditional distribution E[X].

4.2 Optimizing stash W for fixed sampling p

First, we would like to optimize the ratio between the LDA size
and the stash size to maximize the expected number of useful sam-
ples E[X], using the fact that S = M + W where S is fixed and
sampling rate p is fixed. To do this, we plug (4) into (2) and use the
fact that S = M +W . We observe that there are two regimes for
which the stash sizeW maximizes E[X|L = E[L]]:

W ≈
{

pR when S ≥ p(R+ βT )
0 otherwise

(5)

This holds even when we work withE[X] (rather than justE[X|L =
E[L]]). Details can be found in [19].
Notice that (5) suggests that when the total storage S is very

small, i.e. less than the number of bad sampled packets, all the stor-
age should be dedicated to the buckets of FineComb (i.e., W=0).
On the other hand, when we have a decent amount of storage, the
analysis shows that we should keep stashes large enough to correct

for the expected number of out-of-order sampled packets, pR. This
makes sense, since a single bad packet can cause an entire bucket to
become useless, so that about p

M
G ‘good’ packets become useless.

Hence, it follows that correcting a single discrepancy in FineComb
due to a bad packet is highly effective, and further that we should
dedicate a large amount of storage to the stash.

4.3 Optimizing sampling rate p.

No stash. Per (5) we now consider the case where we have no stash
(i.e., W = 0). We can show that the optimal sampling rate is

p∗∗ = min

{

S

R+ βT
, 1

}

(6)

To obtain (6), we use the fact that E[X|W = 0] is easy to obtain
in closed form from (2) by observing that L is a binomial random
variable with mean p(βT + R). Approximating L as a Poisson
random variable, and puttingM = S, using (2) we have that

E[X|W = 0] = E[X|L] Pr[L = ℓ]

=
∞
∑

ℓ=0

pG(1− 1
S
)ℓ · e−p(βT+R) p(βT+R)ℓ

ℓ!

= pGe−p(R+βT )/S
(7)

The claim follows by taking the derivative of E[X|W = 0] and
setting it equal to zero.

Stash. Now, (5) tells us that when we have a stash, its optimal size
is W ∗ = pR. We can show that when we use this value for the
stash, the optimal sampling rate is approximately

p∗ = min

{

S

2ρ2T

(

2ρ+ β −
√

4ρβ + β2
)

, 1

}

(8)

where ρ = R/T . We obtained this value by setting W ∗ = pR
and M = S −W ∗ to obtain E[X|L = E[L],W = W ∗] from
(2) and (4). We then find p∗ as the value that maximizes E[X|L =
E[L],W = W ∗] by taking its derivative and setting it equal to
zero. In [19], we show this value of p∗ also (approximately) maxi-
mizes E[X|W = W ∗].

To stash, or not to stash. The last issue we need to settle is whether
it is better to use a stash or not. Plugging our two operating points
(p∗∗, W = 0) and (p∗, W = p∗R) into the equation for E[X], we
find that the expected number of samples is maximized when we
use a stash.

A note on our approach. This analysis first fixed the sampling
rate p and then optimized stash size W ; then optimal value for W
was used to solve for the optimal sampling rate p. It would have
been better to jointly optimize E[X] for W and p; however, the
complexity of E[X] made a joint optimization quite complicated,
so we avoided it.

5. EVALUATION
In this section, we evaluate the efficacy of FineComb. Specifi-

cally, we seek to answer the following questions: (1) What is the
relative error of FineComb in estimating mean delay, standard de-
viation and loss rates under different levels of reordering and loss
rates. (2) How does an optimal configuration of FineComb com-
pare with previous solutions assuming same total memory for a
given loss and reordering rates. (3) Since loss (β) and reorder-
ing (ρ) rates are not known a priori, we evaluate the efficacy of
the multi-bank FineComb that is tuned towards different β and ρ
values. Before we answer these, we first describe our evaluation
methodology.



