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Abstract

The framework Pure Type System (PTS) offers a simple and general approach to designing and
formalizing type systems. However, in the presence of dependent types, there often exist certain
acute problems that make it difficult for PTS to directly accommodate many common realistic
programming features such as general recursion, recursive types, effects (e.g., exceptions, refer-
ences, input/output), etc. In this paper, Applied Type System (ATS) is presented as a framework for
designing and formalizing type systems in support of practical programming with advanced types
(including dependent types). In particular, it is demonstrated that ATS can readily accommodate a
paradigm referred to as programming with theorem-proving (PwTP) in which programs and proofs
are constructed in a syntactically intertwined manner, yielding a practical approach to internalizing
constraint-solving needed during type-checking. The key salient feature of ATS lies in a complete
separation between statics, where types are formed and reasoned about, and dynamics, where pro-
grams are constructed and evaluated. With this separation, it is no longer possible for a program to
occur in a type as is otherwise allowed in PTS. The paper contains not only a formal development of
ATS but also some examples taken from ATS, a programming language with a type system rooted in
ATS, in support of using ATS as a framework to form type systems for practical programming.
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1 Introduction

A primary motivation for developing Applied Type System (ATS) stems from an earlier
attempt to support a restricted form of dependent types in practical programming (Xi,
2007). While there is already a framework Pure Type System (PTS) (Barendregt, 1992) that
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offers a simple and general approach to designing and formalizing type systems, it is well
understood that there often exist some acute problems (in the presence of dependent types)
making it difficult for PTS to accommodate many common realistic programming features.
In particular, various studies reported in the literature indicate that great efforts are often
required in order to maintain a style of pure reasoning as is advocated in PTS when features
such as general recursion (Constable & Smith, 1987), recursive types (Mendler, 1987),
effects (Honsell et al., 1995), exceptions (Hayashi & Nakano, 1988) and input/output are
present.

The framework ATS is formulated to allow for designing and formalizing type systems
that can readily support common realistic programming features. The formulation of ATS
given in this paper is primarily based on the work reported in two previous papers (Xi,
2004; Chen & Xi, 2005) but there are some fundamental changes in terms of the handling
of proofs and proof construction. In particular, the requirement is dropped that a proof in
ATS must be represented as a normalizing lambda-term (Xi, 2008a).

In contrast to PTS, the key salient feature of ATS lies in a complete separation between
statics, where types are formed and reasoned about, from dynamics, where programs are
constructed and evaluated. This separation, with its origin in a previous study on a re-
stricted form of dependent types developed in Dependent ML (DML) (Xi, 2007), makes it
straightforward to support dependent types in the presence of effects such as references and
exceptions. Also, with the introduction of two new (and thus somewhat unfamiliar) forms
of types: guarded types and asserting types, ATS is able to capture program invariants in
a manner that is similar to the use of pre-conditions and post-conditions (Hoare, 1969).
By now, studies have shown amply and convincingly that a variety of traditional pro-
gramming paradigms (e.g., functional programming, object-oriented programming, meta-
programming, modular programming) can be directly supported in ATS without relying on
ad hoc extensions, attesting to the expressiveness of ATS. In this paper, the primary focus
of study is set on a novel programming paradigm referred to as programming with theorem-
proving (PwTP) and its support in ATS. In particular, a type-theoretical foundation for
PwTP is to be formally established and its correctness proven.

The notion of type equality plays a pivotal rôle in type system design. However, the
importance of this rôle is often less evident in commonly studied type systems. For in-
stance, in the simply typed λ -calculus, two types are considered equal if and only if they
are syntactically the same; in the second-order polymorphic λ -calculus (λ2) (Reynolds,
1972) and System F (Girard, 1986), two types are considered equal if and only if they are
α-equivalent; in the higher-order polymorphic λ -calculus (λω ), two types are considered
equal if and only if they are βη-equivalent. This situation immediately changes in ATS,
and let us see a simple example that stresses this point.

In Figure 1, the presented code implements a function in ATS (Xi, 2008b), which is
a substantial system such that its compiler alone currently consists of more than 165K
lines of code implemented in ATS itself.1 The concrete syntax used in the implementation
should be accessible to those who are familiar with Standard ML (SML) (Milner et al.,
1997)). Note that ATS is a programming language equipped with a type system rooted in

1 Please see http://www.ats-lang.org for more details.
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fun

append

{a:type}{m,n:nat}

(

xs: list (a, m), ys: list (a, n)

) : list (a, m+n) =

case xs of

| nil() => ys (* the first clause *)

| cons(x, xs) => cons (x, append(xs, ys)) (* the second clause *)

// end of [append]

Fig. 1. List-append in ATS

ATS, and the name of ATS derives from that of ATS. The type constructor list takes two
arguments; when applied to a type T and an integer I, list(T, I) forms a type for lists of
length I in which each element is of type T . Also, the two list constructors nil and cons

are assigned the following types:

nil : ∀a : type. ()→ list(a,0)
cons : ∀a : type.∀n : nat. (a, list(a,n))→ list(a,n+1)

So nil constructs a list of length 0, and cons takes an element and a list of length n to
form a list of length n+ 1. The header of the function append indicates that append is
assigned the following type:

∀a : type.∀m : nat.∀n : nat. (list(a,m), list(a,n))→ list(a,m+n)

which simply means that append returns a list of length m+n when applied to one list of
length m and another list of length n. Note that type is a built-in sort in ATS, and a static
term of the sort type stands for a type (for dynamic terms). Also, int is a built-in sort for
integers in ATS, and nat is the subset sort {a : int | a≥ 0} for all nonnegative integers.

When the above implementation of append is type-checked, the following two con-
straints are generated:

1. ∀m : nat.∀n : nat. m = 0⊃ n = m+n
2. ∀m : nat.∀n : nat.∀m′ : nat. m = m′+1⊃ (m′+n)+1 = m+n

The first constraint is generated when the first clause is type-checked, which is needed for
determining whether the types list(a,n) and list(a,m + n) are equal under the assump-
tion that list(a,m) equals list(a,0). Similarly, the second constraint is generated when
the second clause is type-checked, which is needed for determining whether the types
list(a,(m′+n)+1) and list(a,m+n) are equal under the assumption that list(a,m) equals
list(a,m′+ 1). Clearly, certain restrictions need to be imposed on the form of constraints
allowed in practice so that an effective approach can be found to perform constraint-
solving. In DML, a programming language based on DML (Xi, 2007), the constraints
generated during type-checking are required to be linear inequalities on integers so that
the problem of constraint satisfaction can be turned into the problem of linear integer
programming, for which there are many highly practical solvers (albeit the problem of
linear integer programming itself is NP-complete). This is indeed a very simple design, but
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it can also be too restrictive, sometimes, as nonlinear constraints (e.g., ∀n : int.n∗n≥ 0) are
commonly encountered in practice. Furthermore, the very nature of such a design indicates
its being inherently ad hoc.

By combining programming with theorem-proving, a fundamentally different design of
constraint-solving can provide the programmer with an option to handle nonlinear con-
straints through explicit proof construction. For the sake of a simpler presentation, let us
assume for this moment that even the addition function on integers cannot appear in the
constraints generated during type-checking. Under such a restriction, it is still possible to
implement a list-append function in ATS that is assigned a type capturing the invariant that
the length of the concatenation of two given lists xs and ys equals m+ n if xs and ys are
of length m and n, respectively. Let us first see such an implementation given in Figure 2,
which is presented here as a motivating example for programming with theorem-proving
(PwTP).

The datatypes Z and S are declared in Figure 2 solely for representing natural numbers:
Z represents 0, and S(N) represents the successor of the natural number represented by N.
The data constructors associated with Z and S are of no use. Given a type T and another
type N, mylist(T,N) is a type for lists containing n elements of the type T , where n is
the natural number represented by N. Note that mylist is not a standard datatype (as is
supported in ML); it is a guarded recursive datatype (GRDT) (Xi et al., 2003), which is
also known as generalized algebraic datatype (GADT) (Cheney & Hinze, 2003) in Haskell
and OCaml. The datatype addrel is declared to capture the relation induced by the addition
function on natural numbers. Given types M, N, and R representing natural numbers m,
n, and r, respectively, the type addrel(M,N,R) is for a value representing some proof
of m + n = r. Note that addrel is also a GRDT or GADT. There are two constructors
addrel z and addrel s associated with addrel, which encode the following two rules:

0+n = n for every natural number n
(m+1)+n = (m+n)+1 for every pair of natural numbers m and n

Let us now take a look at the implementation of myappend. Formally, the type assigned
to myappend can be written as follows:

∀a : type.∀m : type.∀n : type.
(mylist(a,m),mylist(a,n))→∃r : type. (addrel(m,n,r),mylist(a,r))

In essence, this type states the following: Given two lists of length m and n, myappend
returns a pair such that the first component of the pair is a proof showing that m+n equals
r for some natural number r and the second component is a list of length r.

