
Combining Programming with Theorem Proving ∗

Chiyan Chen Hongwei Xi
Boston University

{chiyan, hwxi}@cs.bu.edu

Abstract
Applied Type System (ATS) is recently proposed as a framework
for designing and formalizing (advanced) type systems in support
of practical programming. InATS, the definition of type equality
involves a constraint relation, which may or may not be algorith-
mically decidable. To support practical programming, we adopted
a design in the past that imposes certain restrictions on the syntac-
tic form of constraints so that some effective means can be found
for solving constraints automatically. Evidently, this is a ratherad
hoc design in its nature. In this paper, we rectify the situation by
presenting a fundamentally different design, which we claim to be
both novel and practical. Instead of imposing syntactical restric-
tions on constraints, we provide a means for the programmer to
construct proofs that attest to the validity of constraints. In particu-
lar, we are to accommodate a programming paradigm that enables
the programmer to combine programming with theorem proving.
Also we present some concrete examples in support of the practi-
cality of this design.

Categories and Subject DescriptorsD.3 [Software]: Program-
ming Languages

General Terms Languages, Verification

Keywords ATS, Applied Type System, Dependent Types, Proof
Erasure, Theorem Proving

1. Introduction
The notion of type equality plays a pivotal rôle in type system
design. However, the importance of this role is often less evident
in commonly studied type systems. For instance, in the simply
typed λ-calculus, two types are considered equal if and only if
they are syntactically the same; in the second-order polymorphic
λ-calculus, two types are considered equal if and only if they
areα-equivalent; in the higher-order polymorphicλ-calculus, two
types are considered equal if and only if they areβη-equivalent.
The situation immediately changes in the frameworkApplied Type
System(ATS) [25, 27], and we now use a simple example to stress
this point.

In Figure 1, we implement a function in ATS (via a form of
syntax rather similar to that of Standard ML [12]), where ATS is

∗Partially supported by NSF grant no. CCR-0229480

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

fun append {a:type, m:nat, n:nat}
(xs: list(a,m), ys: list(a,n)): list(a,m+n) =

case xs of
| nil => ys (* the first clause *)
| cons (x, xs) => (* the second clause *)

cons (x, append (xs, ys))

Figure 1. A simple function in ATS

a programming language with its type system rooted inATS. We
uselist as a type constructor; when applied to a typeT and an
integerI, list(T, I) forms a type for lists of lengthI in which each
element is of typeT . Also, the two list constructorsnil andcons
are assigned the following types:

nil : ∀a : type.list(a, 0)
cons : ∀a : type.∀n : nat .(a, list(a, n)) → list(a, n + 1)

The header of the functionappend indicates thatappend is as-
signed the following type:

∀a : type.∀m : nat .∀n : nat .
(list(a, m), list(a, n)) → list(a, m + n)

which means thatappend returns a list of lengthm + n when
applied to two lists of lengthm andn, respectively. Note thattype
is a built-in sort inATS, and a static term of the sorttype stands
for a type. Also,int is a built-in sort for integers inATS, andnat
is an abbreviation of the subset sort{a : int | a ≥ 0} for all
nonnegative integers.

When type-checking the definition ofappend , we essentially
need to generate the following two constraints:

1. ∀m : nat.∀n : nat.m = 0 ⊃ n = m + n
2. ∀m : nat.∀n : nat.∀m′ : nat.

m = m′ + 1 ⊃ (m′ + n) + 1 = m + n

The first constraint is generated when the first clause is type-
checked, which is needed for determining that the typeslist(a, n)
andlist(a, m + n) are equal under the assumption thatlist(a, m)
equals list(a, 0). Similarly, the second constraint is generated
when the second clause is type-checked, which is needed for deter-
mining that the typeslist(a, (m′ +n)+1) andlist(a, m+n) are
equal under the assumption thatlist(a, m) equalslist(a, m′ +1).
Clearly, we need to impose certain restrictions on the form of
constraints allowed in practice so that an effective means can be
found to solve constraints. In ATS, we require that (arithmetic)
constraints like those presented above be linear,1 and we rely on
a constraint solver based on the Fourier-Motzkin variable elimina-
tion method [6] to solve such constraints. While this is indeed a

1 More precisely, we require that an arithmetic constraint can be turned into
a linear integer programming problem.

datasort mynat = Z | S of mynat

datatype myadd (mynat, mynat, mynat) =
| {n: mynat} Bas (Z, n, n)
| {m: mynat, n: mynat, s: mynat}

Ind (S m, n, S s) of myadd (m, n, s)

datatype mylist (type, mynat) =
| {a: type} mynil (a, Z)
| {a: type, n: mynat}

mycons (a, S n) of (a, mylist (a, n))

// {...} : universal quantifier
// [...] : existential quantifier
fun myappend {a:type, m:mynat, n:mynat, s:mynat}

(xs: mylist (a, m), ys: mylist (a, n))
: [s: mynat] ’(myadd (m, n, s), mylist (a, s)) =
case xs of

| mynil => ’(Bas, ys)
| mycons (x, xs) =>

let val ’(pf, zs) = myappend (xs, ys) in
’(Ind pf, mycons (x, zs))

end

Figure 2. A motivating example

simple design, it can also be too restrictive, sometimes, in a situa-
tion where nonlinear constraints (e.g.,∀n : int. n ∗n ≥ 0) need to
be handled. Furthermore, such a design is inherentlyad hocin its
nature.

In this paper, we present a fundamentally different design. We
are to provide a means for the programmer to handle nonlinear con-
straints by constructing explicit proofs (while linear constraints are
still solved by a constraint solver). For a simpler presentation, let us
assume for this moment that even the addition function on integers
is not allowed in forming constraints. Under such a restriction, we
can still implement a list append function that is assigned a type
capturing the invariant that the length of the concatenation of two
given listsxs andys equalsm + n if xs andys are of lengthm
andn, respectively. For instance, this is achieved by the code in
Figure 2, and we provide some explanation for it as follows.

In Figure 2, we first declare a datasortmynat for forming
terms that can be used as type index expressions. We then declare
a datatype constructormyadd such thatmyadd forms a type
myadd(s1, s2, s3) when applied to three static termss1, s2, s3 of
the sortmynat . The syntax indicates that there are two value con-
structors associated withmyadd, which are given the following
types:

Bas : ∀a : mynat . myadd(Z, a, a)
Ind : ∀a1 : mynat .∀a2 : mynat .∀a3 : mynat .

myadd(a1, a2, a3) → myadd(S(a1), a2, S(a3))

Given static termss1, s2, s3 of the sortmynat , it is easy to see that
there exists a closed value of the typemyadd(s1, s2, s3) if and
only if |s1|+ |s2| = |s3|, where we use|s| for the number of occur-
rences ofS in s (which is assumed to be closed). We next declare
a datatype constructormylist, which forms a typemylist(T, s)
when applied to a typeT and a terms of the sortmynat . Note that
the two constructorsmynil andmyconsare assigned the following
types:

mynil : ∀a : type. mylist(a, Z)
mycons : ∀a : type.∀n : mynat .

(a,mylist(a, n)) → mylist(a, S(n))

Thus, given a typeT and a terms of the sortmynat , the type
mylist(T, s) is for lists of length|s| in which each element is of
typeT . Lastly, we define a functionmyappend, which is given the
following type:

∀a : type.∀a1 : mynat .∀a2 : mynat .
(mylist(a, a1),mylist(a, a2)) →
∃a3 : mynat .(myadd(a1, a2, a3),mylist(a, a3))

Note that we use′(. . .) in the concrete syntax to form tuple types
as well as tuples, and the quote symbol (′) is solely for the purpose
of parsing. Given two listsxs andys of typesmylist(T, s1) and
mylist(T, s2), respectively, for some typeT and termss1 ands2

of the sortmynat , myappendreturns a pair(pf , zs) such thatpf
is a value of typemyadd(s1, s2, s3) for some terms3 of the sort
mynat andzs is a list of typemylist(a, s3); the valuepf , which
we call awitnessing value, essentially serves as a witness to the fact
that |s3| = |s1| + |s2|, that is, the length ofzs is the sum of the
lengths ofxs andys.