5.1 Evaluation methodology
We built a custom simulator in C++ for evaluating a prototype of

our measurement solution. Our custom simulator is more efficient
than, say, ns-2 and allows us to simulate sending several million
packets. Further, ns-2 does not provide any built in routines that
we can leverage as all we need is to simulate packets sent on a link
with specified delay, loss, and reordering characteristics.
Given our goal is to compare the performance of our architecture

in many different settings, we provide several configuration param-
eters such as loss rate β, reordering rate ρ, measurement interval.
Our simulation environment is deliberately kept similar to the one
used by the authors in [16] so that fair comparison of FineComb
with LDA is possible.
Delay model. Ideally, we would use traces at two monitoring end-
points within a real data center with GPS synchronized clocks to es-
timate end-to-end latency; unfortunately, there exists no such pub-
licly available data center latency traces. Prior work [16] used the
Weibull delay distribution model empirically verified to mimic the
distribution of delays within a backbone router by Papagiannaki et
al. in [22]. While we use mainly Weibull distribution (and Pareto
for diversity) within our simulations, we use a real trace collected
from an ingress and an egress interface of a router connected to
an OC-3 link (155 Mbps) to evaluate multibank scenario (refer to
§5.4 for more detail). The delay for each packet is drawn from
a Weibull distribution, which has cumulative distribution function

P (X ≤ x) = 1 − e(−x/α)β with α and β representing the shape
and scale of the graph respectively. We use [22]’s recommended
shape parameter 0.6 ≤ α ≤ 0.8 in all our simulations (mostly, we
used α = 0.6). Note that while FineComb (and LDA) are agnos-
tic to the distribution of timestamps, delay distribution does matter
when we determine the relative error provided by these data struc-
tures.
Loss model. FineComb and LDA are agnostic to the loss rate
distribution—even if two lost packets are back-to-back, they are
randomly hashed into different buckets anyway. Thus, it suffices to
simulate random packet loss.
Measurement interval. We simulate an interval of 1 second with
a mean delay of about 10µs. (Path latencies in data centers may
range from 10–100 µs, so our setting simulates close to the finest
granularity.) We show our results in the form of relative error, so
exact delay average does not matter. For delay distribution, we use
Weibull (and Pareto) with shape parameter 0.6 and scale adjusted
to obtain mean delay of 10µs. We simulate 5,000,000 packets,
with an average packet size of 250 bytes (similar to [16]), over a
10 Gbps bottleneck capacity with an inter-arrival time of 0.2µs—
transmission time for 250 bytes at 10Gbps is 0.2µs. All our simu-
lation results are average across 10 runs.
Reordering model. An important parameter in our simulation is
the reordering rate ρ. We could simulate reordering in the same
way we simulate loss; by randomly choosing which packets to re-
order. However, in practice, it is not at all clear that reordering
follows a process similar to that of packet loss; in fact, there exists
no generative model that we are aware of that we can use in our
simulation. We note once again that reordering within the interval
does not affect either LDA or FineComb; what matters is problem-
atic reordering at the fringe of an interval (see Figure 2).
To stress LDA and FineComb in terms of problematic reorder-

ing, we simulate the following simple deterministic model of re-
ordering. In our reordering model, we essentially specify a 4-tuple,
<Rs

pre, R
s
post, R

e
pre, R

e
post>, the number of pre-start, post-start,

pre-end and post-end packets defined in §3.1. Then, for each inter-
val we wish to simulate, we choose a contiguous set of packets from
the end of one interval that will drift into the next and vice-versa.