Unlike append, type-checking myappend does not generate any linear constraints on
integers. As a matter of fact, myappend can be readily implemented in both Haskell and
OCaml (extended with support for generalized algebraic datatypes), where there is no
built-in support for handling linear constraints on integers. This is an example of great
significance in the sense that it demonstrates concretely an approach to allowing the pro-
grammer to write code of the nature of theorem-proving so as to simplify or even eliminate
certain constraints that need otherwise to be solved directly during type-checking. With
this approach, constraint-solving is effectively internalized, and the programmer can ac-
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datatype Z() = Z of ()

datatype S(a:type) = S of a

//

datatype

mylist(type, type) =

| {a:type}

mynil(a, Z())

| {a:type}{n:type}

mycons(a, S(n)) of (a, mylist(a, n))

//

datatype

addrel(type, type, type) =

| {n:type}

addrel_z(Z(), n, n) of ()

| {m,n:type}{r:type}

addrel_s(S(m), n, S(r)) of addrel(m, n, r)

//

fun

myappend

{a:type}

{m,n:type}

(

xs: mylist(a, m)

, ys: mylist(a, n)

) : [r:type]

(

addrel(m, n, r), mylist(a, r)

) =

(

case xs of

| mynil() => let

val pf = addrel_z() in (pf, ys)

end // end of [mynil]

| mycons(x, xs) => let

val (pf, res) = myappend(xs, ys) in (addrel_s(pf), mycons(x, res))

end // end of [mycons]

)

Fig. 2. A motivating example for PwTP in ATS

tively participate in constraint simplification, gaining a tight control in determining what
constraints should be passed to the underlying constraint-solver.

There are some major issues with the implementation given in Figure 2. Clearly, repre-
senting natural numbers as types is inadequate since there are types that do not represent
any natural numbers. More seriously, this representation turns quantification over natural
numbers (which is predicative) into quantification over types (which is impredicative),
causing unnecessary complications. Also, proof construction (that is, construction of val-
ues of types formed by addrel) needs to be actually performed at run-time, which causes
inefficiency both time-wise and memory-wise. Probably the most important issue is that
proof validity is not guaranteed. For instance, it is entirely possible to fake proof construc-
tion by making use of non-terminating functions.
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datasort

mynat = Z of () | S of mynat

//

datatype

mylist(type, mynat) =

| {a:type}

mynil(a, Z())

| {a:type}{n:mynat}

mycons(a, S(n)) of (a, mylist(a, n))

//

dataprop

addrel(mynat, mynat, mynat) =

| {y:mynat}

addrel_z(Z, y, y) of ()

| {x,y:mynat}{r:mynat}

addrel_s(S(x), y, S(r)) of addrel(x, y, r)

//

fun

myappend

{a:type}

{m,n:mynat}

(

xs: mylist(a, m)

, ys: mylist(a, n)

) : [r:mynat]

(

addrel(m, n, r) | mylist(a, r)

) =

(

case xs of

| mynil() => let

val pf = addrel_z() in (pf | ys)

end // end of [mynil]

| mycons(x, xs) => let

val (pf | res) = myappend(xs, ys) in (addrel_s(pf) | mycons(x, res))

end // end of [mycons]

)

Fig. 3. An example making use of PwTP in ATS

In Figure 3, another implementation of myappend is given that makes use of the support
for PwTP in ATS. Instead of representing natural numbers as types, a datasort of the
name mynat is declared and natural numbers can be represented as static terms of the
sort mynat. Also, a dataprop addrel is declared for capturing the relation induced by
the addition function on natural numbers. As a dataprop, addrel can only form types
for values representing proofs, which are erased after type-checking and thus need no
construction at run-time. In the implementation of myappend, the bar symbol (|) is used in
place of the comma symbol to separate components in tuples; the components appearing
to the left of the bar symbol are proof expressions (to be erased) and those to the right
are dynamic expressions (to be evaluated). After proof-erasure, the implementation of
myappend essentially matches that of append given in Figure 1.
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As a framework to facilitate the design and formalization of advanced type systems for
practical programming, ATS is first formulated with no support for PwTP (Xi, 2004). This
formulation is the basis for a type system referred to as ATS0 in this paper. The support for
PwTP is added into ATS in a subsequent formulation (Chen & Xi, 2005), which serves as
the basis for a type system referred to as ATSpf in this paper. However, a fundamentally
different approach is adopted in ATSpf to justify the soundness of PwTP, which essentially
translates each well-typed program in ATSpf into another well-typed one in ATS0 of the
same dynamic semantics. The identification and formalization of this approach, which is
both simpler and more general than one used previously (Chen & Xi, 2005), consists of a
major technical contribution of the paper.

It is intended that the paper should focus on the theoretical development of ATS, and
the presentation given is of a minimalist style. The organization for the rest of the paper is
given as follows. An untyped λ -calculus λdyn is first presented in Section 2 for the purpose
of introducing some basic concepts needed to formally assign dynamic (that, operational)
semantics to programs. In Section 3, a generic applied type system ATS0 is formulated and
its type-soundness established. Subsequently, ATS0 is extended to ATSpf in Section 4 with
support for PwTP, and the type-soundness of ATSpf is reduced to that of ATS0 through
a translation from well-typed programs in the former to those in the latter. Lastly, some
closely related work is discussed in Section 5 and the paper concludes.

2 Untyped λ -Calculus λdyn

The purpose of formulating λdyn, an untyped lambda-calculus extended with constants (in-
cluding constant constructors and constant functions), is to set up some machinery needed
to formalize dynamic (that is, operational) semantics for programs. It is to be proven that a
well-typed program in ATS can be turned into one in λdyn through type-erasure and proof-
erasure while retaining its dynamic semantics, stressing the point that types and proofs in
ATS play no active rôle in the evaluation of a program. In this regard, the form of typing
studied in ATS is of Curry-style (in contrast with Church-style) (Reynolds, 1998).

There are no static terms in λdyn. The syntax for the dynamic terms in λdyn is given as
follows:

dynamic terms e ::= x | dcx(~e) | 〈e1,e2〉 | fst(e) | snd(e) |
lam x.e | app(e1,e2) | let x = e1 in e2

where the notation ~e is for a possibly empty sequence of dynamic terms. Let dcx range
over external dynamic constants, which include both dynamic constructors dcc and dy-
namic functions dcf . The arguments taken by a dynamic constructor or function are often
primitive values (instead of those constructed by lam and 〈·, ·〉) and the result returned by
it is often a primitive value as well. The meaning of various forms of dynamic terms should
become clear when the rules for evaluating them are given.

The values in λdyn are just special forms of dynamic terms, and the syntax for them is
given as follows:

values v ::= x | dcc(~v) | 〈v1,v2〉 | lam x.e



ZU064-05-FPR main 15 January 2016 12:51

8 Hongwei Xi

where ~v is for a possibly empty sequence of values. A standard approach to assigning
dynamic semantics to terms is based on the notion of evaluation contexts:

evaluation contexts E ::= [] | dcx(v1, . . . ,vi−1,E,ei+1, . . . ,en) |
〈E,e〉 | 〈v,E〉 | app(E,e) | app(v,E) | let x = E in e

Essentially, an evaluation context E is a dynamic term in which a subterm is replaced with
a hole denoted by []. Note that only subterms at certain positions in a dynamic term can be
replaced to form valid evaluation contexts.

Definition 2.1
The redexes in λdyn and their reducts are defined as follows:

• fst(〈v1,v2〉) is a redex, and its reduct is v1.
• snd(〈v1,v2〉) is a redex, and its reduct is v2.
• app(lam x.e,v) is a redex, and its reduct is e[x 7→ v].
• dcf (~v) is a redex if it is defined to equal some value v; if so, its reduct is v.

Note that it may happen later that a new form of redex can have more than one reducts.
Given a dynamic term of the form E[e1] for some redex e1, E[e1] is said to reduce to E[e2]

in one-step if e2 is a reduct of e1, and this one-step reduction is denoted by E[e1]→ E[e2].
Let→∗ stand for the reflexive and transitive closure of→.

Given a program (that is, a closed dynamic term) e0 in λdyn, a finite reduction sequence
starting from e0 can either lead to a value or a non-value. If a non-value cannot be further
reduced, then the non-value is said to be stuck or in a stuck form. In practice, values can
often be represented in special manners to allow various stuck forms to be detected through
checks performed at run-time. For instance, the representation of a value in a dynamically
typed language most likely contains a tag to indicate the type of the value. If it is detected
that the evaluation of a program reaches a stuck form, then the evaluation can be terminated
abnormally with a raised exception.

Detecting potential stuck forms that may occur during the evaluation of a program can
also be done statically (that is, at compiler-time). One often imposes a type discipline to
ensure the absence of various stuck forms during the evaluation of a well-typed program.
This is the line of study to be carried out in the rest of the paper.

3 Formal Development of ATS0

As a generic applied type system, ATS0 consists of a static component (statics), where
types are formed and reasoned about, and a dynamic component (dynamics), where pro-
grams are constructed and evaluated. The statics itself is a simply typed lambda-calculus
(extended with certain constants), and the types in it are called sorts so as to avoid confu-
sion with the types for classifying dynamic terms, which are themselves static terms.