So far, what we have described can already be implemented in
Dependent ML (DML) [21]. Certainly, the programming style as
is presented in Figure 2 is more involved than the usual functional
programming style. However, this is not so much a concern as we
expect to make only occasional use of this programming style. In
particular, we emphasize that the programmer can choose not to
program in such a style by simply avoiding capturing certain pro-
gram invariants. What is of real concern is the need for constructing
witnessing values (e.g.,pf in the definition ofmyappend) at run-
time. For instance, we have a realistic example (array subscripting
function) where the underlying algorithm isO(1)-time but an in-
volved witnessing value takesO(n)-time to construct. This is sim-
ply unacceptable in practice.

The primary contribution of the paper lies in the novel pro-
gramming language design we propose that allows programs to
be combined with proofs while obviating the need for construct-
ing witnessing values at run-time. With this design, we save not
only time but also space when evaluating programs (that contain
proofs). More importantly, we become able to verify at compile-
time the correctness of witnessing values, that is, these values in-
deed witness the facts they are supposed to witness. Though we
only combine programming with proofs from a particular proof
system (based on intuitionistic predicate logic) in this paper, we
stress that the design itself is general and flexible in its nature. For
instance, we also support in ATS the construction of proofs based
a form of linear logic (closely related to separation logic [17] for
establishing properties on memory) [30]. In support of the practi-
cality of this design, we have finished a running implementation of
ATS [27] and written tens of thousands lines of code in ATS itself2,
where a significant part is involved, either directly or indirectly,
with proof construction.

At this point, we stress that this design for combining program-
ming with theorem proving is fundamentally different from the
programming paradigm (as is supported in certain theorem prov-
ing systems such as NuPrl [4] and Coq [7]) in which (total) pro-
grams are extracted out of proofs. In ATS, program construction
may involve programming constructs such as general recursion and
nonexhaustive pattern matching that are in principle not allowed in
proof construction. The distinction between proofs and programs
we propose is partly inspired by the distinction between logical
parts and informative parts employed in extracting programs out of
proofs in Coq [14]. However, there is also a profound difference:
We allow proofs in programs but not programs in proofs while log-
ical parts may contain informative parts and vice versa. In partic-

2 The library of ATS alone already contains more than 20,000 lines of code
in ATS at this moment.

ular, we extract nothing out of proofs, which are simply erased at
run-time. This will be further illustrated later with some concrete
examples.

Also, we emphasize that combining programming with theorem
proving is not just a simple matter of hooking up programming
languages with (automated) theorem provers. After all, we have
so far not seen it done elsewhere effectively in practice. Thus,
we consider a design that actually supports practical programming
with theorem programming to be an important contribution.

The rest of the paper is organized as follows. In Section 2, we
demonstrate an approach to combining programs with proofs in the
design and formalization of a languageλpf , setting up some ma-
chinery for further development. In order to reap the benefits of
combining programs with proofs, we extendλpf to λ∀,∃

pf in Sec-
tion 3 by introducing universally as well as existentially quantified
types. We then present a few examples in Section 4 to give the
reader some concrete feel as to how the approach to combining
programs with proofs can be applied in practice. Lastly, we men-
tion some related work and conclude.

There is a full version of the paper available on-line [1] in which
more details such as proofs and examples can be found.

2. Formal Development
In this section, we present a typed languageλpf , formally demon-
strating a design for combining programs with proofs. The lan-
guageλpf , which is essentially built on top of the simply typed
λ-calculus, is not intended for demonstrating some practical appli-
cations of combining programs with proofs as such applications are
difficult to find until dependent types are introduced. The primary
purpose ofλpf is to set up the machinery needed for further devel-
opment.

The syntax ofλpf is given in Figure 3. There are proof terms
and dynamic terms inλpf , and we are to present rules for assigning
types to these terms. In order to avoid potential confusion, the types
for proof terms are calledprops. We useP for props,d for proof
terms andv for proof values. Also, we useΠ for contexts in which
proof variables are declared. The rules for assigning props to proof
terms are given in Figure 4, where we use a judgment of the form
Π ` d : P to mean thatd can be given the propP under the context
Π. We useT for types,d for dynamic terms andv for dynamic
values. There are two forms of dynamic variables:x and f ; we
use the nameslam-variableand fix-variable to refer tox andf ,
respectively; the former is a value while the latter is not. We may
write xf to mean either a lam-variable or a fix-variable.

Intuitively, a type of the formP ∗ T is to be assigned to a value
of the form〈v, v〉 such thatv is a proof value of propP andv is
a dynamic value of typeT ; therefore, if a value of typeP ∗ T is
produced, then we know that the propP holds. Also, a type of the
form P → T is to be assigned to a value of the formlam x.v,
which can only be of use if a proof of propP is made available.
For those who are familiar with the recently proposed framework
ATS [25, 27], these two forms of types are closely related to but
different from asserting types and guarded types inATS.

The typing judgment inλpf is of the formΠ;∆ ` d : T , where
we use∆ for contexts in which dynamic variables are declared, and
the rules for deriving such typing judgments are given in Figure 5.

We now assign dynamic semantics to dynamic terms. For doing
so, we also need to assign dynamic semantics to proof terms.
As usual, we first introduce the notion of evaluation contexts in
Figure 3. Given a proof evaluation contextE, we write E[d] for
the proof term obtained from replacing the hole[] in E with d.
Given a dynamic evaluation contextE, we know that it contains
a hole which is either[] or []; in the former case, we writeE[d]

for the dynamic term obtained from replacing[] in E with d; in

Π, x : P ` x : P
(pr-var)

Π ` 〈〉 : 1
(pr-unit)

Π ` d1 : P1 Π ` d2 : P2

Π ` 〈d1, d2〉 : P1 ∗ P2

(pr-tup)

Π ` d : P1 ∗ P2

Π ` fst(d) : P1

(pr-fst)

Π ` d : P1 ∗ P2

Π ` snd(d) : P2

(pr-snd)

Π, x : P1 ` d : P2

Π ` lam x.d : P1 → P2
(pr-lam)

Π ` d1 : P1 → P2 Π ` d2 : P1

Π ` app(d1, d2) : P2

(pr-app)

Figure 4. The rules for assigning props to proof terms inλpf

the latter case, we we writeE[d] for the dynamic term obtained
from replacing[] in E with d. We next introduce proof redexes and
dynamic redexes.

DEFINITION 2.1. We define proof redexes and dynamic redexes as
follows.

• fst(〈v1, v2〉) is a proof redex, and its reduction isv1.
• snd(〈v1, v2〉) is a proof redex, and its reduction isv2.
• app(lam x.d, v) is a proof redex, and its reduction isd[x 7→

v].
• let 〈x, x〉 = 〈v, v〉 in d is a dynamic redex, and its reduction is

d[x 7→ v][x 7→ v].
• app(lam x.d, v) is a dynamic redex, and its reduction isd[x 7→

v].
• let x = v in d is a dynamic redex, and its reduction is

d[x 7→ v].
• fst(〈v1, v2〉) is a dynamic redex, and its reduction isv1.
• snd(〈v1, v2〉) is a dynamic redex, and its reduction isv2

• app(lam x.d, v) is a dynamic redex, and its reduction isd[x 7→
v].

• let x = v in d is a dynamic redex, and its reduction is
d[x 7→ v].

• fix f.d is a dynamic redex, and its reduction isd[f 7→ fix f.d].

We leave out the details on the (standard) substitution involved in
the above definition.

Givend1 andd2 such thatd1 = E[d] andd2 = E[d′] for some
proof redexd and its reductiond′, we writed1 → d2 and say that
d1 reduces tod2 in one step. Givend1 andd2, we writed1 → d2

and say thatd1 reduces tod2 in one step if (1)d1 = E[d1] and
d2 = E[d2] for somed1 → d2 or (2) d1 = E[d] andd2 = E[d′]
for some dynamic redexd and its reductiond′. We use →∗

and→∗ for the reflexive and transitive closures of→ and→,
respectively.

The type soundness ofλpf can be established in a standard
manner, and some of the lemmas and theorems involved are given
as follows. Please see [1] for details on proofs.

