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Abstract fun append {a:type, m:nat, n:nat}
(xs: list(a,m), ys: list(a,n)): list(a,m+n) =
case xs of
| nil => ys (* the first clause *)
| cons (x, xs) => (* the second clause *)
cons (x, append (xs, ys))

Applied Type SystemAZS) is recently proposed as a framework
for designing and formalizing (advanced) type systems in support
of practical programming. IA7S, the definition of type equality
involves a constraint relation, which may or may not be algorith-
mically decidable. To support practical programming, we adopted
a design in the past that imposes certain restrictions on the syntac - - —
tic form of constraints so that some effective means can be found Figure 1. A simple function in ATS

for solving constraints automatically. Evidently, this is a rather

hoc design in its nature. In this paper, we rectify the situation by ) o

presenting a fundamentally different design, which we claim to be @ Programming language with its type system rootedt#s. We
both novel and practical. Instead of imposing syntactical restric- Uselist as a type constructor; when applied to a typend an
tions on constraints, we provide a means for the programmer to integerZ, list (7', I') forms a type for lists of lengtlh in which each
construct proofs that attest to the validity of constraints. In particu- element is of typel". Also, the two list constructorsil andcons
lar, we are to accommodate a programming paradigm that enablesare assigned the following types:

the programmer to combine programming with theorem proving.

Also we present some concrete examples in support of the practi- Nil :  Va : type.list(a,0)

cality of this design. cons : Va: type.Vn : nat.(a,list(a,n)) — list(a,n + 1)

Categories and Subject DescriptorsD.3 [Softward: Program-  The header of the functionppend indicates thatappend is as-

ming Languages signed the following type:

General Terms Languages, Verification Va : type.Nm : nat.Vn : nat.

Keywords ATS, Applied Type System, Dependent Types, Proof (list(a, m), list(a, n)) — list(a,m +n)

Erasure, Theorem Proving which means thatppend returns a list of lengthn + n when
applied to two lists of length andn, respectively. Note thatpe

1. Introduction is a built-in sort inA7S, and a static term of the sotype stands

for a type. Also,int is a built-in sort for integers iM7S, andnat
is an abbreviation of the subset sdtt : int | a > 0} for all
nonnegative integers.

When type-checking the definition afppend, we essentially
need to generate the following two constraints:

The notion of type equality plays a pivotable in type system
design. However, the importance of this role is often less evident
in commonly studied type systems. For instance, in the simply
typed A-calculus, two types are considered equal if and only if
they are syntactically the same; in the second-order polymorphic

A-calculus, two types are considered equal if and only if they 1. Vm:natVn:natm=0D>n=m+n
area-equivalent; in the higher-order polymorphiecalculus, two 2. Vm:natVn:nat.¥m': nat.
types are considered equal if and only if they greequivalent. m=m'+1D>(m +n)+1=m+n

The situation immediately changes in the framewagplied Type
Systen{A7S) [25, 27], and we now use a simple example to stress
this point.

In Figure 1, we implement a function in ATS (via a form of
syntax rather similar to that of Standard ML [12]), where ATS is

The first constraint is generated when the first clause is type-
checked, which is needed for determining that the tyjpga, n)
andlist(a, m + n) are equal under the assumption thiat(a, m)
equalslist(a,0). Similarly, the second constraint is generated
when the second clause is type-checked, which is needed for deter-
mining that the typesist(a, (m’ +n) + 1) andlist(a, m +n) are
equal under the assumption thitt (a, m) equaldist(a, m’ + 1).
Clearly, we need to impose certain restrictions on the form of
constraints allowed in practice so that an effective means can be
found to solve constraints. In ATS, we require that (arithmetic)
F’Ie”“iSSiO" to make digi:ia' %f] hatf? COPies,dOfdaiLO{ part of this Wft”k fzf PEFSQTa}LO{ constraints like those presented above be liheard we rely on
B O 1ute’a constraint solver based on the Fourier-Motzkin variable efimina-
on the first page. To copy otherwise, to republish, to post on servers or to redistribute 0N Method [6] to solve such constraints. While this is indeed a
to lists, requires prior specific permission and/or a fee.

ICFP'05  September 26-28, 2005, Tallinn, Estonia. 1 More precisely, we require that an arithmetic constraint can be turned into
Copyright(© 2005 ACM 1-59593-064-7/05/0009. . . $5.00. a linear integer programming problem.
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datasort mynat = Z | S of mynat

datatype myadd (mynat, mynat, mynat) =
| {n: mynat} Bas (Z, n, n)
| {m: mynat, n: mynat, s: mynat}
Ind (Sm, n, S s) of myadd (m, n, s)

datatype mylist (type, mynat) =
| {a: type} mynil (a, Z)
| {a: type, n: mynat}
mycons (a, S n) of (a, mylist (a, n))

// {...} : universal quantifier
// [...] : existential quantifier
fun myappend {a:type, m:mynat, n:mynat, s:mynat}
(xs: mylist (a, m), ys: mylist (a, n))
[s: mynat] ’(myadd (m, n, s), mylist (a, s)) =
case xs of
| mynil => ’(Bas, ys)
| mycons (x, xs) =>
let val ’(pf, zs) = myappend (xs, ys) in
’(Ind pf, mycons (x, zs))
end

Figure 2. A motivating example

simple design, it can also be too restrictive, sometimes, in a situa-
tion where nonlinear constraints (e.gn : int. nx*n > 0) need to
be handled. Furthermore, such a design is inherextliocin its
nature.