The syntax for the statics of ATS0 is given in Figure 4. Let b range over the base sorts
in ATS0, which include at least bool for static booleans and type for types (assigned to
dynamic terms). The base sort int for static integers is not really needed for formalizing
ATS0 but it is often used in the presented examples. Let a and s range over static variables
and static terms, respectively. There may be some built-in static constants scx, which are
either static constant constructors scc or static constant functions scf. A c-sort is of the
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sorts σ ::= b | σ1→ σ2
static terms s ::= a | scx(s1, . . . ,sn) | λa : σ .s | s1(s2)
static var. ctx. Σ ::= /0 | Σ,a : σ

static subst. Θ ::= [] |Θ[a 7→ s]

Fig. 4. The syntax for the statics of ATS0

form (σ1, . . . ,σn)⇒ b, which can only be assigned to static constants. Note that a c-sort
is not considered a (regular) sort. Given a static constant scx, a static term scx(s1, . . . ,sn)

is of sort b if scx is assigned a c-sort (σ1, . . . ,σn)⇒ b for some sorts σ1, . . . ,σn and si can
be assigned the sorts σi for i = 1, . . . ,n. It is allowed to write scc for scc() if there is no
risk of confusion. In ATS0, the existence of the following static constants with the assigned
c-sorts is assumed:

true : ()⇒ bool
false : ()⇒ bool
≤ty : (type, type)⇒ bool
∗ : (type, type)⇒ type
→ : (type, type)⇒ type
∧ : (bool, type)⇒ type
⊃ : (bool, type)⇒ type
∀σ : (σ → type)⇒ type
∃σ : (σ → type)⇒ type

Note that infix notation may be used for certain static constants. For instance, s1 → s2

stands for→ (s1,s2) and s1 ≤ty s2 stands for ≤ty (s1,s2). In addition, ∀a : σ .s and ∃a : σ .s
stand for ∀σ (λa : σ .s) and ∃σ (λa : σ .s), respectively. Given a static constant constructor
scc, if the c-sort assigned to scc is (σ1, . . . ,σn)⇒ type for some sorts σ1, . . . ,σn, then scc is
a type constructor. For instance, ∗,→, ∧,⊃, ∀σ and ∃σ are all type constructors. Additional
built-in base type constructors may be assumed.

Given a proposition B and a type T , B ⊃ T is a guarded type and B∧T is an asserting
type. Intuitively, if a value v is assigned a guarded type B ⊃ T , then v can be used only if
the guard B is satisfied; if a value v of an asserting type B∧T is generated at a program
point, then the assertion B holds at that point. For instance, suppose that int is a sort for
(static) integers and int is a type constructor of the sort (int)⇒ type; given a static term
s of the sort int, int(s) is a singleton type for the integer equal to s; hence, the usual type
Int for (dynamic) integers can be defined as ∃a : int. int(a), and the type Nat for natural
numbers can be defined as ∃a : int. (a ≥ 0)∧ int(a). Moreover, the following type is for
the (dynamic) division function on integers:

∀a1 : int.∀a2 : int. a2 6= 0⊃ (int(a1), int(a2))→ int(a1/a2)

where the meaning of 6= and / should be obvious. With such a type, division by zero is
disallowed during type-checking (at compile-time). Also, suppose that bool is a type con-
structor of the sort (bool)⇒ type such that for each proposition B, bool(B) is a singleton
type for the truth value equal to B. Then the usual type Bool for (dynamic) booleans can
be defined as ∃a : bool. bool(a). The following type is an interesting one:

∀a : bool. bool(a)→ a∧1
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Σ(a) = σ

Σ ` a : σ
(st-var)

` scx : (σ1, . . . ,σn)⇒ b Σ ` s1 : σ1 · · · Σ ` sn : σn

Σ ` scx(s1, . . . ,sn) : b
(st-scx)

Σ,a : σ1 ` s : σ2

Σ ` λa : σ1.s : σ1→ σ2
(st-lam)

Σ ` s1 : σ1→ σ2 Σ ` s2 : σ1

Σ ` s1(s2) : σ2
(st-app)

Fig. 5. The sorting rules for the statics of ATS0

where 1 stands for the unit type. Given a function f of this type, we can apply f to a
boolean value v of type bool(B) for some proposition B; if f (v) returns, the B must be true;
therefore f acts like dynamic assertion-checking.

For those familiar with qualified types (Jones, 1994), which underlies the type class
mechanism in Haskell, it should be noted that a qualified type cannot be regarded as a
guarded type. The simple reason is that the proof of a guard in ATS0 bears no computational
significance, that is, it cannot affect the run-time behavior of a program, while a dictionary,
which is just a proof of some predicate on types in the setting of qualified types, can and is
mostly likely to affect the run-time behavior of a program.

The standard rules for assigning sorts to static terms are given in Figure 5, where the
judgement ` scx : (σ1, . . . ,σn)⇒ b means that the static constant scx is assumed to be of
the c-sort (σ1, . . . ,σn)⇒ b. Given ~s = s1, . . . ,sn and ~σ = σ1, . . . ,σn, a judgement of the
form Σ `~s : ~σ means Σ ` si : σi for i = 1, . . . ,n. Let B stand for a static term that can be
assigned the sort bool (under some context Σ) and ~B a possibly empty sequence of static
boolean terms. Also, let T stand for a type (for dynamic terms), which is a static term
that can be assigned the sort type (under some context Σ). Given contexts Σ1 and Σ2 and
a substitution Θ, the judgement Σ1 ` Θ : Σ2 means that Σ1 ` Θ(a) : Σ2(a) is derivable for
each a ∈ dom(Θ) = dom(Σ2).

Proposition 3.1
Assume Σ ` s : σ is derivable. If Σ = Σ1,Σ2 and Σ1 ` Θ : Σ2 holds, then Σ1 ` s[Θ] : σ is
derivable.

Proof
By structural induction on the derivation of Σ ` s : σ .

Definition 3.1 (Constraints in ATS0)
A constraint in ATS0 is of the form Σ;~B |= B0, where Σ ` B : bool holds for each B in ~B and
Σ ` B0 : bool holds as well, and the constraint relation in ATS0 is the one that determines
whether each constraint is true or false.

Each regularity rule in Figure 6 is assumed to be met, that is, the conclusion of each
regularity rule holds if all of its premisses hold, and the following regularity conditions on
≤ty are also satisfied:

1. Σ;~B |= T ≤ty T holds for every T .
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B ∈ ~B
Σ;~B |= B

(reg-id)

Σ;~B |= true
(reg-true)

Σ;~B |= false

Σ;~B |= B
(reg-false)

Σ;~B |= B

Σ,a : σ ;~B |= B
(reg-var-thin)

Σ ` B1 : bool Σ;~B |= B2

Σ;~B,B1 |= B2
(reg-bool-thin)

Σ,a : σ ;~B |= B Σ ` s : σ

Σ;~B[a 7→ s] |= B[a 7→ s]
(reg-subst)

Σ;~B |= B1 Σ;~B,B1 |= B2

Σ;~B |= B2
(reg-cut)

Fig. 6. The regularity rules for the constraint relation in ATS0

dynamic terms e ::= x | dcx{~s}(e1, . . . ,en) |
〈e1,e2〉 | fst(e) | snd(e) | lam x.e | app(e1,e2) |
⊃+(e) | ⊃−(e) | slam a.e | sapp(e,s) |
∧(e) | let ∧(x) = e1 in e2 | 〈s,e〉 | let 〈a,x〉= e1 in e2

dynamic values v ::= x | dcc{~s}(v1, . . . ,vn) |
〈v1,v2〉 | lam x.e |⊃+(e) | slam a.e | ∧(v) | 〈s,v〉

dynamic var. ctx. ∆ ::= /0 | ∆,x : T

dynamic subst. Θ ::= [] |Θ[x 7→ e]

Fig. 7. The syntax for the dynamics in ATS0

2. Σ;~B |= T ≤ty T ′ and Σ;~B |= T ′ ≤ty T ′′ implies Σ;~B |= T ≤ty T ′′.
3. Σ;~B |= T1 ∗T2 ≤ty T ′1 ∗T ′2 implies Σ;~B |= T1 ≤ty T ′1 and Σ;~B |= T2 ≤ty T ′2 .
4. Σ;~B |= T1→ T2 ≤ty T ′1 → T ′2 implies Σ;~B |= T ′1 ≤ty T1 and Σ;~B |= T2 ≤ty T ′2 .
5. Σ;~B |= B∧T ≤ty B′∧T ′ implies Σ;~B,B |= B′ and Σ;~B,B |= T ≤ty T ′.
6. Σ;~B |= B⊃ T ≤ty B′ ⊃ T ′ implies Σ;~B,B′ |= B and Σ;~B,B′ |= T ≤ty T ′.
7. Σ;~B |= ∀a : σ .T ≤ty ∀a : σ .T ′ implies Σ,a : σ ;~B |= T ≤ty T ′.
8. Σ;~B |= ∃a : σ .T ≤ty ∃a : σ .T ′ implies Σ,a : σ ;~B |= T ≤ty T ′.
9. /0; /0 |= scc(T1, . . . ,Tn)≤ty T ′ implies T ′ = scc(T ′1 , . . . ,T

′
n) for some T ′1 , . . . ,T

′
n .

The need for these conditions is to become clear when proofs are constructed in the
following presentation for formally establishing various meta-properties of ATS0. For in-
stance, the last of the above conditions can be invoked to make the claim that T ′ ≤ty T1→
T2 implies T ′ being of the form T ′1 → T ′2 . Note that this condition actually implies the
consistency of the constraint relation as not every constraint is valid.

Let us now move onto the dynamic component (dynamics) of ATS0. The syntax for
the dynamics of ATS0 is given in Figure 7. Let x range over dynamic variables and dcx
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dynamic constants, which include both dynamic constant constructors dcc and dynamic
constant functions dcf . Some (unfamiliar) forms of dynamic terms are to be understood
when the rules for assigning types to them are presented. Let v range over values, which
are dynamic terms of certain special forms, and ∆ range over dynamic variable contexts,
which assign types to dynamic variables.

During the formal development of ATS0, proofs are often constructed by induction on
derivations (represented as trees). Given a judgement J, D :: J means that D is a derivation
of J, that is, the conclusion of D is J. Given a derivation D , ht(D) stands for the height of
the tree that represents D .

In ATS0, a typing judgement is of the form Σ;~B;∆ ` e : T , and the rules for deriving such
a judgement are given in Figure 8. Note that certain obvious side conditions associated with
some of the typing rules are omitted for the sake of brevity. For instance, the variable a is
not allowed to have free occurrences in ~B, ∆, or T when the rule (ty-∀-intr) is applied.

