
CS558, Boston University, Spring 2015
Released February 12, 2015. Updated February 17, 2015.

Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

Homework 2: Symmetric Crypto

Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

February 17, 2015

Submission policy. This assignment MUST be submitted as a PDF via websubmit and MUST include the following
information:

1. List of collaborators

2. List of references used (online material, course nodes, textbooks, wikipedia, etc.)

3. Number of late days used on this assignment

4. Total number of late days used thus far in the entire semester

If any of this information is missing, at least 20% of the points for the assignment will automatically be deducted from your
assignment. See also discussion on plagiarism on the course syllabus.

Administration. This homework will be administered by Aanchal Malhotra.

Exercise 1. PRFs. Recall the security definition for a pseudorandom function (PRF):
An adversary D is given oracle access to an unknown oracle O. The game master flips a coin,

and sets O to be a random function (RF) with probability 1
2 , and a PRF with probability 1

2 . If
a PRF is chosen by the game master, then a fresh random bit string is chosen to the key the
PRF. Now, the adversary D does not know whether O is a RF or PRF (or its key). However, by
Kerckhoff’s law, he does know the description of the PRF. He can query the random oracle (i.e.,
choose x and obtain y = O(x)), and then he must decide if O was an RF or PRF.

A PRF is secure if for every adversary D running in a reasonable amount of them, we have that
Pr[D says RF|O = PRF] ≈ Pr[D says PRF|O = PRF]

Consider a function f that takes in a key k of length n and maps from n-bit inputs to n-bit
outputs. Let n = 128.

1. Let fk(x) = x+ k2 mod 2n. Prove the f is not a pseudorandom function. (To do this, write
down the algorithm that D uses to “win” the security game described above.)

2. Let fk(x) = (x + k)2 − (x− k)2 mod 2n. Prove the f is not a pseudorandom function.

1

CS558, Boston University, Spring 2015
Released February 12, 2015. Updated February 17, 2015.

Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

Exercise 2. MACs & Encryption schemes. Let f be a pseudorandom function (PRF). f takes
in a key of length n and an input of length 2n and produces an output of length n. Let n = 128.

In the question below, the symbol || means concatenation and the symbol ⊕ is a bit-wise XOR and
the symbol |m| = n means the bitstring m has length n.

1. Prove that the following MAC for messages of length 5n is insecure: The shared key is a
random bitstring k ∈ {0, 1}n. To authenticate a message m1||m2||m3 where |m1| = n, |m2| =
|m3| = 2n, compute the tag fk(m1||fk(m2))||m3.

2. Prove that the following MAC for messages of length 5n is insecure: The shared key is a
random bitstring k ∈ {0, 1}n. To authenticate a message m1||m2||m3 where |m1| = n, |m2| =
|m3| = 2n, compute the tag fk(m1||fk(m2))||fk(m3).

3. The following is a CPA-secure encryption scheme. The shared key is a random bitstring
k ∈ {0, 1}n. To encrypt a message m of length n bits, choose a random 2n-bit string r and
output the ciphertext

r||(fk(r)⊕m)

• Write down the decryption algorithm.

• We won’t ask you to prove that this is secure. But, the scheme should remind you of
the one-time pad. Explain why, in no more than 2 sentences.

4. Suppose we slightly modify the encryption scheme above, as follows. The shared key is a
random bitstring k ∈ {0, 1}n. To “encrypt” a message m of length 2n bits, choose a random
n-bit string r and output the ciphertext

r||(fk(m)⊕ r)

Prove that this is not an encryption scheme.

5. Now we slightly modify the encryption scheme again. Instead of using a PRF, we use a
collision resistant hash function H to “encrypt” our message; H maps 2n-bit string to n bit
strings. The shared key is a random bitstring k ∈ {0, 1}n. To “encrypt” a message m of
length 2n, choose a random n-bit string r and output the ciphertext

r||(H(m)⊕ r ⊕ k)

Prove that this is not a CPA secure encryption scheme.

2

CS558, Boston University, Spring 2015
Released February 12, 2015. Updated February 17, 2015.

Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

Exercise 3. Secure Channels. A “secure channel” allows Alice and Bob to communicate with
confidentially, integrity, and authenticity. In this question we will consider secure channels that
can be constructed using symmetric keys.