LEMMA 2.2 (Substitution).We have the following:

1. Assume thatΠ ` d1 : P1 and Π, x : P1 ` d2 : P2 are
derivable. ThenΠ ` d2[x 7→ d1] : P2 is also derivable.

props P ::= 1 | P1 ∗ P2 | P1 → P2

proof terms d ::= x | 〈〉 | 〈d1, d2〉 | fst(d) | snd(d) | lam x.d | app(d1, d2)

proof values v ::= x | 〈v1, v2〉 | lam x.d

proof var. ctx. Π ::= ∅ | Π, x : P

types T ::= 1 | P ∗ T | P → T | T1 ∗ T2 | T1 → T2

dynamic terms d ::= x | f | 〈〉 | 〈d, d〉 | let 〈x, x〉 = d1 in d2 |
lam x.v | app(d, d) | let x = d in d |
〈d1, d2〉 | fst(d) | snd(d) | lam x.d | app(d1, d2) |
let x = d1 in d2 | fix f.d

dynamic values v ::= x | 〈v, v〉 | lam x.v | 〈v1, v2〉 | lam x.d

dynamic var. ctx. ∆ ::= ∅ | ∆, x : T

proof eval. ctx. E ::= [] | 〈E, d〉 | 〈v, E〉 | fst(E) | snd(E) | app(E, d) | app(v, E)

dynamic eval. ctx. E ::= [] | 〈[], d〉 | 〈v, E〉 | let 〈x, x〉 = E in d | app(E, d) | app(v, []) | let x = [] in d

〈E, d〉 | 〈v, E〉 | fst(E) | snd(E) | app(E, d) | app(v, E) | let x = E in d

Figure 3. The syntax forλpf

2. Assume thatΠ ` d : P andΠ, x : P ;∆ ` d : T are derivable.
ThenΠ;∆ ` d[x 7→ d] : T is also derivable.

3. Assume thatΠ;∆ ` d1 : T1 andΠ;∆, x : T1 ` d2 : T2 are
derivable. ThenΠ;∆ ` d2[x 7→ d1] : T2 is also derivable.

THEOREM 2.3 (Totality). Assume that∅ ` d : P is derivable.
Thend→∗ v holds for some proof valuev of propP .

THEOREM 2.4 (Subject Reduction).Assume that∅; ∅ ` d : T is
derivable andd → d′ holds. Then∅; ∅ ` d′ : T is also derivable.

THEOREM 2.5 (Progress).Assume that∅; ∅ ` d : T is derivable.
Then eitherd is a value ord → d′ holds for some dynamic termd′.

We are now ready to establish a key property ofλpf , which
states that proof termscannotaffect the dynamic semantics of a
dynamic term. We first introduce an erasure function in Figure 6,
which erases all syntax related to proof terms in a given dynamic
term. The following theorem indicates that the evaluation of a
well-typed closed dynamic termd can be performed by simply
evaluating the erasure ofd, thus obviating the need for constructing
proof values at run-time.

THEOREM 2.6. Assume that∅; ∅ ` d : T is derivable.

1. If d →∗ v, then|d| →∗ |v|.
2. If |d| →∗ v, thend →∗ v′ for some dynamic valuev′ such that
|v′| = v.

Note that Theorem 2.3 plays a crucial rôle in the proof of Theo-
rem 2.6.

3. Extension
While the basic design for combining programs with proofs is
already demonstrated in the formalization ofλpf , it is nonetheless
difficult to truly reap the benefits of this design given that the type
system ofλpf is simply too limited. We now extendλpf to λ∀,∃

pf

with universally as well as existentially quantified types. Following
the work in [25, 27], we present in the rest of this section an
overview of this extension.

Like an applied type system [25], that is, a type system formed
in the frameworkATS, λ∀,∃

pf consists of a static component (statics)
and a dynamic component (dynamics). The (additional) syntax
for λ∀,∃

pf is given in Figure 7. The statics itself is a simply typed
language and a type in it is calledsort. We assume the existence

of the following basic sorts:bool , int , prop andtype; bool is the
sort for truth values, andint is the sort for integers, andprop is
the sort for props, andtype is the sort for types. We usea for static
variables,b for truth valuestt and ff, andi for integers. A terms
in the statics is called a static term, and we writeΣ ` s : σ to
mean thats can be given the sortσ under the contextΣ, which
assigns sorts to static variables. The rules for assigning sorts to
static terms are omitted as they are completely standard. In this
presentation, a static terms is either a static boolean termB of the
sort bool , or a static integerI of the sortint , or a propP of the
sort prop, or a typeT of the sorttype. In practice, we allow the
programmer to introduce new sorts through datasort declarations,
which are rather similar to datatype declarations in ML. We assume
some primitive functionscB andcI when forming static terms of
the sortsbool and int ; for instance, we can form terms such as
I1 + I2, I1 − I2, I1 ≤ I2, ¬B, B1 ∧ B2, etc. We useB for a
sequence of static boolean terms andΣ; B |= B for a constraint
that means for any substitutionΘ : Σ, if each static boolean term
in B[Θ] equalstt then so doesB[Θ]. Note that we useΘ : Σ to
mean∅ ` Θ(a) : Σ(a) holds for eacha ∈ dom(Θ) = dom(Σ).
In practice, such a constraint relation is often determined by some
automatic decision procedure.

We now briefly explain some unfamiliar syntax ofλ∀,∃
pf .

• B ⊃ T is called a guarded type andB∧T is called an asserting
type. As an example, the following type is for a function from
natural numbers to negative integers:

∀a1 : int .a1 ≥ 0 ⊃
(int(a1) → ∃a2 : int .(a2 < 0) ∧ int(a2))

The guarda1 ≥ 0 indicates that the function can only be
applied to an integer that is greater than or equal to0; the
assertiona2 < 0 means that each integer returned by the
function is negative.

• The markers⊃+ (·),⊃− (·),∧(·),∀+(·),∀−(·),∃(·) are intro-
duced to establish a lemma needed for conducting inductive rea-
soning on typing derivations. Please see [25] for further expla-
nation on this issue.

In addition, we introduce two type constructorsbool andint;
given a static boolean termB, bool(B) is the singleton type in
which the only value is the truth value ofB; similarly, given an
integerI, int(I) is the singleton type in which the only value is
the integerI.

sorts σ ::= bool | int | prop | type
static contexts Σ ::= ∅ | Σ, a : σ

static bool. terms B ::= b | cB(s1, . . . , sn)

static int. terms I ::= i | cI(s1, . . . , sn)

props P ::= . . . | B ⊃ P | ∀a : σ.P | B ∧ P | ∃a : σ.P

types T ::= . . . | a | bool(B) | int(I) | B ⊃ T | ∀a : σ.T | B ∧ T | ∃a : σ.T

proof terms d ::= . . . | ⊃+(d) |⊃−(d) | ∀+(d) | ∀−(d) | ∧(d) | let ∧ (x) = d1 in d2 | ∃(d) | let ∃(x) = d1 in d2

dynamic terms d ::= . . . | if(d1, d2, d3) | let ∧ (x) = d in d | let ∃(x) = d in d |
⊃+(d) |⊃−(d) | ∀+(d) | ∀−(d) | ∧(d) | let ∧ (x) = d1 in d2 | ∃(d) | let ∃(x) = d1 in d2

Figure 7. The syntax forλ∀,∃
pf

Π;∆, xf : T ` xf : T
(ty-var)

Π ` d : P Π;∆ ` d : T

Π;∆ ` 〈d, d〉 : P ∗ T
(ty-pr-tup-i)

Π;∆ ` d1 : P ∗ T1

Π, x : P ;∆, x : T1 ` d2 : T2

Π;∆ ` let 〈x, x〉 = d1 in d2 : T2

(ty-pr-tup-e)

Π, x : P ;∆ ` v : T

Π;∆ ` lam x.v : P → T
(ty-pr-lam)

Π;∆ ` d : P → T Π ` d : P

Π;∆ ` app(d, d) : T
(ty-pr-app)

Π ` d : P Π, x : P ;∆ ` d : T

Π;∆ ` let x = d in d : T
(ty-pr-let)

Π;∆ ` 〈〉 : 1
(ty-unit)

Π;∆ ` d1 : T1 Π;∆ ` d2 : T2

Π;∆ ` 〈d1, d2〉 : T1 ∗ T2

(ty-tup)

Π;∆ ` d : T1 ∗ T2

Π;∆ ` fst(d) : T1

(ty-fst)

Π;∆ ` d : T1 ∗ T2

Π;∆ ` snd(d) : T2

(ty-snd)

Π;∆, x : T1 ` d : T2

Π;∆ ` lam x.d : T1 → T2
(ty-lam)