In this paper, we present a fundamentally different design. We

are to provide a means for the programmer to handle nonlinear con-

straints by constructing explicit proofs (while linear constraints are
still solved by a constraint solver). For a simpler presentation, let us
assume for this moment that even the addition function on integers
is not allowed in forming constraints. Under such a restriction, we
can still implement a list append function that is assigned a type
capturing the invariant that the length of the concatenation of two
given listszs andys equalsm + n if zs andys are of lengthm
andn, respectively. For instance, this is achieved by the code in
Figure 2, and we provide some explanation for it as follows.

In Figure 2, we first declare a datasortynat for forming

terms that can be used as type index expressions. We then declar

a datatype constructanhyadd such thatmyadd forms a type
myadd(s1, s2, s3) when applied to three static terms sz, s of

the sortmynat. The syntax indicates that there are two value con-
structors associated withyadd, which are given the following

types:

Bas
Ind

Va : mynat. myadd(Z, a, a)
Yai : mynat.Vaz : mynat.Vas : mynat.
myadd(a1, az,a3) — myadd(S(a1), az, S(as))

Given static terms, sz, s3 of the sortmynat, it is easy to see that
there exists a closed value of the typeyadd(si, s2, s3) if and
onlyif |s1|+|s2| = |s3|, where we usés| for the number of occur-
rences ofS in s (which is assumed to be closed). We next declare
a datatype constructanylist, which forms a typemylist(7’, s)
when applied to a typ& and a terms of the sortmynat. Note that
the two constructormynil andmyconsare assigned the following
types:

mynil
mycons

Va : type. mylist(a, Z)
Va : type.Vn : mynat.
(a, mylist(a,n)) — mylist(a, S(n))

Thus, given a typél” and a terms of the sortmynat, the type
mylist (T, s) is for lists of length|s| in which each element is of
typeT. Lastly, we define a functiomyappengdwhich is given the
following type:

Ya : type.Nai : mynat.Naz : mynat.
(mylist(a, a1), mylist(a,az)) —
Jas : mynat.(myadd (a1, a2, a3), mylist(a, a3))

Note that we usé(...) in the concrete syntax to form tuple types
as well as tuples, and the quote symbpig solely for the purpose
of parsing. Given two lista:s andys of typesmylist (7', s1) and
mylist (T, s2), respectively, for some typE and termss; andsz

of the sortmynat, myappendeturns a pai(pf, zs) such thatpf

is a value of typanyadd(si, s2, s3) for some termss of the sort
mynat and zs is a list of typemylist(a, s3); the valuepf, which

we call awitnessing valugessentially serves as a witness to the fact
that|ss| = |s1]| + |s2|, that is, the length ofs is the sum of the
lengths ofzs andys.

So far, what we have described can already be implemented in
Dependent ML (DML) [21]. Certainly, the programming style as
is presented in Figure 2 is more involved than the usual functional
programming style. However, this is not so much a concern as we
expect to make only occasional use of this programming style. In
particular, we emphasize that the programmer can choose not to
program in such a style by simply avoiding capturing certain pro-
gram invariants. What is of real concern is the need for constructing
witnessing values (e.gpf in the definition ofmyappenyiat run-
time. For instance, we have a realistic example (array subscripting
function) where the underlying algorithm §3(1)-time but an in-
volved withessing value tak&3(n)-time to construct. This is sim-
ply unacceptable in practice.

The primary contribution of the paper lies in the novel pro-
gramming language design we propose that allows programs to
be combined with proofs while obviating the need for construct-
ing witnessing values at run-time. With this design, we save not
only time but also space when evaluating programs (that contain
proofs). More importantly, we become able to verify at compile-
time the correctness of witnessing values, that is, these values in-
deed witness the facts they are supposed to witness. Though we
only combine programming with proofs from a particular proof
system (based on intuitionistic predicate logic) in this paper, we
stress that the design itself is general and flexible in its nature. For
g1stance, we also support in ATS the construction of proofs based
a form of linear logic (closely related to separation logic [17] for
establishing properties on memory) [30]. In support of the practi-
cality of this design, we have finished a running implementation of
ATS [27] and written tens of thousands lines of code in ATS ifself
where a significant part is involved, either directly or indirectly,
with proof construction.

At this point, we stress that this design for combining program-
ming with theorem proving is fundamentally different from the
programming paradigm (as is supported in certain theorem prov-
ing systems such as NuPrl [4] and Coq [7]) in which (total) pro-
grams are extracted out of proofs. In ATS, program construction
may involve programming constructs such as general recursion and
nonexhaustive pattern matching that are in principle not allowed in
proof construction. The distinction between proofs and programs
we propose is partly inspired by the distinction between logical
parts and informative parts employed in extracting programs out of
proofs in Coq [14]. However, there is also a profound difference:
We allow proofs in programs but not programs in proofs while log-
ical parts may contain informative parts and vice versa. In partic-

2The library of ATS alone already contains more than 20,000 lines of code
in ATS at this moment.



ular, we extract nothing out of proofs, which are simply erased at
run-time. This will be further illustrated later with some concrete
examples.