Note that the theory in §4 is based on the total number of re-
ordered packets R = ρT and considers a slightly more simplistic
model than we use in our experimentation. While clearly, R =
Rs

pre+Rs
post+Re

pre+Re
post, the optimal probability p∗ obtained

in Equation 8 is computed assuming all these different individual
reordering components are the same. To make our provisioning
strategy consistent with theory, we obtain the total reordered num-
ber of packets R as follows:

R = max{Rs
pre, R

s
post, R

e
pre, R

e
post} × 4

We simulate two main types of reordering, called forward and
backward, that correspond to <0, x, 0, 0> and <x, 0, 0, 0> con-
figurations for the 4-tuple. In most experiments, we configure x
equal to roughly 10−6T to 10−3T (T being total number of pack-
ets); equivalently, the reordering rate ρ varies from 4 · 10−6 to
4 · 10−3, translating to roughly 50 to 5,000 packets before the
interval-end message. We also simulated many other configura-
tions (e.g., <x, x, x, x>, <x, x, 0, 0>) but latency estimation re-
sults were mostly similar in all cases; this follows because sampling
probabilities and stash sizes are all dependent on ρ, which is same
for all these configurations.
Resource configuration. We allocate a total of 1,000 buckets for
FineComb. To simulate cases with and without stash, we assume
stash elements are of the same size as bank elements (for simplic-
ity). We use 64 bits from a 160-bit SHA-1 hash function for packet
digests. To make things fair, we equalize the storage at the LDA
and the FineComb. The buckets in the LDA are 2/3 the size of those
in FineComb (LDA has timestamp accumulator and counter but no
incremental stream digest). Furthermore, while FineComb is asym-
metric (only the receiver maintains stashes), the LDA is symmetric.
Thus, memory is allocated as follows: LDA gets 1.5(M + W/2)
buckets at sender and receiver, where M is number of FineComb
buckets and W is stash size.

5.2 Assessing FineComb

Expected number of samples. In our first experiment, we wish to
understand how tight the theoretical bound on the number of use-
ful samples is, at the optimal sampling probability. In Figure 4(a),
we plot the expected number of samples according to the analytical
bound given in Equation 2 (curve titled ‘Expected’) and the empir-
ical number of samples over which delays are computed. The three
different curves in the figure correspond to three different loss rate
settings (0.0001, 0.001, 0.01). Clearly, as we increase the loss rate
from 0.00001 to 0.001, the number of effective samples over which
the delay estimates are computed reduces all the way from almost 3
million packets at loss rate 0.0001 (0.01%), to about 40,000 pack-
ets at 0.01 (1%) loss rate. As we increase the reordering rate, the
number of effective samples also decreases (although not by much
for the 0.01 loss rate curve, since the loss rate overwhelms the re-
ordering rate significantly). This is expected since more loss causes
more FineComb buckets to become useless, causing the expected
number of samples to decrease.

In all cases, we observe that analytically expected number of
samples matches quite well with what we found empirically (the
curves are virtually indistinguishable); the difference between ex-
pected and empirical is of the order of a few hundreds, with the
predicted number of samples slightly smaller than what we found
empirically.

Latency estimates. Next, we show the average relative error of
mean delay and loss estimates, as we vary the reordering rate ρ in
Figure 4. We show the results comparing FineComb and FineComb-
(FineCombwithout the stash) for two different distributions, Weibull
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Figure 4: Expected number of samples obtained by FineComb, and relative error of mean delay and loss estimates in the presence

of forward reordering under different distributions. We show both FineComb and FineComb- for comparison.

and Pareto with shape and scale parameters adjusted to ensure sim-
ilar mean latency of 10µs. While we have simulated many differ-
ent levels of loss and types of reordering, for brevity, we mainly
show the latency results for the high loss situation and loss estima-
tion for the low loss situation. (These are the least favorable situ-
ations for FineComb.) From Figure 4(b), we see that the relative
error for FineComb is less than 1.2% for either of the two distribu-
tions, under different levels of reordering. While we omit the exact
figure of standard deviation estimation for brevity, FineComb and
FineComb- achieve similar average relative error–less than 30% for
Pareto distribution and 9% Weibull distribution across all ρ values.
As predicted by our analytical work in [19], FineComb provides

about 15-30% more useful samples than FineComb- (that has no
stash). While more samples should lead to better delay estimates,
the improvement in the delay estimate depends heavily on the spe-
cific delay distribution; that is, some distributions require fewer
samples to obtain accurate estimates (e.g., to take things to an ex-
treme, a uniform distribution requires only a small number of sam-
ples for excellent accuracy in delay estimates).