Π;∆ ` d1 : T1 → T2 Π;∆ ` d2 : T1

Π;∆ ` app(d1, d2) : T2

(ty-app)

Π;∆ ` d1 : T1 Π;∆, x : T1 ` d2 : T2

Π;∆ ` let x = d1 in d2 : T2
(ty-let)

Π;∆, f : T ` d : T

Π;∆ ` fix f.d : T
(ty-fix)

Figure 5. The rules for assigning types to dynamic terms inλpf

A judgment for assigning a prop to a proof term is now of the
form Σ; B; Π ` d : P , and the rules in Figure 4 need to be properly
modified. Intuitively, such a judgment means thatΠ[Θ] ` d[Θ] :
P [Θ] holds for any substitutionΘ : Σ such thatB[Θ] holds for

|xf | = xf
|〈d, d〉| = |d|

|let 〈x, x〉 = d1 in d2| = let x = |d1| in |d2|
|lam x.v| = |v|

|app(d, d)| = |d|
|let x = d in d| = |d|

|〈d1, d2〉| = 〈|d1|, |d2|〉
|fst(d)| = fst(|d|)

|snd(d)| = snd(|d|)
|lam x.d| = lam x.|d|

|app(d1, d2)| = app(|d1|, |d2|)
|let x = d1 in d2| = let x = |d1| in |d2|

|fix f.d| = fix f.|d|

Figure 6. The erasure function

eachB in B. Some additional rules for assigning props to proof
terms are given in Figure 8.

Similarly, a judgment for assigning a type to a dynamic term is
now of the formΣ; B; Π;∆ ` d : T , and the rules in Figure 5 need
to be modified properly. Some additional rules for assigning types
to dynamic terms are given in Figure 9.

Following the development ofATS, it is a standard routine to
establish the type soundness ofλ∀,∃

pf . Then we can prove a theorem

in λ∀,∃
pf that corresponds to Theorem 2.6. In practice, we also need

to allow the use of recursion in constructing proof terms. It is
clear that we cannot support unrestricted general recursion as it
would otherwise allow the construction of proof terms that are not
normalizing and thus invalidate Theorem 2.3, which plays a crucial
rôle in establishing Theorem 2.5. Instead, we follow the work
in [23], providing a means for the programmer to define terminating
proof terms by supplying a form of metrics. This point will be made
clear when we present some examples in the next section. Another
issue in practice is the need for recursive props (dataprops) and
recursive types (datatypes), which are not present inλ∀,∃

pf for the
sake of brevity. It should be understood that recursive props and
recursive types can be readily added intoλ∀,∃

pf without difficulty.3

We now use a simple example to illustrate some of these mentioned
issues.

In Figure 10, we declare a prop constructorMUL, where
the concrete syntax indicates that there are three (proof) value
constructors associated withMUL, which are given the following

3 As for the definition of a recursive prop, we require that the defined
prop itself have no negative occurrences in the definition. Otherwise, a
nonterminating proof term can be constructed without using fixed-point
operator.

Σ; B, B; Π ` d : P

Σ; B; Π `⊃+(d) : B ⊃ P
(pr-⊃+)

Σ; B; Π ` d : B ⊃ P Σ; B |= B

Σ; B; Π `⊃−(d) : P
(pr-⊃-)

Σ, a : σ; B; Π ` d : P

Σ; B; Π ` ∀+(d) : ∀a : σ.P
(pr-∀+)

Σ; B; Π ` d : ∀a : σ.P Σ ` s : σ

Σ; B; Π ` ∀−(d) : P [a 7→ s]
(pr-∀-)

Σ; B |= B Σ; B; Π ` d : P

Σ; B; Π ` ∧(d) : B ∧ P
(pr-∧+)

Σ; B; Π ` d1 : B ∧ P1 Σ; B, B; Π, x : P1 ` d2 : P2

Σ; B; Π ` let ∧ (x) = d1 in d2 : P2

(pr-∧-)

Σ ` s : σ Σ; B; Π ` d : P [a 7→ s]

Σ; B; Π ` ∃(d) : ∃a : σ.P
(pr-∃+)

Σ; B; Π ` d1 : ∃a : σ.P1

Σ, a : σ; B; Π, x : P1 ` d2 : P2

Σ; B; Π ` let ∃(x) = d1 in d2 : P2

(pr-∃-)

Figure 8. Some additional rules for assigning props to proof terms

constant props:

MULbas : ∀n : int .() → MUL(0, n, 0)
MULind : ∀m : int .∀n : int . m > 0 ⊃

(MUL(m− 1, n, p− n) → MUL(m, n, p))
MULneg : ∀m : int .∀n : int . m < 0 ⊃

(MUL(−m, n,−p) → MUL(m, n, p))

Given integersI1, I2, I3, it is clear thatI1 ∗ I2 = I3 holds if
and only ifMUL(I1, I2, I3) can be assigned to a closed (proof)
value. In essence,MULbas,MULind and MULneg correspond
to the following three equations in an inductive definition of the
multiplication function on integers:

0 ∗ n = 0;
m ∗ n = (m− 1) ∗ n + n if m > 0;
m ∗ n = −((−m) ∗ n) if m < 0.

In Figure 10,lemma1 is defined as a proof function of the follow-
ing prop:

∀m : nat .∀n : nat .∀p : int .
MUL(n, m, p) → MUL(n, m + 1, p + n)

Note that we use the keywordprfun to declare a proof function.
Essentially,lemma1 represents an inductive proof ofn ∗m = p ⊃
n ∗ (m + 1) = p + n for all natural numbersm, n and integersp,
where the induction is onn. In particular, the following two linear
arithmetic constraints, which can be easily verified, are generated
when the two clauses in the body oflemma1 are type-checked:

∀n : nat .∀p : int . n = 0 ⊃ (p = 0 ⊃ 0 = p + n)
∀m : nat .∀n : nat .∀p : int .∀n′ : int .∀p′ : int .

n = n′ + 1 ⊃ (p = p′ + m ⊃ p + n = (p′ + n′) + (m + 1))

However, in order forlemma1 to represent a proof, we need
to show thatlemma1 is a total function, that is, givenpf of
prop MUL(I2, I1, I3) for natural numbersI1 and I2 and inte-
ger I3, lemma1(pf) is guaranteed to return a proof value of prop

Σ; B; Π;∆ ` d1 : bool(B)
Σ; B, B; Π;∆ ` d2 : T

Σ; B,¬B; Π;∆ ` d3 : T

Σ; B; Π;∆ ` if(d1, d2, d3) : T
(ty-if)

Σ; B; Π ` d : B ∧ P
Σ; B, B; Π, x : P ;∆ ` d : T

Σ; B; Π;∆ ` let ∧ (x) = d in d : T
(ty-pr-∧-)

Σ; B; Π ` d : ∃a : σ.P
Σ, a : σ; B; Π, x : P ;∆ ` d : T

Σ; B; Π;∆ ` let ∃(x) = d in d : T
(ty-pr-∃-)

Σ; B, B; Π;∆ ` d : T

Σ; B; Π;∆ `⊃+(d) : B ⊃ T
(ty-⊃+)

Σ; B; Π;∆ ` d : B ⊃ T Σ; B |= B

Σ; B; Π;∆ `⊃−(d) : T
(ty-⊃-)

Σ, a : σ; B; Π;∆ ` d : T

Σ; B; Π;∆ ` ∀+(d) : ∀a : σ.T
(ty-∀+)

Σ; B; Π;∆ ` d : ∀a : σ.T Σ ` s : σ

Σ; B; Π;∆ ` ∀−(d) : T [a 7→ s]
(ty-∀-)

Σ; B |= B Σ; B; Π;∆ ` d : T

Σ; B; Π;∆ ` ∧(d) : B ∧ T
(ty-∧+)

Σ; B; Π;∆ ` d1 : B ∧ T1

Σ; B, B; Π;∆, x : T1 ` d2 : T2

Σ; B; Π;∆ ` let ∧ (x) = d1 in d2 : T2

(ty-∧-)

Σ ` s : σ Σ; B; Π;∆ ` d : T [a 7→ s]

Σ; B; Π;∆ ` ∃(d) : ∃a : σ.T
(ty-∃+)