Also, we emphasize that combining programming with theorem
proving is not just a simple matter of hooking up programming
languages with (automated) theorem provers. After all, we have
so far not seen it done elsewhere effectively in practice. Thus,
we consider a design that actually supports practical programming
with theorem programming to be an important contribution.

The rest of the paper is organized as follows. In Section 2, we
demonstrate an approach to combining programs with proofs in the
design and formalization of a languaggy, setting up some ma-
chinery for further development. In order to reap the benefits of
combining programs with proofs, we exteng; to )\Zf in Sec-
tion 3 by introducing universally as well as existentially quantified
types. We then present a few examples in Section 4 to give the
reader some concrete feel as to how the approach to combining
programs with proofs can be applied in practice. Lastly, we men-
tion some related work and conclude.

There is a full version of the paper available on-line [1] in which
more details such as proofs and examples can be found.

2. Formal Development

In this section, we present a typed languagg formally demon-
strating a design for combining programs with proofs. The lan-
guageX,s, which is essentially built on top of the simply typed
A-calculus, is not intended for demonstrating some practical appli-
cations of combining programs with proofs as such applications are
difficult to find until dependent types are introduced. The primary
purpose of\, is to set up the machinery needed for further devel-
opment.

The syntax of),; is given in Figure 3. There are proof terms
and dynamic terms in,¢, and we are to present rules for assigning
types to these terms. In order to avoid potential confusion, the types
for proof terms are callegrops We useP for props,d for proof
terms ancb for proof values. Also, we usH for contexts in which
proof variables are declared. The rules for assigning props to proof
terms are given in Figure 4, where we use a judgment of the form
I+ d : Ptomean thatl can be given the prof under the context
I1. We useT for types,d for dynamic terms and for dynamic
values. There are two forms of dynamic variablesand f; we
use the namekam-variable and fix-variable to refer tox and f,
respectively; the former is a value while the latter is not. We may
write zf to mean either a lam-variable or a fix-variable.

Intuitively, a type of the formP « T is to be assigned to a value
of the form (v, v) such thaw is a proof value of profP andv is
a dynamic value of typd’; therefore, if a value of typé = T' is
produced, then we know that the prépholds. Also, a type of the
form P — T is to be assigned to a value of the fotam z.v,
which can only be of use if a proof of prap is made available.
For those who are familiar with the recently proposed framework
ATS [25, 27], these two forms of types are closely related to but
different from asserting types and guarded typed .

The typing judgment i\, is of the formII; A - d : T, where
we useA for contexts in which dynamic variables are declared, and
the rules for deriving such typing judgments are given in Figure 5.

We now assign dynamic semantics to dynamic terms. For doing
so, we also need to assign dynamic semantics to proof terms.
As usual, we first introduce the notion of evaluation contexts in
Figure 3. Given a proof evaluation conteikt we write E[d] for
the proof term obtained from replacing the h@lén E with d.
Given a dynamic evaluation contekt, we know that it contains
a hole which is eithef] or []; in the former case, we writ&[d]

for the dynamic term obtained from replacifigin £ with d; in

Dz Prz. p Prvan

m (pr-unit)

IIEd,: P IIkd,: P
: (pr-tup)
H"<d1,d2>.P1*P2
II-d: P x P
T+ fst(d) : P
II-d: P« P
II+ snd(d) : P>
z:PFd: P
IIFlamz.d: PL — P
Ikd, : P — P IIkd,:
M= app(dladg) Py

(pr-lam)

Py
(pr-app)

Figure 4. The rules for assigning props to proof termsiis

the latter case, we we writ&[d] for the dynamic term obtained
from replacing]] in £ with d. We next introduce proof redexes and
dynamic redexes.

DEFINITION 2.1. We define proof redexes and dynamic redexes as
follows.

e fst({v;,v,)) is a proof redex, and its reductionig.

snd((v;, v,)) is a proof redex, and its reductions,.

app(lam z.d, v) is a proof redex, and its reduction &z +—

vl.

let (z, z) = (v, v) in d is a dynamic redex, and its reduction is

dlz > v]fa > vl.

e app(lam z.d, v) is a dynamic redex, and its reductiondg: —

).

let x = v in d is a dynamic redex, and its reduction is

dlz — v].

fst((v1, v2)) is a dynamic redex, and its reductioris.

snd({v1,v2)) is a dynamic redex, and its reductiomis

app(lam z.d, v) is a dynamic redex, and its reductiondge +—

v].

elet x = v in dis a dynamic redex, and its reduction is
dlz — v].

e fix f.dis a dynamic redex, and its reductiondpf — fix f.d].

We leave out the details on the (standard) substitution involved in
the above definition.