Loss rate estimates. We clearly see the benefit of the stash when
we consider loss estimation error in Figure 4(c). We can observe
that the estimates of FineComb- are significantly worse than FineComb,
especially at higher reordering rates. This is explained by the fact
that loss rate estimates for FineComb- include reordered packets;
because FineComb- has no stash, we have no way to prevent these
reordered packets from polluting our loss rate estimator. Having the
stash helps recover most of those reordered packets in FineComb,
thus adding significantly fewer number of false positives in calcu-
lating the loss rate. Note that the delay distribution itself does not
effect loss rate estimation (the little difference visible is caused by
different random number seeds).

5.3 Comparison with other solutions
We compare FineComb with LDA using simulations. Before we

show these results, however, we go over why other simple alterna-
tives do not work as well as compared to FineComb.

1) Active probing: Intuitively, active probing methods do much
worse than methods like FineComb in terms of standard error for a
fixed control bandwidth, because each active probe provides a sin-
gle delay sample, while each FineComb bucket provides thousands
of samples. Using a sampling probability of p = 0.1 (optimal for
low loss and small amount of reordering), FineComb will provide
500,000 delay samples in each interval. Now the control bandwidth
required to send 1,000 buckets from the sender to the receiver,
is roughly 16,000 bytes (assuming 16 bytes per bucket) while an
active probe takes at least 64 bytes (packet headers plus times-
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Figure 5: Average relative error of mean delay estimates com-

paring FineComb with LDA. β = 0.0001.

tamp). To keep the control bandwidth the same, even if we allowed
16, 000/64 = 250 active probes per second, they would only pro-
vide 250 delay samples while FineComb provides 500,000. This
2,000x increase in sample size translates roughly to

√
2000 = 44x

decrease in standard error.

2) Sampled local timestamps: Similarly, consider the other trivial
solution of sampling a small number of packets in each interval and
storing their timestamps.

We compare this trivial solution to FineComb- with no stash
(note from §4 that adding the stash only increases the number of
good samples produced by the FineComb). Combining (7) and (8),
we find that when FineComb has S buckets and no stash, it pro-
duces

E[XFineComb] = S
G

βT +R
e−1

(9)

good timestamp samples. Meanwhile, the trivial solution that sam-
ples at rate p obtains p(1−β)T good samples while storing Ssample =
pT items. Setting Ssample = S, and we find that FineComb pro-



duces about G
βT+R

more good samples than the trivial solution;
note that we expect this ratio to be much larger than one, sinceG is
the number of ‘good’ packets in the interval, while βT + R is the
number of ‘bad’ packets in the interval.
For example, assume that FineComb uses 1,000 buckets and a

stash of the same size. Then the trivial algorithm can afford to
store 2,000 samples. Once again, for the same parameters as the
example above, the trivial algorithm will provide 2,000 samples
per second, while FineComb will provide 500,000. This factor of
250x increase in sample size translates to roughly a factor of 15x
decrease in standard error.

3) LDA for latency estimates: In Figure 5, we plot the relative
error of mean delay estimates for four solutions, namely LDA,
LDA+ (a small refinement of LDA we discuss later), FineComb
and FineComb- for different reordering rates and reordering mod-
els. For this set of experiments, we choose optimal stash size con-
figurations and sampling probabilities (for LDA, as recommended
in [16]) for all solutions.
The main observation from the graphs is that, beyond small lev-

els of reordering, LDA consistently performs the worst, with rela-
tive error as high as 100% (ρ = 0.0005) to 400% (ρ = 0.004). This
follows from the fact that LDA cannot deal with reordered pack-
ets. If a reordered packet and a lost packet hash to the same LDA
bucket, the LDA will assume that bucket is useful and include it
in the latency estimation. However, that bucket will contain times-
tamps relating to two different sets of packets, and error induced
can be as large as the measurement interval (e.g., 1 second).
LDA+ is a simple refinement of LDA which effectively ignores