Given ~B = B1, . . . ,Bn, ~B⊃ T stands for B1 ⊃ (· · ·(Bn ⊃ T ) · · ·). Given~a = a1, . . . ,an and
~σ = σ1, . . . ,σn, ∀~a : ~σ stands for the sequence of quantifiers: ∀a : σ1. · · ·∀a : σn. A c-type
in ATS0 is of the form ∀~a : ~σ . ~B⊃ (T1, . . . ,Tn)⇒ T .

The notation ` dcx : ∀~a : ~σ . ~B ⊃ (T1, . . . ,Tn)⇒ T means that dcx is assumed to have
the c-type following it; if dcx is a constructor dcc, then T is assumed to be constructed by
some scc and dcc is said to be associated with scc. For instance, the list constructors and
the integer addition and division functions can be given the following c-types:

nil : ∀a : type. list(a,0)
cons : ∀a : type.∀n : int. n≥ 0⊃ (a, list(a,n))→ list(a,n+1)
iadd : ∀a1 : int.∀a2 : int. (int(a1), int(a2))⇒ int(a1 +a2)

isub : ∀a1 : int.∀a2 : int. (int(a1), int(a2))⇒ int(a1−a2)

imul : ∀a1 : int.∀a2 : int. (int(a1), int(a2))⇒ int(a1 ∗ a2)

idiv : ∀a1 : int.∀a2 : int. a2 6= 0⊃ (int(a1), int(a2))⇒ int(a1/a2)

where the type constructors int and list are type constructors of the c-sorts (int)⇒ type
and (type, int)⇒ type, respectively, and +, −, ∗, and / are static constant functions of the
c-sort (int, int)⇒ int.

For a technical reason, the rule (ty-var) is to be replaced with the following one:

∆(x) = T Σ;~B |= T ≤ty T ′

Σ;~B;∆ ` x : T ′
(ty-var’)

which combines (ty-var) with (ty-sub). This replacement is needed for establishing the
following lemma:

Lemma 3.1
Assume D :: Σ;~B;∆,x : T1 ` e : T2 and Σ;~B |= T ′1 ≤ty T1. Then there is a derivation D ′ for
the typing judgement Σ;~B;∆,x : T ′1 ` e : T2 such that ht(D ′) = ht(D).

Proof
The proof follows from structural induction on D immediately. The only interesting case
is the one where the last applied rule is (ty-var’), and this case can be handled by simply
merging two consecutive applications of the rule (ty-var’) into one (with the help of the
regularity condition stating that ≤ty is transitive).
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` Σ;~B;∆ ∆(x) = T

Σ;~B;∆ ` x : T
(ty-var)

Σ;~B;∆ ` e : T Σ;~B |= T ≤ty T ′

Σ;~B;∆ ` e : T ′
(ty-sub)

` dcx : ∀~a : ~σ .~B0 ⊃ (T1, . . . ,Tn)⇒ T
Σ `~s : ~σ Σ;~B |= B[~a 7→~s] for each B ∈ ~B0

Σ;~B;∆ ` ei : Ti[~a 7→~s] for i = 1, . . . ,n

Σ;~B;∆ ` dcx{~s}(e1, . . . ,en) : T [~a 7→~s]
(ty-dcx)

Σ;~B;∆ ` e1 : T1 Σ;~B;∆ ` e2 : T2

Σ;~B;∆ ` 〈e1,e2〉 : T1 ∗T2
(ty-tup)

Σ;~B;∆ ` e : T1 ∗T2

Σ;~B;∆ ` fst(e) : T1
(ty-fst) Σ;~B;∆ ` e : T1 ∗T2

Σ;~B;∆ ` snd(e) : T2
(ty-snd)

Σ;~B;∆,x : T1 ` e : T2

Σ;~B;∆ ` lam x.e : T1→ T2
(ty-lam)

Σ;~B;∆ ` e1 : T1→ T2 Σ;~B;∆ ` e2 : T1

Σ;~B;∆ ` app(e1,e2) : T2
(ty-app)

Σ;~B,B;∆ ` e : T

Σ;~B;∆ ` ⊃+(e) : B⊃ T
(ty-⊃-intr)

Σ;~B;∆ ` e : B⊃ T Σ;~B |= B

Σ;~B;∆ ` ⊃−(e) : T
(ty-⊃-elim)

Σ;~B |= B Σ;~B;∆ ` e : T

Σ;~B;∆ ` ∧(e) : B∧T
(ty-∧-intr)

Σ;~B;∆ ` e1 : B∧T1 Σ;~B,B;∆,x : T1 ` e2 : T2

Σ;~B;∆ ` let ∧ (x) = e1 in e2 : T2
(ty-∧-elim)

Σ,a : σ ;~B;∆ ` e : T

Σ;~B;∆ ` slam a.e : ∀a : σ .T
(ty-∀-intr)

Σ;~B;∆ ` e : ∀a : σ .T Σ ` s : σ

Σ;~B;∆ ` sapp(e,s) : T [a 7→ s]
(ty-∀-elim)

Σ ` s : σ Σ;~B;∆ ` e : T [a 7→ s]

Σ;~B;∆ ` 〈s,d〉 : ∃a : σ .T
(ty-∃-intr)

Σ;~B;∆ ` e1 : ∃a : σ .T1 Σ,a : σ ;~B;∆,x : T1 ` e2 : T2

Σ;~B;∆ ` let 〈a,x〉= e1 in e2 : T2
(ty-∃-elim)

Fig. 8. The typing rules for the dynamics of ATS0

Given Σ,~B,∆1,∆2 and θ , the judgement Σ;~B;∆1 ` θ : ∆2 means that the typing judgement
Σ;~B;∆1 ` θ(x) : ∆2(x) is derivable for each x ∈ dom(θ) = dom(∆2).

Lemma 3.2 (Substitution in ATS0)
Assume D :: Σ;~B;∆ ` e : T in ATS0.
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1. If ~B = ~B1,~B2 and Σ;~B1 |= ~B2 holds, then Σ;~B1;∆ ` e : T is also derivable, where
Σ;~B1 |= ~B2 means Σ;~B1 |= B holds for each B ∈ ~B2.

2. If Σ = Σ1,Σ2 and Σ1 ` Θ : Σ2 holds, then Σ1;~B[Θ];∆[Θ] ` d[Θ] : T [Θ] is also deriv-
able.

3. If ∆ = ∆1,∆2 and Σ;~B;∆1 ` θ : ∆2 is derivable, then Σ;~B;∆1 ` d[θ ] : T is also
derivable.

Proof
By structural induction on the derivation D .

Lemma 3.3 (Canonical Forms)
Assume D :: /0; /0; /0 ` v : T . Then the following statements hold:

1. If T = T1 ∗T2, then v is of the form 〈v1,v2〉.
2. If T = T1→ T2, then v is of the form lam x.e.
3. If T = B∧T0, then v is of the form ∧(v0).
4. If T = B⊃ T0, then v is of the form ⊃+(e).
5. If T = ∀a : σ .T0, then v is of the form slam a.e.
6. If T = ∃a : σ .T0, then v is of the form 〈s,v0〉.
7. If T = scc(~s1), then v is of the form dcc{~s2}(~v) for some dcc associated with scc.

Proof
With Definition 3.1, the lemma follows from structural induction on D . If the last applied
rule in D is (ty-sub), then the proof goes through by invoking the induction hypothesis on
the immediate subderivation of D . Otherwise, the proof follows from a careful inspection
of the typing rules in Figure 8.

In order to assign (call-by-value) dynamic semantics to the dynamic terms in ATS0, let
us introduce evaluation contexts as follows:

eval. ctx. E ::=
[] | dcx{~s}(~v,E,~e) | 〈E,d〉 | 〈v,E〉 | app(E,e) | app(v,E) |
⊃−(E) | ∧(E) | let ∧(x) = E in e | sapp(E,s) | 〈s,E〉 | let 〈a,x〉= E in e

Definition 3.2
The redexes and their reducts are defined as follows.

• fst(〈v1,v2〉) is a redex, and its reduct is v1.
• snd(〈v1,v2〉) is a redex, and its reduct is v2.
• app(lam x.e,v) is a redex, and its reduct is e[x 7→ v].
• dcf{~s}(~v) is a redex if it is defined to equal some value v; if so, its reduct is v.
• ⊃−(⊃+(e)) is a redex, and its reduct is e.
• sapp(slam a.e,s) is a redex, and its reduct is e[a 7→ s].
• let ∧(x) = ∧(v) in e is a redex, and its reduct is e[x 7→ v].
• let 〈a,x〉= 〈s,v〉 in e is a redex, and its reduct is e[a 7→ s][x 7→ v].

Given two dynamic terms e1 and e2 such that e1 = E[e] and e2 = E[e′] for some redex e
and its reduct e′, e1 is said to reduce to e2 in one step and this one-step reduction is denoted
by e1→ e2. Let→∗ stand for the reflexive and transitive closure of→.
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It is assumed that the type assigned to each dynamic constant function dcf is appropriate,
that is, /0; /0; /0 ` v : T is derivable whenever /0; /0; /0 ` dcf{~s}(v1, . . . ,vn) : T is derivable and
v is a reduct of dcf{~s}(v1, . . . ,vn).

Lemma 3.4 (Inversion)
Assume D :: Σ;~B;∆ ` e : T in ATS0.

1. If e = 〈e1,e2〉, then there exists D ′ :: Σ;~B;∆ ` e : T such that ht(D ′)≤ ht(D) and the
last rule applied in D ′ is (ty-tup).