Givend, andd, such thad, = E[d] andd, = E[d’] for some
proof redexd and its reductionl’, we writed, — d,, and say that
d, reduces tal, in one step. Giver: anddz, we writed; — d2
and say thatl; reduces tal; in one step if (1)d1 = E[d,] and
dy = E[d,] for somed, — d, or (2)d1 = E[d] andd; = E[d’]
for some dynamic redex and its reductiond’. We use —*
and —* for the reflexive and transitive closures ef and —,
respectively.

The type soundness of,; can be established in a standard
manner, and some of the lemmas and theorems involved are given
as follows. Please see [1] for details on proofs.

LEMMA 2.2 (Substitution)We have the following:

1. Assume thatl + d, : Py andIl,z : P + d, : P are
derivable. Thedl \- d,[z — d,] : P» is also derivable.



props P = 1P~ *P2|P1HP2
proof terms d == z|()]{d;,d,) | fst(d) | snd(d) | lam z.d | app(d,, d,)
proof values v o= z|(v 171}2} | lam z.d
proof var. ctx. o == ¢|ILz:P
types T 2= 1|P+«xT|P->T|Th«+Te|Ti — 1Tk
dynamic terms d == x| fl{|{dd)]|let{z,x)=diinds |
lam z.v | app(d,d) | letz =din d |
(d1,d2) | fst(d) | snd(d) | lam x.d | app(di,d2) |
letx = d1 in ds | fix fd
dynamicvalues v == x| {v,v)|lamz.v | (v1,v2) | lam z.d
dynamicvar.ctx. A = (0|Az:T
proofeval.ctx.  E = [||(E.d)| (v, E) | fst(E) | snd(E) | app(E, d) | app(v, E)
dynamiceval.ctx. E == | ([l d) | (v, E) | let (z,x) = E'in d| app(E,d) | app(v, []) | letz=1[ind
(E,d) | (v, E) | fst(E) | snd(E) | app(E,d) | app(v, E) | letz = Ein d

Figure 3. The syntax for\ ¢

2. Assume thdil - d : PandIl,z : P; A+ d: T are derivable.
ThenIl; A - d[z — d] : T is also derivable.

3. Assume thall; A - d; : Th andIl; A,z : Ty + do : T are
derivable. Thedl; A + dz[z — di] : T% is also derivable.

THEOREM 2.3 (Totality). Assume thaf) + d : P is derivable.
Thend —* v holds for some proof value of prop P.

THEOREM 2.4 (Subject ReductionAssume tha); @ - d : T is
derivable andd — d’ holds. Ther®); § - d’ : T is also derivable.

THEOREM 2.5 (Progress)Assume thafl; ) - d : T is derivable.
Then either is a value ord — d’ holds for some dynamic terdh.

We are now ready to establish a key property)\gf, which
states that proof termsannotaffect the dynamic semantics of a
dynamic term. We first introduce an erasure function in Figure 6,
which erases all syntax related to proof terms in a given dynamic
term. The following theorem indicates that the evaluation of a
well-typed closed dynamic terni can be performed by simply
evaluating the erasure df thus obviating the need for constructing
proof values at run-time.

THEOREM 2.6. Assume thald; ) - d : T is derivable.

1. Ifd =" v, then|d| =™ |v].

2. If|d| —* v, thend —* v’ for some dynamic value’ such that
V| = v.

Note that Theorem 2.3 plays a cruciéle in the proof of Theo-

rem 2.6.

3. Extension

While the basic design for combining programs with proofs is
already demonstrated in the formalization)gf, it is nonetheless
difficult to truly reap the benefits of this design given that the type
system of),; is simply too limited. We now extend,; to )\Zf
with universally as well as existentially quantified types. Following
the work in [25, 27], we present in the rest of this section an
overview of this extension.

Like an applied type system [25], that is, a type system formed
in the frameworkA7S, )\p]; consists of a static component (statics)
and a dynamic component (dynamics). The (additional) syntax
for A7:% is given in Figure 7. The statics itself is a simply typed
Ianguage and a type in it is callsdrt We assume the existence

of the following basic sortsbool, int, prop andtype; bool is the
sort for truth values, andnt is the sort for integers, anglrop is
the sort for props, antype is the sort for types. We usefor static
variables,b for truth valuestt andff, and: for integers. A terms
in the statics is called a static term, and we wiite+ s : o to
mean thats can be given the sort under the context, which
assigns sorts to static variables. The rules for assigning sorts to
static terms are omitted as they are completely standard. In this
presentation, a static terms either a static boolean ter® of the
sort bool, or a static integef of the sortint, or a propP of the
sort prop, or a typeT' of the sorttype. In practice, we allow the
programmer to introduce new sorts through datasort declarations,
which are rather similar to datatype declarations in ML. We assume
some primitive functiongg andc; when forming static terms of
the sortsbool and int; for instance, we can form terms such as
L+ 1, [ — I, [ < I, B, B A Ez, etc. We useB for a
sequence of static boolean terms aixdB = B for a constraint
that means for any substitutigh : X, if each static boolean term
in B[O] equalstt then so does3[O]. Note that we us® : X to
meand - ©(a) : ¥(a) holds for eachi € dom(0) = dom(X).
In practice, such a constraint relation is often determined by some
automatic decision procedure.