the set of buckets where the sender’s timestamp sum is higher than
the receiver timestamp sum (which could be caused by a situation
like the one we described above) and results in a negative delay

contributed by that bucket. This clearly helps solve most of the
problems in the forward reordering case (where extra packets drift
into the interval), as reflected in the better relative error for LDA+ in
Figure 5(a). In fact, in cases where LDA+ was optimized for higher
loss rate (e.g., at β = 0.001), we observed better accuracy than
FineComb, that can be explained by the fact that the total number
of buckets allocated to LDA is about 1.5 times higher than those al-
located to FineComb, resulting in slightly better sampling rate, and
consequently, in more samples. However, LDA+ is merely a patch,
and does not work in the backward reordering case, since in this
case, we cannot easily detect (using a simple elimination scheme
as before) and eliminate buckets that are anomalous because of re-
ordering. Thus for the lower set of graphs, we can see that LDA+
has the same accuracy level as the LDA.
In all cases, we can observe that both FineComb and FineComb-

perform consistently better than LDA even under high loss and re-
ordering rates. We can observe that the relative error is mostly
around 0.1% and never more than 1% in all the cases considered.
For standard deviation estimates, we observed a similar phenomenon,
i.e., the accuracy of FineComb is orders of magnitude higher than
LDA’s. The same set of reasons why LDA’s mean delay estimates
are quite bad explains why standard deviation estimates are also
bad. (Since the curves look exactly the same as those for mean
latency, we omit them.)

4) LDA for loss estimation: In Figure 6(a), we plot the relative
error in estimating loss rate (for β = 0.0001). As we can see
from the figure, FineComb’s estimates are usually within 10-30%
error irrespective of the reordering rates. The estimates of the rest
are quite poor, with more than 100-500% error for LDA. This is
expected, since neither LDA (or LDA+) nor FineComb- have the
capability to correct for reordered packets; only FineComb enjoys
that capability due to the presence of the stash.
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Figure 6: Relative error of FineComb at detecting low to mi-

croscopic loss rates.

Microscopic losses. While 10-30% error in estimating loss rates
as low as 0.0001 is good, our goal was to also be able to detect
losses as low as 1 in 1 million (10−6). Intuitively, detecting such
low loss rates in the presence of reasonable levels of reordering
(e.g., say 500 packets, i.e., ρ = 10−4) is possible only with ex-
tremely high rates of sampling (close to 1) and with a stash large
enough to recover most of the reordered packets. (Our formulae
predict these configurations as well.) To explore this case further,
we simulate low loss conditions (with 5, 10, 50, and 100 packets
lost in the interval) and configure stash and sampling optimally just
as before. The 5 packet situation is equivalent to 1 packet loss in
1 million (our definition of microscopic losses). In Figure 6(b),
we see that, even though the relative error of FineComb’s loss es-
timates becomes progressively worse as reordering increase, the
estimates are well within 10% for reordering rates up to 10−4 (500
reordered packets), i.e., 5 packets lost is reported as either 4 or 6
packets lost—we believe most managers would find such accuracy
for microscopic losses to be perfectly adequate. By contrast, LDA’s
accuracy for the same range is around 2,000% (not shown in the
figure), which can cause false alarms.

5.4 Handling unknown loss and reordering rates
We have already demonstrated that it is easy to tune FineComb

if the manager knows the loss and reordering rate. However, it is
important to have a solution that works across a large range of loss
rates and reordering rates using multi-bank FineComb.