The scheme. The standard construction for this is the “encrypt-then-MAC” approach, which
proceeds as follows:

• Key Generation: Choose a random key k1 and another random key k2.

• To send a message m, compute c = Enck1(m) and then compute t = MACk2(c). Send y = c||t.
We will call this algorithm Sendk1,k2(m).

• To receive a message y, first parse it as c||t. Then, output “fail” if Verk2(c, t) = 0; otherwise,
output m′ = Deck1(c). We will call this algorithm Receivek1,k2(y).

The security definition. Here is a simplified version of the security definition for secure channels.
The security game is as follows:

• The adversary is given access to a Send oracle; he can ask the oracle to compute Sendk1,k2(m)
on any message m he chooses.

• The adversary must output y∗ such that Receivek1,k2(y∗) is not “fail”. y∗ must not be the
answer to any queries he made to the Send oracle.

We have a secure channel if no adversary can win this game with more than negligible probability.

Why is this the right scheme? For many years, there was a debate as to a whether a secure channel
should encrypt-then-authenticate (as described above) or encrypt and authenticate, or authenticate
then encrypt. We won’t ask you to prove that the encrypt-then-authenticate scheme satisfies the
definition of security for secure channels; Instead, we discuss why the other two approaches lost the
debate.

1. The ”encrypt-and-authenticate” scheme modifies the Send algorithm as follows. First we
compute c = Enck1(m) and then we compute t = MACk2(m), and send y = c||t. Write down
the Receive algorithm for this scheme.

2. Consider the following implementation of the ”encrypt-and-authenticate” scheme. Our MAC
will be HMAC. Our encryption algorithm Enc will be the following strange scheme:

• Encode every bit ‘0’ in the message m as ‘00’. Encode every ‘1’ in the message m as:
‘01’ with probability 1

3 , ‘11’ with probability 1
3 and ‘10’ with probability 1

3 . (Thus, the
encoding of ‘001’ could be ‘000010’; the encoding of ‘111’ could be ‘111101’.)

• Apply a CPA-secure stream cipher to the encoded message.

One can show that this strange encryption scheme is CPA-secure.

Answer the following questions:

(a) Write down the decryption algorithm for the encryption scheme described above.

(b) Write down the Receive algorithm for an encrypt-and-authenticate scheme that uses our
strange encryption algorithm as Enc and HMAC as MAC.

(c) Present an attack that proves that this scheme does not satisfy our definition of secure
channels.

3

CS558, Boston University, Spring 2015
Released February 12, 2015. Updated February 17, 2015.

Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

(d) Now present an attack that proves this scheme does not satisfy the definition of CCA
security.

3. The “authenticate-then-encrypt” scheme modifies the Send algorithm as follows. First we
compute t = MACk2(m), and then we compute y = Enck1(m||t) and send y. Write down the
Receive algorithm for this scheme.

4. Suppose we build an ”authenticate-then-encrypt” scheme using our strange encryption algo-
rithm from above, a normal secure MAC like HMAC. Present an attack that proves that this
scheme does not satisfy our definition of secure channels.

5. Explain why the two attacks you discovered suggest that we should not use encrypt-and-
authenticate or authenticate-and-encrypt for secure channels.

6. Our definition of secure channel is missing an important component – robustness to replay
attacks. That is, an attacker the eavesdrops on the communication from Sender to Receiver
can resend an old message was sent from Sender to Receiver, and the Receiver will accept it
as valid.

(a) Give an sample scenario where this might be a problem.

(b) Explain how you would modify the encrypt-then-authenticate scheme to address this.

4

CS558, Boston University, Spring 2015
Released February 12, 2015. Updated February 17, 2015.

Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

Exercise 4. Password cracking. Suppose you are in charge of security for a major web site, and
you are considering what would happen if an attacker stole your database of usernames and pass-
words. You have already implemented a basic defense: instead of storing the plaintext passwords,
you store their SHA-256 hashes 1.

Part A:
Your threat model assumes that the attacker can carry out 4 million SHA-256 hashes per second.

His goal is to recover as many plaintext passwords as possible from the information in the stolen
database. Valid passwords for your site may contain only characters a–z, A–Z, and 0–9, and are
exactly 8 characters long. For the purposes of this homework, assume that each user selects a
random password.