We now briefly explain some unfamiliar syntaxbjf.

e B D T'is called a guarded type ai®IA T is called an asserting
type. As an example, the following type is for a function from
natural numbers to negative integers:

Vai :int.ay > 0D

(int(a1) — Faz : int.(a2 < 0) A int(az))

The guarda; > 0 indicates that the function can only be
applied to an integer that is greater than or equal;tdhe
assertionaz < 0 means that each integer returned by the
function is negative.

e The marker™ (-), 27 (), A(-), V1 (-),V~(-),3(-) are intro-
duced to establish alemma needed for conducting inductive rea-
soning on typing derivations. Please see [25] for further expla-
nation on this issue.

In addition, we introduce two type constructdseol andint;
given a static boolean term®, bool(B) is the singleton type in
which the only value is the truth value @&; similarly, given an
integer!, int(I) is the singleton type in which the only value is
the integer!.



sorts o

static contexts % =
static bool. terms B ::=
staticint.terms I =
props P =
types T ==
proof terms d =
dynamicterms  d

bool | int | prop | type

0]2,a:0
b|ca(si,.-.,Sn)
i|CI(S1,...,Sn)

...|BD>P|Va:0.P| BAP|3a:0.P
...la|bool(B)|int(I) | BODT |Va:0.T |BAT|3a:0.T

D) D@ V) V(D) | A | et A (2) = d, indy | 3(d) | let 3(2) = d, ind,
.. |if(di,d2,ds) [let A(z)=dind]|let3(z) =dind]|

Ot (d) |27 (d) | VT (d) |V (d) | A(d) | let A (z) =d1inds|3(d)|letI(x) =diin do

Figure 7. The syntax for\”;>

TAg TFag. T VA

OFd: P I;ARd:T
ILTAF{d,d): PxT
AR : PxTh

Mz: P;Ax:TiHdy:Te

ILAF let{z,z) =dyindy:
z: P;Avwv:T

ILAFlamzwv: P —>T

ILAFd:P—-T IIkd:P
IT; A+ app(d,d) : T

Ikd:P I,z:P;ARd:T
I;AFletz=dind: T

m (ty-unit)

IGAFd Ty I;ARde:
I; A b {d1,do) : Ty x Tp
IGARd: Ty xT:
LAF fst(dl) 7, (D
ILARd: Ty xT5
ILAFsnd(d) : Tz
LAz T Fd:Ts
ILAFlamz.d: Ty — Te
IGAFd Ty — Ty IL;Abds:
IT; A + app(di, d2) : To
ILARd : Ty H;A,z‘ TiHdy: T (ty-let)
IARletz=diinds : Ts
IGA f:THd:T
IGARSiX fd: T

(ty-pr-tup-i)

T (ty-pr-tup-e)

(ty-pr-lam)

(ty-pr-app)

(ty-pr-let)

T2 (ty-tup)

(ty-snd)

(ty-lam)

T
L (ty-app)

(ty-fix)

Figure 5. The rules for assigning types to dynamic terms\jp

A judgment for assigning a prop to a proof term is now of the
form; B; 11+ d : P, and the rules in Figure 4 need to be properly
modified. Intuitively, such a judgment means thHB] - d[O] :
P[©)] holds for any substitutio® : X such thatB[©] holds for

lzf| = af
Kd.d)| = |d]
llet (z,z) =diindz| = letz =|di]Iin |d2|
[lam z.v| = |v
lapp(d,d)| = |d]
letz=dindl = |d
(di,d2)| = (|di],|d2])
Ifst(d)] = fst(|d|)
|snd(d)] = snd(|d])

[lam z.d| = lam z.|d|
lapp(di, dz2)| = app(|dil,|dz|)
||et33':d1 in ds = letz = ‘dl‘ in ‘dz‘
[fix f.d| = fix f.d|

Figure 6. The erasure function

eachB in B. Some additional rules for assigning props to proof
terms are given in Figure 8.

Similarly, a judgment for assigning a type to a dynamic term is
now of the form=; B; IT; A - d : T, and the rules in Figure 5 need
to be modified properly. Some additional rules for assigning types
to dynamic terms are given in Figure 9.

Following the development ofl7S, it is a standard routine to
establish the type soundnesshﬁf. Then we can prove a theorem

in AZ;H that corresponds to Theorem 2.6. In practice, we also need
to allow the use of recursion in constructing proof terms. It is
clear that we cannot support unrestricted general recursion as it
would otherwise allow the construction of proof terms that are not
normalizing and thus invalidate Theorem 2.3, which plays a crucial
role in establishing Theorem 2.5. Instead, we follow the work
in [23], providing a means for the programmer to define terminating
proof terms by supplying a form of metrics. This point will be made
clear when we present some examples in the next section. Another
issue in practice is the need for recursive props (dataprops) and
recursive types (datatypes), which are not presemZ}ﬁ for the
sake of brevity. It should be understood that recursive props and
recursive types can be readily added info” without difficulty.2
We now use a simple example to illustrate some of these mentioned
issues.