Σ; B; Π;∆ ` d1 : ∃a : σ.T1

Σ, a : σ; B; Π;∆, x : T1 ` d2 : T2

Σ; B; Π;∆ ` let ∃(x) = d1 in d2 : T2

(ty-∃-)

Figure 9. Some additional rules for assigning types to dynamic
terms

MUL(I2, I1 + 1, I3 + I2). Generally speaking, when implement-
ing a recursive proof function inATS, the programmer is required
to provide a metric that can be used to verify the termination of
the function. A thorough study on using such metrics for veri-
fying program termination can be found in [22, 23]. In the def-
inition of lemma1, 〈n〉 is the provided metric for verifying that
lemma1 is terminating; whenlemma1 is applied to a value of
propMUL(I2, I1, I3), the label〈I2〉 is associated with this call;
in case a recursive call tolemma1 is made subsequently, the la-
bel associated with the recursive call is〈I2 − 1〉 (sincepf ′ in the
definition oflemma1 is given the typeMUL(n− 1, m, p−m)),
which is strictly less than the label〈I2〉 associated with the original
call; as a label associated withlemma1 is always a natural number,
it is evident thatlemma1 is terminating. To show thatlemma1 is
total, we also need to verify that pattern matching in the definition
of lemma1 can never fail, which is a topic that is already studied
elsewhere [20, 24].

dataprop MUL (int, int, int) =
| {n:int} MULbas (0, n, 0)

| {m:int,n:int,p:int | m > 0}
MULind (m, n, p) of MUL (m-1, n, p-n)

| {m:int,n:int,p:int | m > 0}
MULneg (m, n, p) of MUL (~m, n, ~p)

(* <n> is a termination metric *)
prfun lemma1 {m:nat, n:nat, p:int} .<n>.

(pf: MUL (n, m, p)): MUL (n, m+1, p+n) =
case pf of MULbas =>

MULbas | MULind pf’ => MULind (lemma1 pf’)

Figure 10. A dataprop for encoding integer multiplication

4. Examples
We present a few examples in ATS to give the reader some concrete
feel as to how combining programming with theorem proving can
be put into practice. There are also a large number of more realistic
examples that can be found on-line [27].

Of course, we need a process to elaborate programs written
in the concrete syntax of ATS into the (kind of) formal syntax
of λ∀,∃

pf . This is a rather involved process, and we unfortunately
could not formally describe it in this paper and thus refer the
interested reader to [26] for further details. Instead, we are to
provide some (informal) explanation to facilitate the understanding
of the concrete syntax we use.

We useieq , ipred , iadd , isub andimul for the equality func-
tion, the predecessor function, the addition function, the subtrac-
tion function and the multiplication function on integers, which are
given the following types:

ieq : ∀a1 : int .∀a2 : int .
(int(a1), int(a2)) → bool(a1 = a2)

ipred : ∀a : int . int(a) → int(a− 1)

iadd : ∀a1 : int .∀a2 : int .
(int(a1), int(a2)) → int(a1 + a2)

isub : ∀a1 : int .∀a2 : int .
(int(a1), int(a2)) → int(a1 − a2)

imul : ∀a1 : int .∀a2 : int .
(int(a1), int(a2)) →
∃a3 : int . MUL(a1, a2, a3) ∗ int(a3)

Note thatimul is notgiven the following type:

∀m : int .∀n : int . (int(m), int(n)) → int(m ∗ n)

asm ∗ n, which is nonlinear, is not allowed to be a type index in
ATS.

4.1 List Concatenation

The code for implementingconcat is given in Figure 11, which
concatenates a given list of lists together. We write′(. . .) to form
a tuple, where the quote symbol (′) is used solely for the purpose
of parsing. Also, we use the bar symbol (|) as a separator to sepa-
rate proofs from programs. When given an argumentxssof type
list(list(T, I2), I1), the functionconcat returns a pair(pf , res)
such thatpf is a proof value of propMUL(I1, I2, I3) for some
integerI3 andres is a list of typelist(T, I3). Therefore,pf acts as
a witness to certify that the length ofres is I1 ∗ I2. Now suppose

fun concat {a:type, m:nat, n:nat}
(xxs: list (list (a, n), m))

: ’(MUL (m, n, p) | list (a, p)) =
case xxs of

| nil => nil
| cons (xs, xss) =>

let val ’(pf | res) = concat xss in
’(MULind (pf) | append (xs, res))

end

Figure 11. An implementation of the list concatenation function

fun fact1 {a:nat} (x: int a): Int =
if x ieq 0 then 1 else

let val ’(pf | r) = x imul fact1 (ipred x) in
r

end

// <a1> is the termination metric
prfun lemma2 {a1:nat, a2:nat, a3:int} .<a1>.

(pf: MUL (a1, a2, a3)): [a3 >= 0] ’() =
case pf of

MULbas => ’() | MULind pf => lemma2 pf

fun fact2 {a:nat} (x: int a): Nat =
if x ieq 0 then 1 else

let
val ’(pf | r) = x imul fact2 (ipred x)
prval _ = lemma2 (pf) // proves r >= 0

in
r

end

dataprop FACT (int, int) =
| FACTbas (0, 1)
| {n:int, r:int, r1:int | n > 0}

FACTind(n,r) of (FACT(n-1,r1), MUL(n,r1,r))

fun fact3 {a:nat} (x: int a)
: [r:int] ’(FACT (a, r) | int r) =
if x ieq 0 then ’(FACTbas | 1) else

let
val ’(pf1 | r1) = fact3 (ipred x)
val ’(pf2 | r) = x imul r1

in
’(FACTind (pf1, pf2) | r)

end

Figure 12. Some implementations of the factorial function

we would like to assignconcatthe following type:

∀a : type.∀m : nat .∀n : nat .
list(list(a, n), m) → ∃p : int. MUL(n, m, p) ∗ list(a, p)

which is obtained from replacing the propMUL(m, n, p) with the
prop MUL(n, m, p) in the above type assigned toconcat. Then
we need to replaceMULind(pf) in the definition ofconcatwith
lemma1(pf), wherelemma1 is defined in Figure 10.

4.2 Different Implementations of the Factorial Function

We present three implementations of the factorial function in Fig-
ure 12 to make an interesting point. The functionfact1 is given the
following type:

∀a : nat . int(a) → Int

where Int, defined to be∃a : int . int(a), is the type for all
integers. This type simply means thatfact1 is a function from
natural numbers to integers. Note that we use the bar symbol (|)
in the concrete syntax to separate proof terms from dynamic terms
in a tuple.

The functionfact2 is given the following type:

∀a : nat . int(a) → Nat

whereNat, defined to be∃a : nat .int(a), is the type for all
natural numbers. Hence,fact2 is a function from natural numbers
to natural numbers. When implementingfact2, we need to prove
that the product of two natural numbers is a natural number. This is
done by the proof functionlemma2 defined in Figure 12, which is
assigned the following prop:

∀a1 : nat .∀a2 : nat .∀a3 : int .
MUL(a1, a2, a3) → (a3 ≥ 0) ∧ 1

where1 is the unit prop. The syntax.<a1>. in the header of the
definition of lemma2 indicates thata1 is the metric (provided by
the programmer) for establishing the termination oflemma2. Note
that the keywordprval in the body of the functionfact2 indicates
pattern matching on proof values, which is erased before program
execution.

Next we declare a prop constructorFACT, which forms a prop
FACT(I1, I2) when applied to two given integersI1 andI2; there
is a closed value of propFACT(I1, I2) if and only if I2 equals the
factorial ofI1. The functionfact3 is assigned the following type:

∀a1 : nat . int(a1) → ∃a2 : int .FACT(a1, a2) ∗ int(a2)

When applied to a value of typeint(I1) for some natural number
I1, fact3 returns a proofpf of prop FACT(I1, I2) for some
integerI2 and a value of typeint(I2). Of course, the proof is not
actually constructed at run-time.

Clearly,fact1, fact2, fact3 all implement the factorial function,
but the types assigned to them become more and more accurate.
Intuitively speaking, the programmer is given some freedom in ATS
to determine the extent of theorem proving to be involved based on
the invariants that need to be captured.