2. If e = lam x.e1, then there exists D ′ :: Σ;~B;∆ ` e : T such that ht(D ′) ≤ ht(D) and
the last applied rule in D ′ is (ty-lam).

3. If e =⊃+(e1), then there exists D ′ :: Σ;~B;∆ ` e : T such that ht(D ′)≤ ht(D) and the
last rule applied in D ′ is (ty-⊃-intr).

4. If e = ∧(e1), then there exists D ′ :: Σ;~B;∆ ` e : T such that ht(D ′)≤ ht(D) and the
last rule applied in D ′ is (ty-∧-intr).

5. If e = slam a.e1, then there exists D ′ :: Σ;~B;∆ ` e : T such that ht(D ′)≤ ht(D), and
the last rule applied in D ′ is (ty-∀-intr).

6. If e = 〈s,e1〉, then there exists D ′ :: Σ;~B;∆ ` e : T such that ht(D ′)≤ ht(D), and the
last rule applied in D ′ is (ty-∃-intr).

Proof
Let D ′ be D if D does not end with an application of the rule (ty-sub). Hence, in the rest
of the proof, it can be assumed that the last applied rule in D is (ty-sub), that is, D is of
the following form:

D1 :: Σ;~B;∆ ` e : T ′ Σ;~B |= T ′ ≤ty T

Σ;~B;∆ ` e : T
(ty-sub)

Let us prove (1) by induction on ht(D). By induction hypothesis on D1, there exists a
derivation D ′1 :: Σ;~B;∆ ` e : T ′ such that ht(D ′1)≤ ht(D1) and the last applied rule in D ′1 is
(ty-tup):

D ′21 :: Σ;~B;∆ ` e1 : T ′1 D ′22 :: Σ;~B;∆ ` e2 : T ′2
Σ;~B;∆ ` 〈e1,e2〉 : T ′1 ∗T ′2

(ty-tup)

where T ′ = T ′1 ∗T ′2 and e= 〈e1,e2〉. By one of the regularity condition, T = T1 ∗T2 for some
T1 and T2. By another regularity condition, both Σ;~B |= T ′1 ≤ty T1 and Σ;~B |= T ′2 ≤ty T2 hold.
By applying (ty-sub) to D ′21, one obtains D21 :: Σ;~B;∆ ` e1 : T1. By applying (ty-sub) to
D ′22, one obtains D22 :: Σ;~B;∆ ` e2 : T2. Let D ′ be

D21 :: Σ;~B;∆ ` e1 : T1 D22 :: Σ;~B;∆ ` e2 : T2

Σ;~B;∆ ` 〈e1,e2〉 : T1 ∗T2
(ty-tup)

and the proof for (1) is done since ht(D ′) = 1+max(ht(D21),ht(D22)), which equals 1+
1+max(ht(D ′21),ht(D ′22)) = 1+ht(D ′1)≤ 1+ht(D1) = ht(D).

Let us prove (2) by induction on ht(D). By induction hypothesis on D1, there exists a
derivation D ′1 :: Σ;~B;∆ ` e : T ′ such that ht(D ′1)≤ ht(D1) and the last applied rule in D ′1 is
(ty-lam):

D ′2 :: Σ;~B;∆,x : T ′1 ` e1 : T ′2
Σ;~B;∆ ` lam x.e1 : T ′1 → T ′2

(ty-lam)
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where T ′ = T ′1 → T ′2 and e = lam x.e1. By one of the regularity conditions, T = T1→ T2

for some T1 and T2. By another regularity condiditon, both Σ;~B |= T1 ≤ty T ′1 and Σ;~B |=
T ′2 ≤ty T2 hold. Hence, by Lemma 3.1, there is a derivation D ′′2 :: Σ;~B;∆,x : T1 ` e1 : T ′2
such that ht(D ′′2 ) = ht(D ′2). Let D ′ be the following derivation,

D ′′2 :: Σ;~B;∆,x : T1 ` e1 : T ′2 Σ;~B |= T ′2 ≤ty T2

Σ;~B;∆,x : T1 ` e1 : T2
(ty-sub)

Σ;~B;∆ ` lam x.e1 : T1→ T2
(ty-lam)

and the proof for (2) is done since ht(D ′)= 1+1+ht(D ′′2 )= 1+1+ht(D ′2)= 1+ht(D ′1)≤
1+ht(D1) = ht(D).

The rest of statements (3), (4), (5), and (6) can all be proven similarly.

Theorem 3.1 (Subject Reduction in ATS0)
Assume D :: Σ;~B;∆ ` e : T in ATS0 and e→ e′ holds. Then Σ;~B;∆ ` e′ : T is also derivable
in ATS0.

Proof
The proof proceeds by induction on ht(D).

• The last applied rule in D is (ty-sub):

D1 :: Σ;~B;∆ ` e : T ′ Σ |= T ′ ≤ty T

Σ;~B;∆ ` e : T

By induction hypothesis on D1, D ′1 :: Σ;~B;∆ ` e′ : T ′ is derivable, and thus the
following derivation is obtained:

D ′1 :: Σ;~B;∆ ` e′ : T ′ Σ |= T ′ ≤ty T

Σ;~B;∆ ` e′ : T

• The last applied rule in D is not (ty-sub). Assume that e = E[e0] and e′ = E[e′0],
where e0 is a redex and e′0 is a reduct of e0. All the cases where E is not [] can be
readily handled, and some details are given as follows on the case where E = [] (that
is, e is itself a redex).

— D is of the following form:

D1 :: Σ;~B;∆ ` 〈v11,v12〉 : T1 ∗T2

Σ;~B;∆ ` fst(〈v11,v12〉) : T1
(ty-fst)

where T = T1 and e = fst(〈v11,v12〉). By Lemma 3.4, D1 may be assumed to be
of the following form:

D21 :: Σ;~B;∆ ` v11 : T1 D22 :: Σ;~B;∆ ` v12 : T2

Σ;~B;∆ ` 〈v11,v12〉 : T1 ∗T2
(ty-tup)

Note that e′ = v11, and the case concludes.
— D is of the following form:

D1 :: Σ;~B;∆ ` lam x.e1 : T1→ T2 D2 :: Σ;~B;∆ ` v2 : T1

Σ;~B;∆ ` app(lam x.e1,v2) : T2
(ty-app)
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where T = T2 and e = app(lam x.e1,v2). By Lemma 3.4, D1 may be assumed
to be of the following form:

Σ;~B;∆,x : T1 ` e1 : T2

Σ;~B;∆ ` lam x.e1 : T1→ T2

By Lemma 3.2 (Substitution), Σ;~B;∆ ` e1[x 7→ v2] : T2 is derivable. Note that
e′ = e1[x 7→ v2], and the case concludes.

All of the other cases can be handled similarly.

For a less involved presentation, let us assume that any well-typed closed value of the
form dcf{~s}(v1, . . . ,vn) is a redex, that is, the dynamic constant function dcf is well-defined
at the arguments v1, . . . ,vn.

Theorem 3.2 (Progress in ATS0)
Assume that D :: /0; /0; /0 ` e : T in ATS0. Then either e is a value or e→ e′ holds for some
dynamic term e′.

Proof
With Lemma 3.3 (Canonical Forms), the proof proceeds by a straightforward structural
induction on D .

By Theorem 3.1 and Theorem 3.2, it is clear that for each closed well-typed dynamic
term e, e→∗ v holds for some value v, or there is an infinite reduction sequence starting
from e: e = e0 → e1 → e2 → ···. In other words, the evaluation of a well-typed program
in ATS0 either reaches a value or goes on forever (as it can never get stuck). This meta-
property of ATS0 is often referred to as its type-soundness. Per Robin Milner, a catchy
slogan for type-soundness states that a well-typed program can never go wrong.

‖x‖ = x
‖dcx{~s}(e1, . . . ,en)‖ = dcx(‖e1‖, . . . ,‖en‖)

‖lam x.e‖ = lam x. ‖e‖
‖app(e1,e2)‖ = app(‖e1‖,‖e2‖)
‖⊃+(e)‖ = ‖e‖
‖⊃−(e)‖ = ‖e‖
‖∧(e)‖ = ‖e‖

‖let ∧(x) = e1 in e2‖ = let x =‖e1‖ in ‖e2‖
‖slam a.e‖ = ‖e‖
‖sapp(e,s)‖ = ‖e‖

Fig. 9. The type-erasure function ‖·‖ on dynamic terms

After a program in ATS passes type-checking, it goes through a process referred to as
type-erasure to have the static terms inside it completely erased. In Figure 9, a function
performing type-erasure is defined, which maps each dynamic term in ATS0 to an untyped
dynamic term in λdyn.

In order to guarantee that a value in ATS0 is mapped to another value in λdyn by the
function ‖·‖, the following syntactic restriction is needed:
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• Only when e is a value can the dynamic term ⊃+(e) be formed.
• Only when e is a value can the dynamic term slam a.e be formed.

This kind of restriction is often referred to as value-form restriction.

Proposition 3.2
With the value-form restriction being imposed, ‖v‖ is a value in λdyn for every value v in
ATS0.

Proof
By structural induction on v.

Note that it is certainly possible to have a non-value e in ATS0 whose type-erasure is a
value in λdyn. From this point on, the value-form restriction is always assumed to have
been imposed when type-erasure is performed.

Proposition 3.3
Assume that e1 is a well-typed closed dynamic term in ATS0. If e1→ e2 holds, then either
‖e1‖=‖e2‖ or ‖e1‖→‖e2‖ holds in λdyn.