In Figure 10, we declare a prop constructefUL, where
the concrete syntax indicates that there are three (proof) value
constructors associated wiM UL, which are given the following

3As for the definition of a recursive prop, we require that the defined
prop itself have no negative occurrences in the definition. Otherwise, a
nonterminating proof term can be constructed without using fixed-point
operator.
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Figure 8. Some additional rules for assigning props to proof terms

constant props:

MULbas Vn : int.() — MUL(0, n,0)
MULind Vm :int.Vn :int. m > 0D

(MUL(m — 1,n,p — n) — MUL(m,n,p))
MULneg Vm :int.Vn :int.m < 0D

(MUL(—m,n, —p) — MUL(m,n,p))

Given integersl, I», I3, it is clear thatl; « I = I3 holds if
and only if MUL(11, I2, I3) can be assigned to a closed (proof)
value. In essencel ULbas, MULind and MULneg correspond
to the following three equations in an inductive definition of the
multiplication function on integers:

Oxn = 0
mxn = (m—1)xn+nifm>0;
mxn = —((—m)xn) ifm<O0.

In Figure 10,lemma is defined as a proof function of the follow-
ing prop:
Vm : nat.Vn : nat.Vp : int.
MUL(n,m,p) —» MUL(n,m + 1,p+n)

Note that we use the keyworttfun to declare a proof function.
Essentially/emma, represents an inductive proofoekm = p D

n * (m + 1) = p + n for all natural numbers, n and integer,
where the induction is on. In particular, the following two linear

¥; B;1I; A+ d; : bool(B)
ZE,B;H;AI—dQ:T

B, -B;II;AkFds: T
I

— ty-if
3 B; ;A}—if(dl,dg,dg):T(y )
Y:B;IIFd: BAP
S B,B;ILz: P;A-d:T
(ty-pr-A-)

S B ILARlet A(z)=dind: T

Y:B;II+d:3a:0.P
Sa:0;B;ILz: P;AFd:T

B ILAFlet3(z)=dind: T
Y:B,B;ILAFd:T

S B;ILARDT(d): BT

S BILARd:BDT Y;,BEB
S BILARD (d): T
Sa:0;BIARd:T

Y B IEARFYY(d) :Va: 0T

(ty-pr-3-)

(ty-D+)

(ty-2-)

(ty-v+)

Y B ILAFd:Va:0T Yks:o
Y B ARV (d) : Tla — s
S:sBEB % BILARd:T
S B;ILARA(): BAT

%E;H;Al—de/\Tl
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Yhs:o S BILAFd: Tla— s
S B I AR 3(d) : Fa: 0T
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Y B IL AR let Iz)=drindy: T

(ty-v-)
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(ty-n-)
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Figure 9. Some additional rules for assigning types to dynamic
terms

MUL(I, I1 + 1, Is + I2). Generally speaking, when implement-
ing a recursive proof function il7S, the programmer is required
to provide a metric that can be used to verify the termination of
the function. A thorough study on using such metrics for veri-
fying program termination can be found in [22, 23]. In the def-
inition of lemma., (n) is the provided metric for verifying that
lemma, is terminating; whenemma, is applied to a value of

arithmetic constraints, which can be easily verified, are generatedprop MUL(I2, I1, I3), the label(I>) is associated with this call;

when the two clauses in the body lefnma, are type-checked:

Vn:natVp:int.n=0D(p=0D0=p+n)
VYm : nat.Vn : nat.Vp : int.vn' : int.Vp' : int.
n=n"4+12>(p=p +mDp+n=( +n)+(m+1))

However, in order forlemma; to represent a proof, we need
to show thatlemma; is a total function, that is, givepf of
prop MUL(/5, I, Is) for natural numberd; and I> and inte-
ger I3, lemmas (pf) is guaranteed to return a proof value of prop

in case a recursive call temma, is made subsequently, the la-
bel associated with the recursive cal(i& — 1) (sincepf’ in the
definition oflemmas is given the typeMUL(n — 1, m,p — m)),
which is strictly less than the labél,) associated with the original
call; as a label associated wikmma; is always a natural number,

it is evident thatlemma; is terminating. To show thdemma, is
total, we also need to verify that pattern matching in the definition
of lemmay can never fail, which is a topic that is already studied
elsewhere [20, 24].



dataprop MUL (int, int, int) =
| {n:int} MULbas (0, n, 0)

| {m:int,n:int,p:int | m > O}
MULind (m, n, p) of MUL (m-1, n, p-n)

| {m:int,n:int,p:int | m > 0}
MULneg (m, n, p) of MUL ("m, n, “p)

(* <n> is a termination metric *)
prfun lemmal {m:nat, n:nat, p:int} .<n>.
(pf: MUL (n, m, p)): MUL (n, m+l, p+n) =
case pf of MULbas =>
MULbas | MULind pf’ => MULind (lemmal pf’)

Figure 10. A dataprop for encoding integer multiplication

4. Examples

We present a few examples in ATS to give the reader some concret
feel as to how combining programming with theorem proving can
be put into practice. There are also a large number of more realistic
examples that can be found on-line [27].

Of course, we need a process to elaborate programs written
in the concrete syntax of ATS into the (kind of) formal syntax
of /\Z’H. This is a rather involved process, and we unfortunately
coulc{ not formally describe it in this paper and thus refer the
interested reader to [26] for further details. Instead, we are to
provide some (informal) explanation to facilitate the understanding
of the concrete syntax we use.