4.3 Implementing the call-by-value evaluation for the pure
untyped λ-calculus

In contrast to extracting programs out of proofs, we emphasize that
dynamic functions such asfact1, fact2 and fact3 are not meant
to correspond to any proofs in the first place. In particular, they
are not assumed to be terminating (thoughfact1, fact2, fact3 are
all terminating) and may incur effects (e.g., updating references,
raising exceptions). This is crucial to practical programming. To
further stress this point, we give an implementation of the call-by-
value evaluation for the pure untypedλ-calculus in Figure 13.

We declare a datasorttm such that each static term of the
sort tm represents an untypedλ-term. For instance, the static
term TMlam(λx : tm.TMlam(λy : tm.TMapp(y, x))) repre-
sentsλx.λy.y(x). This representation strategy is referred to as
higher-order abstract syntax [16]. We then declare a prop construc-
tor EVAL that forms a propEVAL(s1, s2) when applied to two
static termss1 ands2 of the sorttm; there exists a closed proof
value of propEVAL(s1, s2) if and only if theλ-term represented
by s1 evaluates to theλ-term represented bys2. We then declare
a type constructorEXP which forms a typeEXP(s) for each
terms of the sorttm such that an untypedλ-term represented bys
can be represented by a dynamic value of typeEXP(s).4 We next

4 This is a higher-order representation that is not adequate as there are dy-
namic values of typeEXP(s) that do not correspond to theλ-term rep-

datasort tm =
TMlam of (tm -> tm) | TMapp of (tm, tm)

dataprop EVAL (tm, tm) =
| {f: tm -> tm} EVALlam (TMlam f, TMlam f)
| {t1: tm, t2: tm, f1: tm -> tm, v2: tm, v: tm}

EVALapp (TMapp (t1, t2), v) of
(EVAL (t1, TMlam f1),
EVAL (t2, v2),
EVAL (f1 v2, v))

datatype EXP (tm) =
| {f: tm -> tm}

EXPlam(TMlam f) of {t:tm} EXP t -> EXP(f t)
| {t1: tm, t2: tm}

EXPapp(TMapp (t1, t2)) of (EXP t1, EXP t2)

fun evaluate {t: tm} (e: EXP t)
: [t’: tm] ’(EVAL (t, t’) | EXP t’) =
case e of

| EXPlam _ => ’(EVALlam | e)
| EXPapp (e1, e2) =>

let
val ’(pf1 | EXPlam f1) = evaluate e1
val ’(pf2 | v2) = evaluate e2
val ’(pf3 | v) = evaluate (f1 v2)

in
’(EVALapp (pf1, pf2, pf3) | v)

end

Figure 13. An implementation of the call-by-value evaluation for
the pure untypedλ-calculus

implement a functionevaluate of the following type:

∀a : tm.EXP(a) → ∃a′ : tm.EVAL(a, a′) ∗EXP(a′)

When applied to a value of typeEXP(s) for some static terms of
the sorttm, evaluate can only return a value of typeEXP(s′)
such that a proof value of propEVAL(s, s′) exists. However,
it may never return as there certainly existλ-terms that do not
evaluate to any values. In other words,evaluate is not a total
function and thus cannot in principle be extracted out of any (valid)
proof.

4.4 Safe Matrix Subscripting

We now present a simple but realistic example. In Figure 14, we
first implement a proof functionlemma3. We use the keyword
prfun in the concrete syntax to indicate that a proof function is
defined. Essentially,lemma3 proves the statement thati ∗ col +
col ≤ row ∗ col holds if col, row andi are natural numbers and
i < row holds.

In the definition oflemma3, the syntax.<row>. indicates that
row is a metric supplied by the programmer; it can be easily ver-
ified that the metric decreases when a recursive call tolemma3 is
made in the body oflemma3; this guaranteeslemma3 is terminat-
ing [23]. Also, it can be easily verified that pattern matching in the
body oflemma3 is exhaustive, and thuslemma3 is a total function.

We next show in Figure 14 how a safe matrix subscripting
functionmatrixSubis implemented. Given a typeT and an integer
I, we can form a typearray(T, I) in ATS for arrays of sizeI

resented bys. In Appendix, we are to present a more realistic implemen-
tation of the call-by-value evaluation ofλ-calculus, which makes use of a
first-order adequate representation forλ-terms and avoids the need for sub-
stitution by forming closures.

prfun lemma3
{row:nat, col:nat, size:int, i:nat, p:int |
i < row} .<row>.

(pf1: MUL(row,col,size), pf2: MUL(i,col,p))
: [p + col <= size] unit =

case pf1 of
| MULind (pf1) => begin

case pf2 of
| MULbas =>

let val _ = lemma2 (pf1) in ’() end

| MULind pf2 =>
let val _ = lemma3 (pf1, pf2) in

’()
end

end

typedef matrix (a: type, row: int, col: int) =
[size:int]
’(MUL (row,col,size) |

int row, int col, array (a, size))

fun matrixSub
{a:type, row:nat, col:nat, i:nat, j:nat |
i < row, j < col}
(M: matrix(a,row,col), i: int i, j: int j): a =
let

val ’(pf1 | row, col, A) = M
val ’(pf2 | p) = i imul col

// proves: p >= 0
prval _ = lemma2 (pf2)

// proves: p + col <= row * col
prval _ = lemma3 (pf1, pf2)

in
arraySub (A, p iadd j)

end

Figure 14. An example of combining programs with proofs

in which each element is of typeT . The usual array subscripting
functionarraySub is given the following type:

∀a : type.∀n : nat .∀i : nat .
i < n ⊃ ((array(a, n), int(i)) → a)

Therefore, the index used to access an array is required to be within
the bounds of the array (we assume the index of a given array
ranges from0 until n − 1, wheren is the size of the array). In
Figure 14, we define a type constructormatrix; given a typeT
and two integersI1 andI2, matrix(T, I1, I2) is defined to be:

∃p : int . MUL(I1, I2, p) ∗ int(I1) ∗ int(I2) ∗ array(T, p)

which indicates that a matrix of dimensionI1 by I2 is represented
as an array of sizeI1 ∗ I2. The functionmatrixSubimplemented in
Figure 14 is assigned the following type as can be expected:

∀a : type.∀row : nat .∀col : nat .∀i : nat .∀j : nat .
i < row ⊃ (j < col ⊃
((matrix(a, row, col), int(i), int(j)) → a))

The following two lines of code in the definition ofmatrixSubare
uncommon, and we now provide some explanation.

prval _ = lemma2 (pf2) // ...

prval _ = lemma3 (pf1, pf2) // ...

The use of the keywordprval is to indicate that the pattern fol-
lowing it is to match a proof value. If we assume thatpf2 is of
propMUL(i, col, p) for some integerp, thenlemma2(pf2) is of
prop (p ≥ 0) ∧ 1; the codeprval = lemma2 (pf2) essen-
tially elaborates intolet ∧ (x) = lemma2(pf2) in ..., which
meansp ≥ 0 can be assumed when we solve the constraints gener-
ated in the scope of this let-binding; the typing rule involved here
is (ty-pr-∧-). Similarly, prval = lemma3 (pf1, pf2) essen-
tially elaborates intolet ∧(x) = lemma3(pf1, pf2) in ...; the prop
of lemma3(pf1, pf2) is (p + col ≤ size) ∧ 1, where we assume
pf1 is of propMUL(row, col, size), and thusp+ col ≤ size can
be assumed when we solve the constraints generated in the scope
of this let-binding. Lastly, we need to show that bothp + j ≥ 0
andp + j < size hold when callingarraySub(A, p iadd j); the
former constraint is easily proven sincej is a natural number and
p ≥ 0 can be assumed; the latter constraint is also easily proven
since bothp + col ≤ size andj < col can be assumed.

Hence, if the pair of supplied indexesi andj are natural num-
bers satisfyingi < row andj < col, accessing a matrix of dimen-
sion row by col via matrixSubis guaranteed to be safe. What is
significant here is that this property is captured in the type system
of ATS.

After matrix subscripting is properly handled, it is straightfor-
ward to implement various other functions (e.g., multiplication) on
matrices. At this point, we stress that the programmer may also
decide to insert run-time array bound checks to implement the ma-
trix subscripting functionmatrixSub. By doing so, it is no longer
necessary to construct the proof functionlemma3, though this also
means that the absence of illegal array subscripting can no longer
be guaranteed in the underlying type system.