We use Weibull delay distribution model as well as a real trace
to compare the efficacy of 4-bank FineComb with a two-bank LDA
under unknown loss and reordering rates. First, for Weibull delay
distribution model, average latency is set to 10µs and β is set to
0.01. Second, the trace collected from an ingress and an egress
interface of a router by the authors in [27] contains about 2.4 mil-
lion packets over about two and half minute interval which expe-
rienced queueing delay, packet loss, and so on. Since OC-3 link
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Figure 7: Average relative error of mean delay and loss estimates of the 4-bank FineComb, with the banks optimized for low and

high reordering and loss rates under forward reordering scenario.

(155 Mbps) was used when the trace was collected, we do not use
a second measurement interval which only has a few thousands of
packets. Instead, we group the packets into measurement intervals
each of which consists of 0.2 million packets. The average loss
rate of the trace is about 0.24%, but each measurement interval has
different packet loss rates; minimum, median and maximum loss
rates are 0%, 0.06% and 0.96%, respectively. There is no packet
reordering in the trace. Thus, we adjust packet reordering rate from
0.0004 to 0.04 for the evaluation.
For FineComb, we optimize the individual banks for the four

pair-wise combinations of βmin = 0.0001, ρmin = 0.0004, βmax =
0.01, and ρmax = 0.04. Two-bank LDA is optimized for βmin =
0.0001 and 0.01.
Figure 7(a) shows the relative error of the mean delay estimates

of FineComb compared to that of LDA. FineComb-OPT, shown for
reference, is FineComb configured with the theoretically best sam-
pling rate and stash size given the knowledge of loss and reorder-
ing rates. The results for other loss rates, and for the backward
reordering case, are quite similar to the curve of FineComb (and
hence, omitted). From the figure, we can observe that LDA per-
forms worse than FineComb (as we have observed before) even in
the case of multiple banks. At extremely low reordering rates, the
estimates of LDA are quite accurate, but they become quickly un-
usable with small increases in reordering rates (at around 0.0002).
Further, we can clearly see that, while 4-bank FineComb appears
to have slightly worse relative error than the FineComb-OPT, on
the whole, FineComb results are reasonably accurate with a rela-
tive error of less than 1% under almost all conditions. Standard
deviation estimation also shows similar trend with mean estima-
tion, so we omit the exact graph for brevity. As a summary, while
LDA achieves better accuracy than FineComb when ρ is extremely
small, FineComb has at least two orders of magnitude less errors
than LDA from ρ = 0.0008, and about 11-13% relative errors are
obtained by FineComb across all reordering rates.
In Figure 7(b), we observe the similar pattern shown in Fig-

ure 7(a). However, compared to the results of Figure 7(a), the de-
gree of inaccuracy of LDA is lower. This may be because of two
reasons. First, there are four measurement intervals which have no
packet loss. For those intervals, latency estimates were quite accu-
rate because two-bank LDA could absorb the impact of reordered
packets considered as lost packets. Second, true average latencies
are quite high, ranging from a few to tens of milliseconds. Due
to the high latencies, denominator in relative error is also high and
the relative error is small. Nevertheless, compared to FineComb,
at least an order of magnitude higher relative error is observed

from around 0.0024 reordering rate. Again, FineComb achieves
a relative error of less than 1% under all conditions. Similarly, for
standard deviation estimation, LDA shows an order of magnitude
higher relative error than FineComb for most reordering rates.

In Figure 7(c), we show the relative error of the loss rate es-
timation. FineComb’s relative error shows less than 20% up to
0.016 reordering rate. After the reordering rate, the relative error
of FineComb is comparatively worse at around 55%, but LDA is
completely unusable across almost all the rates.

6. IMPLEMENTATION
With 1000 buckets and 1000 stash entries, FineComb should take

a small percentage of a low end 10mm×10mm networking ASIC
using a 400-MHz 65nm process. Key to a small footprint is a cheap
version of an incremental stream digest using a loop-unrolled Ra-
bin hash. A quicker path to deployment today, however, is using
high-end FPGAs such as the NetFPGA [4]. For time synchroniza-
tion, the boards need to have GPS chipsets (fairly cheap today), the
solution used by monitors such as Corvil [3].