We useieq, ipred, iadd, isub andimul for the equality func-
tion, the predecessor function, the addition function, the subtrac-
tion function and the multiplication function on integers, which are
given the following types:

ieq Yai : int.NVas : int.

(int(a1),int(a2)) — bool(a; = a2)
ipred Va : int. int(a) — int(a — 1)
iadd VYai : int.Vasg : int.

(int(a1),int(az2)) — int(a1 + a2)
isub Vai : int.Vasg : int.

(int(a1),int(az2)) — int(a1 — a2)
imul Yai : int.NVas : int.

(int(a1),int(az2)) —
Jas : int. MUL(a1, az, as) * int(as)

Note thatimul is notgiven the following type:
Ym : int.Vn : int. (int(m), int(n)) — int(m % n)

asm * n, which is nonlinear, is not allowed to be a type index in
ATS.

4.1 List Concatenation

The code for implementingoncatis given in Figure 11, which
concatenates a given list of lists together. We white.) to form

a tuple, where the quote symbd) (s used solely for the purpose
of parsing. Also, we use the bar symbg) @s a separator to sepa-
rate proofs from programs. When given an argumessof type
list(list(7, 1), I,), the functionconcatreturns a pair(pf, res)
such thatpf is a proof value of pro®MUL(I4, I, I3) for some
integer/; andresis a list of typelist (7', I3). Thereforepf acts as
a witness to certify that the length a#sis I x Io. Now suppose

eprfun lemma2 {al:nat, a2:nat,

fun concat {a:type, m:nat, n:nat}
(xxs: list (list (a, n), m))
>(MUL (m, n, p) | list (a, p)) =
case xxs of
| nil => nil
| cons (xs, xss) =>
let val ’(pf | res) = concat xss in
>(MULind (pf) | append (xs, res))
end

Figure 11. An implementation of the list concatenation function

fun factl {a:nat} (x: int a): Int
if x ieq O then 1 else
let val ’(pf | 1)
r
end

x imul factl (ipred x) in

// <al> is the termination metric

a3:int} .<al>.
(pf: MUL (al, a2, a3)): >=0] 0 =
case pf of

MULbas => ’() | MULind pf

[a3

=> lemma2 pf

fun fact2 {a:nat} (x: int a):
if x ieq O then 1 else

Nat

let
val ’(pf | r) = x imul fact2 (ipred x)
prval _ = lemma2 (pf) // proves r >= 0
in
r
end

dataprop FACT (int, int) =
| FACTbas (0, 1)
| {n:int, r:int, rl:int | n > 0}
FACTind(n,r) of (FACT(n-1,r1), MUL(n,rl,r))

fun fact3 {a:nat} (x: int a)
[r:int] °’(FACT (a, r) | int r) =
if x ieq O then ’(FACTbas | 1) else

let
val ’(pfl | r1l) = fact3 (ipred x)
val >(pf2 | r) = x imul ri

in
> (FACTind (pf1, pf2) | r)

end

Figure 12. Some implementations of the factorial function

we would like to assigieoncatthe following type:

Va : type.Nm : nat.Vn : nat.
list(list(a,n),m) — Jp : int. MUL(n, m,p)  list(a, p)

which is obtained from replacing the prdgUL (m, n, p) with the
prop MUL(n, m, p) in the above type assigned ¢oncat Then
we need to replac@/ULind(pf) in the definition ofconcatwith
lemma (pf), wherelemma, is defined in Figure 10.

4.2 Different Implementations of the Factorial Function

We present three implementations of the factorial function in Fig-
ure 12 to make an interesting point. The functfant, is given the
following type:

Va : nat. int(a) — Int



where Int, defined to beda : int. int(a), is the type for all datasort tm =

integers. This type simply means thaict, is a function from TMlam of (tm -> tm) | TMapp of (tm, tm)
natural numbers to integers. Note that we use the bar symbol (

in the concrete syntax to separate proof terms from dynamic termsdataprop EVAL (tm, tm) =

The functionfact, is given the following type: | {t1: tm, t2: tm, f1: tm -> tm, v2: tm, v: tm}
. EVALapp (TMapp (t1, t2), v) of
Va : nat. int(a) — Nat (EVAL (t1, TMlam f1),
where Nat, defined to beda : nat.int(a), is the type for all EVAL (t2, v2),
natural numbers. Hencgyct, is a function from natural numbers EVAL (f1 v2, v))

to natural numbers. When implementifigrt,, we need to prove
that the product of two natural numbers is a natural number. This is datatype EXP (tm) =

done by the proof functiofemimas defined in Figure 12, which is | {f: tm -> tm}
assigned the following prop: EXPlam(TMlam f) of {t:tm} EXP t -> EXP(f t)
| {t1: tm, t2: tm}

Yai : nat.¥as : nat.Nas : int. EXPapp(TMapp (t1, t2)) of (EXP t1, EXP t2)