5. Related Work and Conclusion
A fundamental problem in programming is to find approaches that
can effectively facilitate the construction of safe and reliable soft-
ware, and we have so far seen numerous attempts to address this
problem. An interesting idea is to build a language based on Martin-
Löf’s constructive type theory [9, 13] or its variants in which soft-
ware specifications can be formally stated and proven and an im-
plementation can be algorithmically extracted from the proof of a
specification to guarantee that the extracted implementation meets
the specification. While the practicality of such an idealistic ap-
proach to software development is yet to be proven, the notion ex-
pressed in this approach of integrating software design and imple-
mentation in a verifiably consistent manner is certainly inspiring.

Constructive type theory, which was originally proposed by
Martin-Löf primarily for the purpose of establishing a foundation
for mathematics, requires pure reasoning on programs (or proofs,
more precisely). This requirement seems to have imposed a funda-
mental limitation on the use of constructive type theory in practical
programming as pure reasoning on (large and realistic) programs
seems simply untenable. We have recently rectified the situation
by formalizing a frameworkApplied Type System(ATS) [25, 27],
completely eliminating the need for pure reasoning on programs.
Also, by introducing the notion of conditional type equality, we
have madeATS highly expressive in capturing programming in-
variants. For instance, we have already formally demonstrated that
ATS can be used as a basis to support in a typeful manner a variety
of programming paradigms such as functional programming, im-
perative programming, object-oriented programming, modular pro-
gramming meta-programming, etc.

In ATS, a constraint relation is involved in determining type
equality. In order to support effective constraint solving, we adopted
a design in the past that imposes certain restrictions on the syntac-

tic form of constraints that are allowed in practice. For instance,
arithmetic constraints are required to be linear in the current imple-
mentation of ATS [27]. While this is a simple design, it is evidently
ad hocby its nature and can also be too restrictive, sometimes,
in a situation where nonlinear constraints need to be handled. We
have presented a different design in this paper. Instead of imposing
restrictions, we provide a means for the programmer to construct
proofs that attest to the validity of constraints.

It is interesting to see a comparison between our design for com-
bining programs with proofs and theorem proving systems such
as NuPrl [4] (based on Martin-L̈of’s constructive type theory) and
Coq [7] (based on the calculus of construction [5]). In order to rea-
son effectively about program properties within a type theory, the
underlying functional language of a theorem proving system such
as Coq or NuPrl is often required to be pure, making it difficult
to support many realistic programming features (e.g., general re-
cursion, reference, exception). In general, programming in such a
setting amounts to constructing proofs (of specifications) and pro-
grams are automatically extracted out of the constructed proofs.
This means that only total programs can be constructed in principle.
Therefore, such a programming paradigm can often be inflexible
or even infeasible in many common situations. For instance, par-
tial functions such asevaluate mentioned in Section 4 are rather
common in practice and they in principle cannot be extracted from
any proofs. To a large extent, this argument also applies to Epi-
gram [11], a recently developed functional programming language
with a dependent type system based on UTT [8], and it is yet to be
seen whether monads can be successfully employed to incorporate
effects (including partiality of functions) into Epigram in support
of practical programming.

The sortsprop andtype in ATS roughly correspond to the kinds
Prop andSet in Coq [14]. However, there is a subtle difference. In
λpf , types may contain props but props may never contain types.
For instance,P ∗ T is a type and can never be a prop. On the other
hand, terms of kindProp may contain terms of kindSet in Coq
and vice versa. This difference is profound as it makes it possible
to construct in ATS programs that may be nonterminating, raising
exceptions or causing effects, which on the other hand is forbid-
den in Coq. Moreover, the design we have presented for combin-
ing programs with proofs is largely rooted in a programming lan-
guage, which can readily accommodate programming features such
as general recursion and effects. Intuitively speaking, the design
somewhat provides the programmer with some flexibility in deter-
mining the extent of theorem proving to be involved according to
the invariants that need to be captured. This design is fundamen-
tally different from program extraction.

The theme of combining programs with proofs is also proposed
in the design of the programming languageΩemga [19]. The type
system ofΩemga is largely built on top of a notion calledequality
constrained types(a.k.a. phantom types [3]), which are closely re-
lated to the notion of guarded recursive datatypes [28]. InΩemga,
there seems no strict separation between programs and proofs. In
particular, proofs need to be constructed at run-time, and thus the
serious problem with proof construction at run-time as is mentioned
in Section 1 does occur inΩemga. Also, an approach to simulating
dependent types through the use of type classes in Haskell is given
in [10], which is casually related to proof construction in our de-
sign. However, this approach does not address the issue of proof
erasure, which on the other hand is key in our design. Furthermore,
there is currently no facility in Haskell for verifying the totality of a
function and a proof function such aslemma1 cannot really be ad-
equately simulated. Please see [2] for a critique on the practicality
of simulating dependent types in Haskell.

Another line of related work is the formation of a type system
in support of certified binaries [18], in which the idea of a com-

plete separation between types and programs is also employed. Ba-
sically, the notions of type language and computational language in
the type system correspond to the notions of statics and dynamics in
ATS, respectively, though the type language is based on the calcu-
lus of constructions extended with inductive definitions (CiC) [15].
However, the notion of a constraint relation inATS does not have
a counterpart in [18]. Instead, the equality between two types is de-
termined by comparing the normal forms of these types. Also, there
seems so far no attempt to build a source programming language,
and in particular, the theme of combining programs with proofs
(which is done by the programmer) is not addressed there.

In summary, we have presented a novel design in this paper
for combining programs with proofs in support of the use of (ad-
vanced) types in capturing program invariants, opening a promis-
ing avenue to making theorem proving available for practical pro-
gramming. In support of the practicality of this design, we have
finished a running implementation of ATS and tested a variety of
examples. In particular, a large part of the library of ATS involves
the combination of programs and proofs as is described here. The
presented design to support programming with theorem proving is
both general and flexible, and we naturally expect to capture more
program properties by exploring other logics (in addition to intu-
itionistic logic) and proof systems and investigating whether they
can be incorporated into ATS. As a matter of fact, we have already
succeeded in developing a proof system (based on a form of linear
logic) to reason about properties on memory and then incorporated
it into ATS [29] by following the design of combining program-
ming with theorem proving. In the future, we plan to study whether
reasoning about concurrency and distribution can also be supported
in a similar fashion.

References
[1] CHEN, C., AND X I , H. Combining Programming with Theorem

Proving, November 2004. Available at:
http://www.cs.bu.edu/~hwxi/ATS/PAPER/CPwTP.ps.

[2] CHEN, C., ZHU, D., AND X I , H. Implementing Cut Elimination:
A Case Study of Simulating Dependent Types in Haskell. In
Proceedings of the 6th International Symposium on Practical Aspects
of Declarative Languages(Dallas, TX, June 2004), Springer-Verlag
LNCS vol. 3057.

[3] CHENEY, J., AND HINZE, R. Phantom Types. Technical Report
CUCIS-TR2003-1901, Cornell University, 2003. Available at
http://techreports.library.cornell.edu:8081/
Dienst/UI/1.0/Display/cul.cis/TR2003-1901.

[4] CONSTABLE, R. L., ET AL . Implementing Mathematics with the
NuPrl Proof Development System. Prentice-Hall, Englewood Cliffs,
New Jersey, 1986.

[5] COQUAND, T., AND HUET, G. The calculus of constructions.
Information and Computation 76, 2–3 (February–March 1988), 95–
120.

[6] DANTZIG , G., AND EAVES, B. Fourier-Motzkin elimination and its
dual. Journal of Combinatorial Theory (A) 14(1973), 288–297.

[7] DOWEK, G., FELTY, A., HERBELIN, H., HUET, G., MURTHY,
C., PARENT, C., PAULIN -MOHRING, C., AND WERNER, B. The
Coq proof assistant user’s guide. Rapport Technique 154, INRIA,
Rocquencourt, France, 1993. Version 5.8.

[8] L OU, Z. A unifying theory of dependent types: the schematic
approach. Technical Report LFCS-92-202, University of Edinburgh,
1991.

[9] M ARTIN-L ÖF, P. Intuitionistic Type Theory. Bibliopolis, Naples,
Italy, 1984.

[10] MCBRIDE, C. Faking It.Journal of Functional Programming 12, 4
& 5 (July 2002), 375–392.

[11] MCBRIDE, C., AND MCK INNA , J. The view from the left.Journal
of Functional Programming 14, 1 (2004), 69–111.