Proof
By a careful inspection of the forms of redexes in Definition 3.2.

Proposition 3.4
Assume that e1 is a well-typed closed dynamic term in ATS0. If ‖e1‖→ e′2 holds in λdyn,
then there exists e2 such that e1→∗ e2 holds in ATS0 and ‖e2‖= e′2.

Proof
By induction on the height of the typing derivation for e1.

By Proposition 3.3 and Proposition 3.4, it is clear that type-erasure cannot alter the
dynamic semantics of a well-typed dynamic term in ATS0.

The formulation of ATS0 presented in this section is of a minimalist style. In particular,
the constraint relation in ATS0 is treated abstractly. In practice, if a concrete instance of
ATS0 is to be implemented, then rules need to be provided for simplifying constraints. For
instance, the following rule may be present:

Σ;~B |= I1 = I2

Σ;~B |= int(I1)≤ty int(I2)

With this rule, int(I1) ≤ty int(I2) can be simplified to the constraint I1 = I2, where the
equality is on static integer terms. The following rule may also be present:

Σ;~B |= T1 ≤ty T2 Σ;~B |= I1 = I2

Σ;~B |= list(T1, I1)≤ty list(T2, I2)

With this rule, list(T1, I1)≤ty list(T2, I2) can be simplified to the two constraints T1 ≤ty T2

and I1 = I2.
For those interested in implementing an applied type system, please find more details in

a paper on DML (Xi, 2007), which is regarded a special kind of applied type system.
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4 Formal Development of ATSpf

Let us extend ATS0 to ATSpf in this section with support for programming with theorem-
proving (PwTP).

A great limitation on employing ATS0 as the basis for a practical programming lan-
guage lies in the very rigid handling of constraint-solving in ATS0. One is often forced to
impose various ad hoc restrictions on the syntactic form of a constraint that can actually
be supported in practice (so as to match the capability of the underlying constraint-solver),
greatly diminishing the effectiveness of using types to capture programming invariants.
For instance, only quantifier-free constraints that can be translated into problems of linear
integer programming are allowed in the DML programming language (Xi, 2001).

With PwTP being supported in a programming language, programming and theorem-
proving can be combined in a syntactically intertwined manner (Chen & Xi, 2005); if a
constraint cannot be handled directly by the underlying constraint-solver, then it is possible
to simplify the constraint or even eliminate it through explicit proof construction. PwTP ad-
vocates an open style of constraint-solving by providing a means within the programming
language itself to allow the programmer to actively participate in constraint-solving. In
other words, PwTP can be viewed as a programming paradigm for internalizing constraint-
solving.

≤pr : (prop,prop)⇒ bool
∗ : (prop,prop)⇒ prop
∗ : (prop, type)⇒ type
→ : (prop,prop)⇒ prop
→ : (prop, type)⇒ type
∧ : (bool,prop)⇒ prop
⊃ : (bool,prop)⇒ prop
∀σ : (σ → prop)⇒ prop
∃σ : (σ → prop)⇒ prop

Fig. 10. Additional static constants in ATSpf

Let us now start with the formulation of ATSpf , which extends that of ATS0 fairly lightly.
In addition to the base sorts in ATS0, ATSpf contains another base sort prop, which is for
static terms representing types for proofs. A static term of the sort prop may be referred
to as a prop (or, sometimes, a type for proofs). Also, it is assumed that the static constants
listed in Figure 10 are included in ATSpf . Note that the symbols referring to these static
constants may be overloaded. In the following representation, P stands for a prop, T stands
for a type, and T ∗ stands for either a prop or a type.

The syntax for dynamic terms in ATSpf is essentially the same as that in ATS0 but
with a few minor changes to be mentioned as follows. Some dynamic constructs in ATS0

need to be split when they are incorporated into ATSpf . The construct 〈e1,e2〉 for forming
tuples is split into 〈e1,e2〉pp, 〈e1,e2〉pt, and 〈e1,e2〉tt for prop-type pairs, prop-type pairs
and type-type pairs, respectively. For instance, a prop-type pair is one where the first
component is assigned a prop and the second one a type. Note that there are no type-
prop pairs. The construct lam x.e for forming lambda-abstractions is split into lampp x. e,
lampt x. e, and lamtt x. e for prop-prop functions, prop-type functions and type-type func-
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tions, respectively. For instance, a prop-type function is one where the argument is assigned
a prop and the body a type. The construct app(e1,e2) for forming applications is split
into apppp(e1,e2), apptp(e1,e2), and apptt(e1,e2) for prop-prop applications, type-prop
applications and type-type applications. For instance, a type-prop application is one where
the function part is assigned a type and the argument a prop. Note that there are no type-
prop functions.

The dynamic variable contexts in ATSpf are defined as follows:

dynamic var. ctx. ∆ ::= /0 | ∆,x : T ∗

The regularity conditions on ≤ty needs to be extended with the following two for the
new forms of types:

3.2 Σ;~B |= P1 ∗T2 ≤ty P′1 ∗T ′2 implies Σ;~B |= P1 ≤pr P′1 and Σ;~B |= T2 ≤ty T ′2 .
4.2 Σ;~B |= P1→ T2 ≤ty P′1→ T ′2 implies Σ;~B |= P′1 ≤pr P1 and Σ;~B |= T2 ≤ty T ′2 .

It should be noted that there are no regularity conditions imposed on props (as it is not
expected for proofs to have any computational meaning).

There are two kinds of typing rules in ATSpf : p-typing rules and t-typing rules, where
the former is for assigning props to dynamic terms (encoding proofs) and the latter for as-
signing types to dynamic terms (to be evaluated). The typing rules for ATSpf are essentially
those for ATS0 listed in Figure 8 except for the following changes:

• Each occurrence of T in the rules for ATS0 needs to be replaced with T ∗.
• The premisses of each p-typing rule (that is, one for assigning a prop to a dynamic

term) are required to be p-typing rules themselves.

As an example, let us take a look at the following rule:

Σ;~B;∆ ` e : T Σ;~B |= T ≤ty T ′

Σ;~B;∆ ` e : T ′
(ty-sub)

which yields the following two valid versions:

Σ;~B;∆ ` e : P Σ;~B |= P≤pr P′

Σ;~B;∆ ` e : P′
(ty-sub-p)

Σ;~B;∆ ` e : T Σ;~B |= T ≤ty T ′

Σ;~B;∆ ` e : T ′
(ty-sub-t)

As another example, let us take a look at the following rule:

Σ;~B;∆ ` e : T1 ∗T2

Σ;~B;∆ ` fst(e) : T1
(ty-fst)

which yields the following two valid versions:

Σ;~B;∆ ` e : P1 ∗P2

Σ;~B;∆ ` fst(e) : P1
(ty-fst-pp)

Σ;~B;∆ ` e : T1 ∗T2

Σ;~B;∆ ` fst(e) : T1
(ty-fst-tt)
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Note that there is no type of the form T1 ∗P2 (for the sake of simplicity). The following
version is invalid:

Σ;~B;∆ ` e : P1 ∗T2

Σ;~B;∆ ` fst(e) : P1
(ty-fst-pt)

because a p-typing rule cannot have any t-typing rule as its premise. Instead, the following
typing rule is introduced as the elimination rule for P1 ∗T2:

Σ;~B;∆ ` e : P1 ∗T2 Σ;~B;∆,x1 : P1,x2 : T2 ` e0 : T0

Σ;~B;∆ ` let 〈x1,x2〉pt = e in e0 : T0
(ty-∗-elim-pt)

As yet another example, let us take a look at the following rule:

Σ;~B;∆ ` e1 : T ∗1 → T ∗2 Σ;~B;∆ ` e2 : T ∗1
Σ;~B;∆ ` app(e1,e2) : T ∗2

(ty-app)

which yields the following three versions:

Σ;~B;∆ ` e1 : P1→ P2 Σ;~B;∆ ` e2 : P1

Σ;~B;∆ ` apppp(e1,e2) : P2
(ty-app-pp)

Σ;~B;∆ ` e1 : P1→ T2 Σ;~B;∆ ` e2 : P1

Σ;~B;∆ ` apptp(e1,e2) : T2
(ty-app-tp)

Σ;~B;∆ ` e1 : T1→ T2 Σ;~B;∆ ` e2 : T1

Σ;~B;∆ ` apptt(e1,e2) : T2
(ty-app-tt)

The first one is a p-typing rule while the other two are t-typing rules.
In ATSpf , the two sorts bool and prop are intimately related but are also fundamentally

different. Gaining a solid understanding of the relation between these two is the key to
understanding the design of ATSpf . One may see prop as an internalized version of bool.
Given a static boolean term B, its truth value is determined by a constraint-solver outside
ATSpf . Given a static term P of the sort prop, a proof of P can be constructed inside ATSpf

to attest to the validity of the boolean term encoded by P. For clarification, let us see a
simple example illustrating the relation between bool and prop in concrete terms.

dataprop

fact_p(int, int) =

| fact_p_bas(0, 1) of ()

| {n:nat}{r:int}

fact_p_ind(n+1, (n+1)*r) of fact_p(n, r)

Fig. 11. A dataprop for encoding the factorial function

In Figure 11, the dataprop fact p declared in ATS is associated with two proof construc-
tors that are assigned the following c-types (or, more precisely, c-props):

fact p bas : fact p(0,1)
fact p ind : ∀n : nat.∀r : int. (fact p(n,r))⇒ fact p(n+1,(n+1)∗ r)

Let fact(n) be the value of the factorial function on n, where n ranges over natural numbers.
Given a natural number n and an integer r, the prop fact p(n,r) encodes the relation
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stacst

fact_b : (int, int) -> bool

praxi

fact_b_bas

(

// argless

) : [fact_b(0, 1)] unit_p

praxi

fact_b_ind{n:int}{r:int}

(

// argless

) : [n >= 0 && fact_b(n, r) ->> fact_b(n+1, (n+1)*r)] unit_p

Fig. 12. A static predicate and two associated proof functions

fact(n) = r. In other words, if a proof of the prop fact p(n,r) can be constructed, then
fact(n) equals r.