1. Given the hash of a single password, how many hours would it take for the attacker to crack
a single password by brute force, on average?

2. How large a botnet would he need to crack individual hashes at an average rate of one per
hour, assuming each bot can compute 4 million hashes per second?

Part B:
Based on your answer to part (a), the attacker would probably want to adopt more sophisticated

techniques. You consider whether he could compute the SHA-256 hash of every valid password and
create a table of (hash, password) pairs sorted by hash. With this table, he would be able to take
a hash and find the corresponding password very quickly.

1. How many bytes would the table occupy?

Part C:
It appears that the attacker probably won’t have enough disk space to store the exhaustive

table from part (b). You consider another possibility: he could use a rainbow table, a space-efficient
data structure for storing precomputed hash values.

A rainbow table is computed with respect to a specific set of N passwords and a hash function
H (in this case, SHA-256). We construct a table by computing m chains, each of fixed length k
and representing k passwords and their hashes. The table is constructed in such a way that only
the first and last passwords in each chain need to be stored: the last password (or endpoint) is
sufficient to recognize whether a hash value is likely to be part of the chain, and the first password
is sufficient to reconstruct the rest of the chain. When long chains are used, this arrangement saves
an enormous amount of space at the cost of some additional computation.

Chains are constructed using a family of reduction functions R1, R2, . . . , Rk that determinis-
tically but pseudorandomly map every possible hash value to one of the N passwords. (We can
think of each Ri as a PRF keyed with a key that the attacker chose uniformly and independently at
random; that is, the key is known to the attacker.) Each chain begins with a different password p0.
To extend the chain by one step, we compute hi := H(pi−1) then apply the ith reduction function
to arrive at the next password, pi = Ri(hi). Thus, a chain of length 3 starting with the password
hax0r123 would consist of

(hax0r123, R1(H(hax0r123)), R2(H(R1(H(hax0r123)))))

1You shouldn’t actually use raw SHA-256 for this task, in actual practice you should use a library designed
specifically for password hashing that uses a function such as scrypt or bcrypt (see http://yorickpeterse.com/

articles/use-bcrypt-fool/). Today, GPU-based hashing is so fast that an attacker can often just compute hashes
on the fly. See the link for more details.

5

CS558, Boston University, Spring 2015
Released February 12, 2015. Updated February 17, 2015.

Due at 11:59PM on Monday Feb 23, 2015 as a PDF via websubmit.

After building the table, we can use it to quickly find a password p∗ that hashes to a particular
value h∗. The first step is to locate a chain containing h∗ in the table; this requires, at most,
about k2/2 hash operations. Since h∗ could fall in any of k − 1 positions in a chain, we compute
the password that would end up in the final chain position for each case. If we start by assum-
ing h∗ is right before the end of the chain and work backwards, the possible endpoints will be
Rk(h∗), Rk(H(Rk−1(h∗))), We then check if any of these values is the endpoint of a chain in
the table. If we find a matching endpoint, we proceed to the second step, reconstructing this chain
based on its initial value. This chain is very likely to contain a password that hashes to h, though
collisions in the reduction functions cause occasional false positives.

[You can read more about rainbow tables here http://en.wikipedia.org/wiki/Rainbow_

table]

1. For simplicity, make the optimistic assumption that the attacker’s rainbow table contains
no collisions and each valid password is represented exactly once. Assuming each password
occupies 8 bytes, give an equation for the number of bytes in the table in terms of the chain
length k and the size of the password set N .

2. If k = 5000, how many bytes will the attacker’s table occupy to represent the same passwords
as in (c)?

3. Roughly how long would it take to construct the table if the attacker can add 2 million chain
elements per second?

4. Compare these size and time estimates to your results from (a), (b), and (c).

Part D:
You consider making the following change to the site: instead of storing SHA-256(password)

it will store SHA-256(server secret || password), where server secret is a randomly generated 32-bit
secret stored on the server. (The same secret is used for all passwords.)

1. How does this design partially defend against rainbow table attacks?

2. Briefly, how could you adjust the design to provide even stronger protection? (Your answer
should be no more than 3 sentences long.)

6