[12] M ILNER, R., TOFTE, M., HARPER, R. W., AND MACQUEEN, D.

The Definition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997.

[13] NORDSTRÖM, B., PETERSSON, K., AND SMITH , J. M. Program-
ming in Martin-L̈of ’s Type Theory, vol. 7 of International Series of
Monographs on Computer Science. Clarendon Press, Oxford, 1990.

[14] PAULIN -MOHRING, C. Extraction de programmes dans le Calcul
des Constructions. Thèse de doctorat d’état, Universit́e de Paris VII,
Paris, France, 1989.

[15] PAULIN -MOHRING, C. Inductive Definitions in the System
Coq: Rules and Properties. InProceedings of the International
Conference on Typed Lambda Calculi and Applications(Utrecht, The
Netherlands, 1993), M. Bezem and J. de Groote, Eds., vol. 664 of
Lecture Notes in Computer Science, pp. 328–345.

[16] PFENNING, F., AND ELLIOTT, C. Higher-order abstract syntax. In
Proceedings of the ACM SIGPLAN ’88 Symposium on Language
Design and Implementation(Atlanta, Georgia, June 1988), pp. 199–
208.

[17] REYNOLDS, J. Separation Logic: a logic for shared mutable data
structures. InProceedings of 17th IEEE Symposium on Logic in
Computer Science (LICS ’02)(2002).

[18] SHAO, Z., SAHA , B., TRIFONOV, V., AND PAPASPYROU, N. A Type
System for Certified Binaries. InProceedings of 29th Annual ACM
SIGPLAN Symposium on Principles of Programming Languages
(POPL ’02)(Portland, OR, January 2002), pp. 217–232.

[19] SHEARD, T. Languages of the future. InProceedings of the Onward!
Track of Objected-Oriented Programming Systems, Languages,
Applications (OOPSLA)(Vancouver, BC, October 2004), ACM Press.

[20] X I , H. Dead code elimination through dependent types. InThe
First International Workshop on Practical Aspects of Declarative
Languages(San Antonio, January 1999), Springer-Verlag LNCS vol.
1551.

[21] X I , H. Dependent ML. Available at
http://www.cs.bu.edu/~hwxi/DML/DML.html, 2001.

[22] X I , H. Dependent Types for Program Termination Verification. In
Proceedings of 16th IEEE Symposium on Logic in Computer Science
(Boston, June 2001), pp. 231–242.

[23] X I , H. Dependent Types for Program Termination Verification.
Journal of Higher-Order and Symbolic Computation 15, 1 (March
2002), 91–132.

[24] X I , H. Dependently Typed Pattern Matching.Journal of Universal
Computer Science 9, 8 (2003), 851–872.

[25] X I , H. Applied Type System (extended abstract). Inpost-workshop
Proceedings of TYPES 2003(2004), Springer-Verlag LNCS 3085,
pp. 394–408.

[26] X I , H. Dependent Types for Practical Programming via Applied
Type System, September 2004. Available at
http://www.cs.bu.edu/~hwxi/academic/drafts/ATSdml.ps

[27] X I , H. Applied Type System, 2005. Available at:
http://www.cs.bu.edu/~hwxi/ATS.

[28] X I , H., CHEN, C., AND CHEN, G. Guarded Recursive Datatype
Constructors. InProceedings of the 30th ACM SIGPLAN Symposium
on Principles of Programming Languages(New Orleans, LA, January
2003), ACM press, pp. 224–235.

[29] X I , H., AND ZHU, D. Views, Types and Viewtypes, October 2004.
Available at:
http://www.cs.bu.edu/~hwxi/ATS/PAPER/VsTsVTs.ps.

[30] X I , H., ZHU, D., AND L I , Y. Applied Type System with Stateful
Views. Technical Report BUCS-2005-03, Boston University, 2005.
Available at:
http://www.cs.bu.edu/~hwxi/ATS/PAPER/ATSwSV.ps.

A. Implementing the call-by-value evaluation for
the pure untypedλ-calculus via closures

We present an implementation of the call-by-value evaluation for
the pure untypedλ-calculus in Figure 15. In this case, we use a
first-order representation forλ-terms that essentially uses deBrujin
indexes to represent free variables. Given a static terms of the sort
tm, EXP0(s) is the type for the dynamic value that represents the
λ-term represented bys, andVAL(s) is the type for the closures
that represents theλ-term represented bys. The following type is
assigned to the functionevaluate:

∀a : tm. EXP0(a) → ∃a′ : tm. EVAL0(a, a′) ∗VAL(a′)

whereEVAL0 is like EVAL in Section 4.

datasort tm = TMlam of (tm -> tm) | TMapp of (tm, tm)

datasort tms = TMSemp | TMSmore of (tms, tm)

dataprop EVAL (tm, tm, int) = // the third index is needed for form metrics
| {f: tm -> tm} EVALlam (TMlam f, TMlam f, 0)
| {t1: tm, t2: tm, f: tm -> tm, v1: tm, v2: tm, n1:nat, n2:nat, n3:nat}

EVALapp (TMapp (t1, t2), v2, n1+n2+n3+1) of
(EVAL (t1, TMlam f, n1), EVAL (t2, v1, n2), EVAL (f v1, v2, n3))

propdef EVAL0 (t:tm, t’:tm) = [n:nat] EVAL (t, t’, n)

dataprop ISVAL (tm) = {f: tm -> tm} ISVALlam (TMlam f) // a prop definition

prfun lemma1 {t:tm} (pf: ISVAL (t)): EVAL0 (t, t) = // a value evaluates to itself
case pf of ISVALlam => EVALlam

// a lambda-term can only be evaluated to a value
prfun lemma2 {t: tm, t’:tm, n:nat} .<n>. (pf: EVAL (t, t’, n)): ISVAL (t’) =

case pf of
| EVALlam => ISVALlam
| EVALapp (_, _, pf3) => lemma2 pf3

datatype IN (tm, tms) = // deBruijn indexes
| {ts: tms, t: tm} INone (t, TMSmore (ts, t))
| {ts: tms, t: tm, t’:tm} INshi (t, TMSmore (ts, t’)) of IN (t, ts)

datatype EXP (tms, tm) = // first-order representation for lambda-terms
| {ts: tms, t: tm} EXPvar (ts, t) of IN (t, ts)
| {ts: tms, f: tm -> tm} EXPlam (ts, TMlam f) of {t: tm} EXP (TMSmore (ts, t), f t)
| {ts: tms, t1: tm, t2: tm} EXPapp (ts, TMapp (t1, t2)) of (EXP (ts, t1), EXP (ts, t2))

typedef EXP0 (t: tm) = EXP (TMSemp, t) // a type definition

datatype VAL (tm) = // value representation
| {ts: tms, f: tm -> tm } VALclo (TMlam f) of (ENV (ts), {t: tm} EXP (TMSmore (ts, t), f t))

and ENV (tms) = // environment representation
| ENVnil (TMSemp)
| {ts: tms, t: tm} ENVcons (TMSmore (ts, t)) of (ISVAL t | VAL (t), ENV (ts))

fun eval {ts: tms, t: tm} (env: ENV (ts), e: EXP (ts, t)): [t’:tm] ’(EVAL0 (t, t’) | VAL (t’)) =
case e of

| EXPvar i => evalVar (env, i)
| EXPlam body => ’(EVALlam | VALclo (env, body))
| EXPapp (e1, e2) =>

let
val ’(pf1 | VALclo (env’, body)) = eval (env, e1)
val ’(pf2 | arg) = eval (env, e2)
val ’(pf3 | v) = eval (ENVcons (lemma2 pf2 | arg, env’), body)

in
’(EVALapp (pf1, pf2, pf3) | v)

end

and evalVar {ts: tms, t: tm} (env: ENV (ts), i: IN (t, ts)): ’(EVAL0 (t, t) | VAL (t)) =
case i of
| INone => let val ENVcons (pf | v, _) = env in ’(lemma1 pf | v) end
| INshi i => let val ENVcons (_ | _, env) = env in evalVar (env, i) end

fun evaluate {t: tm} (e: EXP0 (t))
: [t’:tm] ’(EVAL0 (t, t’) | VAL (t’)) = eval (ENVnil, e)

Figure 15. An implementation of the call-by-value evaluation for the pure untypedλ-calculus via closures