In Figure 12, a static predicate fact b is introduced, which corresponds to fact p. Given
a natural number n and an integer r, fact b(n,r) simply means fact(n) = r. The two proof
functions fact b bas and fact b ind are assigned the following c-props:

fact b bas : ()⇒ fact b(0,1)∧1
fact b ind : ∀n : int.∀r : int. ()⇒ (n≥ 0∧ fact b(n,r)⊃ fact b(n+1,(n+1) · r))∧1

where 1 is the unit prop (instead of the unit type) that encodes the static truth value true.
Note that the keyword praxi in ATS is used to introduce proof functions that are treated as
axioms.

In Figure 13, a verified implementation of the factorial function is given in ATS. Given
a natural numbers n, f fact p returns an integer r paired with a proof of fact p(n,r) that
attests to the validity of fact(n) = r. Note that this implementation makes explicit use of
proofs. The constraints generated from type-checking the code in Figure 13 are quantifier-
free, and they can be readily solved by the built-in constraint-solver (based on linear integer
programming) for ATS.

In Figure 14, another verified implementation of the factorial function is given in ATS.
Given a natural numbers, f fact b returns an integer r plus the assertion fact b(n,r) that
states fact(n) = r. This implementation does not make explicit use of proofs. Applying the
keyword $solver assert to a proof turns the prop of the proof into a static boolean term
(of the same meaning) and then adds the term as an assumption to be used for solving the
constraints generated subsequently in the same scope. For instance, the two applications of
$solver assert essentially add the following two assumptions:

fact b(0,1)
∀n : int.∀r : int. n≥ 0∧ fact b(n,r)⊃ fact b(n+1,(n+1) · r)

Note that the second assumption is universally quantified. In general, solving constraints
involving quantifiers is much more difficult than those that are quantifier-free. For instance,
the constraints generated from type-checking the code in Figure 14 cannot be solved by
the built-in constraint-solver for ATS. Instead, these constraints need to be exported so that
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fun

f_fact_p

{n:nat}

(

n: int(n)

) : [r:int]

(fact_p(n, r) | int(r)) = let

//

fun

loop

{ i:nat

| i <= n

} {r:int}

(

pf: fact_p(i, r)

| i: int(i), r: int(r)

) : [r:int] (fact_p(n, r) | int(r)) =

if i < n then

loop(fact_p_ind(pf) | i+1, (i+1)*r) else (pf | r)

// end of [if]

//

in

loop(fact_p_bas() | 0(*i*), 1(*r*))

end // end of [f_fact_p]

Fig. 13. A verified implementation of the factorial function

fun

f_fact_b

{n:nat}

(

n: int(n)

) : [r:int]

(fact_b(n, r) && int(r)) = let

//

prval() = $solver_assert(fact_b_bas)

prval() = $solver_assert(fact_b_ind)

//

fun

loop

{ i:nat | i <= n}

{ r:int | fact_b(i, r) }

(

i: int(i), r: int(r)

) : [r:int]

(fact_b(n, r) && int(r)) =

if i < n then loop(i+1, (i+1)*r) else (r)

//

in

loop(0, 1)

end // end of [f_fact_b]

Fig. 14. Another verified implementation of the factorial function
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external constraint-solvers (for instance, one based on the Z3 theorem-prover (de Moura &
Bjørner, 2008)) can be invoked to solve them.

By comparing these two verified implementations of the factorial function, one sees a
concrete case where PwTP (as is done in Figure 13) is employed to simplify the constraints
generated from type-checking. This kind of constraint simplification through PwTP is a
form of internalization of constraint-solving, and it can often play a pivotal rôle in practice,
especially, when there is no effective method available for solving general unsimplified
constraints.

Instead of assigning (call-by-value) dynamic semantics to the dynamic terms in ATSpf

directly, a translation often referred to as proof-erasure is to be defined that turns each
dynamic term in ATSpf into one in ATS0 of the same dynamic semantics.

Given a sort σ , its proof-erasure |σ | is the one in which every occurrence of prop in σ

is replaced with bool.
Given a static variable context Σ, its proof-erasure |Σ| is obtained from replacing each

declaration a : σ with a : |σ |.
For every static constant scx of the c-sort (σ1, . . . ,σn)⇒ σ , it is assumed that there

exists a corresponding scx′ of the c-sort (|σ1|, . . . , |σn|)⇒ |σ |; this corresponding scx′ may
be denoted by |scx|. Note that it is possible to have |scx1| = |scx2| for different constants
scx1 and scx2.

Let us assume the existence of the following static constants:

∧ : (bool,bool)⇒ bool
⊃ : (bool,bool)⇒ bool
∀σ : (σ → bool)⇒ bool
∃σ : (σ → bool)⇒ bool

Note that the symbols referring to these static constants are all overloaded. Naturally, ∧
and ⊃ are interpreted as the boolean conjunction and boolean implication, respectively,
and ∀σ and ∃σ are interpreted as the standard universal quantification and existential
quantification, respectively. For instance, some pairs of corresponding static constants are
listed as follows:

• The boolean implication function ⊃ corresponds to the prop predicate ≤pr.
• The boolean implication function ⊃ corresponds to the prop constructor → of the

c-sort (prop,prop)⇒ prop.
• The boolean implication function ⊃ corresponds to the prop constructor ⊃ of the

c-sort (bool,prop)⇒ prop.
• The boolean conjunction function ∧ corresponds to the prop constructor ∗ of the

c-sort (prop,prop)⇒ prop.
• The boolean conjunction function ∧ corresponds to the prop constructor ∧ of the

c-sort (bool,prop)⇒ prop.
• The type constructor ∧ of the c-sort (bool, type)⇒ type corresponds to the type

constructor ∗ of the c-sort (prop, type)⇒ type.
• The type constructor ⊃ of the c-sort (bool, type)⇒ type corresponds to the type

constructor→ of the c-sort (prop, type)⇒ type.
• For each sort σ , the universal quantifier ∀σ of the sort (σ → bool)⇒ bool corre-

sponds to the universal quantifier ∀σ of the sort (σ → prop)⇒ prop.
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|x| = x
|dcx{~s}(~e)| = dcx{|~s|}(|~e|)
|〈e1,e2〉pt| = ∧(|e2|)
|〈e1,e2〉tt| = 〈|e1|, |e2|〉tt
|fst(e)| = fst(|e|)
|snd(e)| = snd(|e|)

|let 〈xp,xt〉pt = e1 in e2| = let ∧(xt) = |e1| in |e2|
|lampt x. e| = ⊃+(|e|)
|lamtt x. e| = lam x.|e|

|apptp(e1,e2)| = ⊃−(|e1|)
|apptt(e1,e2)| = app(|e1|, |e2|)
| ⊃+(e)| = ⊃+(|e|)
| ⊃−(e)| = ⊃−(|e|)
|∧(e)| = ∧(|e|)

|let ∧(x) = e1 in e2| = let ∧(x) = |e1| in |e2|
|slam a.e| = slam a. |e|
|sapp(e,s)| = sapp(|e|, |s|)

Fig. 15. The proof-erasure function | · | on dynamic terms

• For each sort σ , the existential quantifier ∃σ of the sort (σ → bool)⇒ bool corre-
sponds to the existential quantifier ∃σ of the sort (σ → prop)⇒ prop.

For every static term s, |s| is the static term obtained from replacing in s each σ with |σ |
and each scx with |scx|.

Proposition 4.1
Assume that Σ ` s : σ is derivable. Then |Σ| ` |s| : |σ | is also derivable.

Proof
By induction on the sorting derivation of Σ ` s : σ .

For a sequence ~B of static boolean terms, |~B| is the sequence obtained from applying | · |
to each B in ~B.

There are two functions | · |p and | · |t for mapping a given dynamic variable context ∆ to
a sequence of boolean terms and a dynamic variable context, respectively:

• |∆|p is a sequence of boolean terms ~B such that each B in ~B is |P| for some a : P
declared in Σ.

• |∆|t is a dynamic variable context such each declaration in it is of the form a : |T | for
some a : T declared in Σ.

The proof-erasure function on dynamic terms is defined in Figure 15. Clearly, given a
dynamic term e in ATSpf , |e| is a dynamic term in ATS0 if it is defined.

As the proof-erasure of ≤pr is chosen to be the boolean implication function, it needs to
be assumed that Σ;~B ` P1 ≤pr P2 implies |Σ|; |~B| ` |P1| ⊃ |P2|

Lemma 4.1 (Constraint Internalization)
Assume that the typing judgment Σ;~B;∆ ` e : P is derivable in ATSpf . Then the constraint
|Σ|; |~B|, |∆|p |= |P| holds.

Proof
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By structural induction on the typing derivation D of Σ;~B;∆ ` e : P. Note that the typing
rule (ty-sub-p) is handled by the assumption that Σ;~B ` P1 ≤pr P2 implies |Σ|; |~B| ` |P1| ⊃
|P2| for any props P1 and P2.