Stash recovery operations are easier to do in software using say
an on-board processor. In the analysis, we argued that stash recov-
ery times are O(M2W/M ), where W is the size of the stash and
M is the number of buckets. We did measurements to verify that
the apparent exponential is not an issue, and that there are no large
constants hiding behind the order notation. The table below shows
stash recovery times for different stash sizes, assuming a fixed total
storage S of 2,000 (across sender and receiver). For example, when
the stash (maintained at receiver) W is 838, the number of buck-
etsM is 581 (equal across sender and receiver), resulting in 2W/M

being less than 4. The implementation was done using a 2.33GHz
Intel processor running Linux.

Stash size 20 120 200 462 703 838

Time (ms) 1 4 6 10 10 14

As we expect, stash recovery time increases as stash size in-
creases. However, even for a ratio of stash to buckets of 1.44,
recovery takes no more than 14 ms. Note that it is not required
that the processor be on-board. While packet processing will need
to be done on board, functions such as stash recovery can be imple-
mented in software on the PC. Implementing FineComb on boards
(based on either FPGAs or network processors) is significantly cheaper
compared to existing diagnosis boxes proposed for data centers
such as those supplied by Corvil. The high-end Corvil boxes costs
UK£90,000 for a 2×10 Gbps box [3]. High cost is a barrier for



most data centers which explains why Corvil has mostly marketed
to a niche market (financial traders) where money is no object.

7. RELATEDWORK
While network latency measurements is a rich area of research in

the Internet with several tools proposed in the past to obtain latency
measurements, the fundamental focus on fine-grain microscopic la-
tency and loss measurements, makes most of these tools not suit-
able for the task at hand. Scalable performance measurements for
data center environments is a relatively less studied field.
The standard approach for conducting latency measurements in

the wide area is to inject active probes (e.g., using ping and other
tools such as [28, 21, 27, 26]) and calculate the round-trip time of
the packet. We have discussed the problems with active probes in
§2.3. Router-based passive measurements is yet another active area
of research [11, 12, 31, 24, 15]. They focus mainly on flow mea-
surements such as number of packets and bytes, and not on latency
and loss estimation. In [20], the authors propose a measurement-
friendly network architecture; the goal is to infer router character-
istics with the help of end-to-end measurements. Our goal is to
measure end-to-end characteristics with support at the end points,
however. There are a few prior efforts (e.g., [10, 32]) where re-
searchers proposed simple router extensions for latency measure-
ments that are somewhat similar to the local timestamps idea dis-
cussed in §2.3, and hence share similar problems.
Perhaps the most relevant research effort to ours is a recent data

structure called LDA proposed by Kompella et al. in [16], and
an incremental deployment architecture in [17]. Given the close
similarity, we discussed it at length in the paper, and compared the
performance of FineComb with LDA. In [18], Lee et al. describe
a per-flow switch-level latency measurement architecture. In our
work, we focus on measurements across flows, so our goals are
different from theirs.

8. CONCLUSIONS
Measurement tools are badly needed to determine fine-grain la-

tencies and losses that can affect application SLAs in data center
environments. Existing scalable approaches such as LDA designed
for switch-level measurements works poorly for end-to-end mea-
surements in the presence of packet reordering which actually hap-
pens in IP networks. We describe a simple yet scalable data struc-
ture called FineComb that can detect microsecond latency viola-
tions and microscopic losses (as small as few packets in a million)
while still being resilient to reordering. FineComb uses two new
ideas—the addition of an incremental stream digest to detect mis-
matches in packet sets, and a simple stash to correct reordering.
Stashes are especially powerful in order to measure loss precisely
to a few parts in a million. While Finecomb is useful for end-to-end
measurements in the short-term, we believe that the future will see
the rise of reordering tolerant transport protocols in the data center
together with packet-by-packet load balancing within and across
routers. In such cases, reordering becomes a fact of life and solu-
tions such as Finecomb will become essential to measure fine-grain
delays and losses even within routers.
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