• Assume that the last applied rule in D is (ty-tup-pp):

D1 :: Σ;~B;∆ ` e1 : P1 D2 :: Σ;~B;∆ ` e2 : P2

Σ;~B;∆ ` 〈e1,e2〉pp : P1 ∗P2
(ty-tup-pp)

where P = P1 ∗P2. By induction hypothesis on D1, |Σ|; |~B|, |∆|p |= |P1| holds. By
induction hypothesis on D2, |Σ|; |~B|, |∆|p |= |P2| holds. Note that |P| = |P1 ∗P2| =
|P1|∧|P2|, where ∧ stands for the boolean conjunction. Therefore, |Σ|; |~B|, |∆|p |= |P|
holds.
• Assume that the last applied rule in D is either (ty-fst-pp) or (ty-snd-pp). This case

immediately follows from the fact that |P1 ∗P2|= |P1|∧ |P2| for any props P1 and P2,
where ∧ stands for the boolean conjunction
• Assume that the last applied rule in D is (ty-lam-pp):

D1 :: Σ;~B;∆,x1 : P1 ` e2 : P2

Σ;~B;∆ ` lampp x1. e2 : P1→ P2
(ty-lam-pp)

where P = P1→ P2. By induction hypothesis on D1, |Σ|; |~B|, |∆|p, |P1| |= |P2| holds.
By the regularity rule (reg-cut), |Σ|; |~B|, |∆|p |= |P2| holds whenever |Σ|; |~B|, |∆|p |=
|P1| holds. Therefore, |Σ|; |~B|, |∆|p |= |P1| ⊃ |P2| holds, where⊃ stands for the boolean
implication. Note that |P|= |P1| ⊃ |P2|, and this case concludes.
• Assume that the last applied rule in D is (ty-app-pp):

D1 :: Σ;~B;∆ ` e1 : P1→ P2 D2 :: Σ;~B;∆ ` e2 : P1

Σ;~B;∆ ` apppp(e1,e2) : P2
(ty-app-pp)

where P = P2. By induction hypothesis on D1, |Σ|; |~B|, |∆|p |= |P1| ⊃ |P2| holds,
where ⊃ stands for the boolean implication. By induction hypothesis on D2, the
constraint |Σ|; |~B|, |∆|p |= |P1| holds. Therefore, the constraint |Σ|; |~B|, |∆|p |= |P2| also
holds.

The rest of the cases can be handled similarly.

Note that a proof in ATSpf can be non-constructive as it is not expected for the proof to have
any computational meaning. In particular, one can extend the proof construction in ATSpf

with any kind of reasoning based on classical logic (e.g., double negation elimination).
If a c-type CT assigned to a dynamic (proof) constant is of the form ∀Σ.~B ⊃ (~P)⇒ P0,

then it is assumed that the following constraint holds in ATS0:

/0; /0 |= ∀|Σ|.|~B| ⊃ (|~P| ⊃ |P0|)

For instance, the c-types assigned to fact p bas and fact p ind imply the validity of
the following constraints:

/0; /0 ` fact b(0,1)
/0; /0 ` ∀n : int.∀r : int. (n≥ 0∧ fact b(n,r)⊃ fact b(n+1,(n+1) · r))
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which are encoded directly into the c-types assigned to fact b bas and fact b ind.
If a c-type CT is of the form ∀Σ.~B⊃ (~P,T1, . . . ,Tn)⇒ T0, then |CT| is defined as follows:

∀|Σ|.|~B| ⊃ (|~P| ⊃ ((|T1|, . . . , |Tn|)⇒ |T0|))

If a dynamic constant dcx is assigned the c-type CT in ATSpf , then it is assumed to be of
the c-type |CT| in ATS0.

Theorem 4.1
Assume that Σ;~B;∆ ` e : T is derivable in ATSpf . Then |Σ|; |~B|, |∆|p; |∆|t ` |e| : |T | is
derivable in ATS0,

Proof
By structural induction on the typing derivation D of Σ;~B;∆ ` e : T .

• Assume that the last applied rule in D is (ty-∗-elim-pt):

D1 :: Σ;~B;∆ ` e12 : P1 ∗T2 D2 :: Σ;~B;∆,x1 : P1,x2 : T2 ` e0 : T0

Σ;~B;∆ ` let 〈x1,x2〉pt = e12 in e0 : T0
(ty-∗-elim-pt)

where e is let 〈x1,x2〉pt = e12 in e0 and T = T0. By induction hypothesis on D1, there
exists the following derivation in ATS0:

D ′1 :: |Σ|; |~B|, |∆|p; |∆|t ` |e12| : |P1|∧ |T2|

By induction hypothesis on D2, there exists the following derivation in ATS0:

D ′2 :: |Σ|; |~B|, |∆|p, |P1|; |∆|t ,x2 : |T2| ` |e0| : |T0|

Applying the rule (ty-∧-elim) to D ′1 and D ′2 yields the following derivation:

D ′ :: |Σ|; |~B|, |∆|p; |∆|t ` let ∧(x2) = |e12| in |e0| : |T0|

Note that |e| equals let ∧(x2) = |e12| in |e0|, and the case concludes.
• Assume that the last applied rule in D is (ty-app-tp):

D1 :: Σ;~B;∆ ` e1 : P1→ T2 D2 :: Σ;~B;∆ ` e2 : P1

Σ;~B;∆ ` apptp(e1,e2) : T2
(ty-app-tp)

where e is apptp(e1,e2) and T = T2. By induction hypothesis on D1, there exists the
following derivation in ATS0:

D ′1 :: |Σ|; |~B|, |∆|p; |∆|t ` |e1| : |P1| ⊃ |T2|

Applying Lemma 4.1 to D2 yields that the constraint |Σ|; |~B|, |∆|p; |∆|t ` |P1| is valid.
Applying the rule (ty-⊃-elim) to D ′1 and the valid constraint yields the following
derivation:

|Σ|; |~B|, |∆|p; |∆|t `⊃−(|e1|) : |T2|
Note that |e| equals ⊃−(|e1|), and the case concludes.

The rest of the cases can be handled similarly.

By Theorem 4.1, the proof-erasure of a program is well-typed in ATS0 if the program
itself is well-typed in ATSpf . In other words, Theorem 4.1 justifies PwTP in ATSpf as an
approach to internalizing constraint-solving through explicit proof-construction.
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5 Related Work and Conclusion

Constructive type theory, which was originally proposed by Martin-Löf for the purpose of
establishing a foundation for mathematics, requires pure reasoning on programs. Gener-
alizing as well as extending Martin-Löf’s work, the framework Pure Type System (PTS)
offers a simple and general approach to designing and formalizing type systems. However,
type equality depends on program equality in the presence of dependent types, making it
highly challenging to accommodate effectful programming features as these features often
greatly complicate the definition of program equality (Constable & Smith, 1987; Mendler,
1987; Honsell et al., 1995; Hayashi & Nakano, 1988).

The framework Applied Type System (ATS) (Xi, 2004) introduces a complete separation
between statics, where types are formed and reasoned about, and dynamics, where pro-
grams are constructed and evaluated, thus eliminating by design the need for pure reasoning
on programs in the presence of dependent types. The development of ATS primarily unifies
and also extends the previous studies on both Dependent ML (DML) (Xi & Pfenning,
1999; Xi, 2007) and guarded recursive datatypes (Xi et al., 2003). DML enriches ML
with a restricted form of dependent datatypes, allowing for specification and inference of
significantly more precise type information (when compared to ML), and guarded recursive
datatypes can be thought of as an impredicative form of dependent types in which type
indexes are themselves types. Given the similarity between these two forms of types, it is
only natural to seek a unified presentation for them. Indeed, both DML-style dependent
types and guarded recursive datatypes are accommodated in ATS.

In terms of theorem-proving, there is a fundamental difference between ATS and various
theorem-proving systems such as NuPrl (Constable et al. , 1986) (based on Martin-Löf’s
constructive type theory) and Coq (Dowek et al., 1993) (based on the calculus of construc-
tion (Coquand & Huet, 1988)). In ATS, proof construction is solely meant for constraint
simplification and proofs are not expected to contain any computational meaning. On the
other hand, proofs in NuPrl and Coq are required to be constructive as they are meant for
supporting program extraction.

The theme of combining programming with theorem-proving is also present in the
programming language Ωemga (Sheard, 2004). The type system of Ωemga is largely
built on top of a notion called equality constrained types (a.k.a. phantom types (Cheney
& Hinze, 2003)), which are closely related to the notion of guarded recursive datatypes (Xi
et al., 2003). In Ωemga, there seems no strict separation between programs and proofs. In
particular, proofs need to be constructed at run-time. In addition, an approach to simulating
dependent types through the use of type classes in Haskell is given in (McBride, 2002),
which is casually related to proof construction in the design of ATS. Please also see (Chen
et al., 2004) for a critique on the practicality of simulating dependent types in Haskell.

In summary, a framework ATS is presented in this paper to facilitate the design and
formalization of type systems to support practical programming. With a complete separa-
tion between statics and dynamics, ATS removes by design the need for pure reasoning
on programs in the presence of dependent types. Additionally, ATS allows programming
and theorem-proving to be combined in a syntactically intertwined manner, providing the
programmer with an approach to internalizing constraint-solving through explicit proof-
construction. In this paper, ATS0 as a minimalist formulation of ATS is presented and
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its type-soundness formally established. Subsequently, ATS0 is extended to ATSpf so as
to support programming with theorem-proving, and the correctness of this extension is
proven based on a translation often referred to as proof-erasure, which turns each well-
typed program in ATSpf into a corresponding well-typed program in ATS0 of the same
dynamic semantics.
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