MUL(a1, az, a: a3 > 0)A1
(a1, 02,a5) = (a3 2 0) fun evaluate {t: tm} (e: EXP t)

wherel is the unit prop. The syntax<a1l>. in the header of the : [t’: tm] ’(EVAL (t, t’) | EXP t’) =

definition of lemma. indicates that, is the metric (provided by case e of

the programmer) for establishing the terminatiorieofimas. Note | EXPlam _ => ’(EVALlam | e)

that the keyworgrval in the body of the functiorfact, indicates | EXPapp (el, e2) =>

pattern matching on proof values, which is erased before program let

execution. val ’(pfl | EXPlam f1) = evaluate el
Next we declare a prop construclBACT, which forms a prop val ’(pf2 | v2) = evaluate e2

FACT(I,, I>) when applied to two given integefs and;; there val ’(pf3 | v) = evaluate (f1 v2)

is a closed value of prcPACT (14, I2) if and only if I, equals the in

factorial of I;. The functionfact is assigned the following type: »(EVALapp (pfl, pf2, pf3) | v)

end

Va1 : nat. int(a1) — Jaz : int. FACT (a1, a2) * int(az)

When applied to a value of tygeit(;) for some natural number
I, facty returns a proofpf of prop FACT(I,, ;) for some
integer/, and a value of typént(I2). Of course, the proof is not
actually constructed at run-time.

Clearly, fact,, fact,, fact, allimplement the factorial function,
but the types assigned to them become more and more accurate. Va : tm.EXP(a) — 3a’ : tm. EVAL(a,a’) * EXP(a)
Intuitively speaking, the programmer is given some freedom in ATS
to determine the extent of theorem proving to be involved based on
the invariants that need to be captured.

Figure 13. An implementation of the call-by-value evaluation for
the pure untyped-calculus

implement a functiorevaluate of the following type:

When applied to a value of tyd@@XP(s) for some static term of

the sorttm, evaluate can only return a value of typEXP(s')

such that a proof value of proEVAL(s, s’) exists. However,

4.3 Implementing the call-by-value evaluation for the pure it may never return as there certainly existerms that do not
untyped A-calculus evalu_ate to any values. _In o_the_r wordsjaluate is not a total _

function and thus cannot in principle be extracted out of any (valid)

In contrast to extracting programs out of proofs, we emphasize that proof.

dynamic functions such ag&ict,, fact, and fact; are not meant

to correspond to any proofs in the first place. In particular, they 4.4 Safe Matrix Subscripting

are not assumed to be terminating (thoygbt, , fact,, fact, are We now present a simple but realistic example. In Figure 14, we
all terminating) and may incur effects (e.g., updating references, first implement a proof functioiemmas. We use the keyword
raising exceptions). This is crucial to practical programming. T0 -ty in the concrete syntax to indicate that a proof function is
further stress this point, we give an implementation of the call-by- qefined. Essentiallyiemmas proves the statement thag col +
value evaluation for the pure untypéetalculus in Figure 13. col < row * col holds if col, row andi are natural numbers and
We declare a datasottn such that each static term of the ; . holds.
sort tm represents an untyped-term. For instance, the static In the definition oflemmas, the syntax. <row>. indicates that
term TMlam(Az = tm.TMlam(Ay : tm.TMapp(y, z))) repre- row is a metric supplied by the programmer; it can be easily ver-
sentsAz.\y.y(x). This representation strategy is referred to as jfieq that the metric decreases when a recursive calitonas is
higher-order abstract syntax [16]. We then declare a prop construc-made in the body ofernmas; this guarantee&mmas is terminat-
tor EVAL that forms a prof@VAL(s1, s2) when applied to two —jng [23]. Also, it can be easily verified that pattern matching in the
static termss; and s, of the sortim; there exists a closed proof  po4y oflemmas is exhaustive, and thugmmas is a total function.
value of propEVAL(s1, s2) if and only if the \-term represented We next show in Figure 14 how a safe matrix subscripting
by s1 evaluates to thé-term represented by.. We then declare  fnction matrixSubis implemented. Given a typE and an integer
a type constructoEXP which forms a typeEXP(s) for each I, we can form a typerray(T, I) in ATS for arrays of sizel
terms of the sorttm such that an untyped-term represented by
can be represented by a dynamic value of 3P (s).* We next resented by. In Appendix, we are to present a more realistic implemen-
tation of the call-by-value evaluation ofcalculus, which makes use of a
4This is a higher-order representation that is not adequate as there are dyirst-order adequate representation eterms and avoids the need for sub-
namic values of typdEXP(s) that do not correspond to theterm rep- stitution by forming closures.




prfun lemma3

{row:nat, col:nat, size:int, i:nat, p:int |

i < row} .<row>.

(pfl: MUL(row,col,size), pf2: MUL(i,col,p))

[p + col <= size] unit =

case pfl of
| MULind (pf1) => begin
case pf2 of
| MULbas =>
let val _ = lemma2 (pfl) in ’() end

| MULind pf2 =>
let val _ = lemma3 (pfl, pf2) in
>0
end
end

typedef matrix (a: type, row: int, col: int) =
[size:int]
’(MUL (row,col,size) |
int row, int col, array (a, size))

fun matrixSub
{a:type, row:nat, col:nat, i:nat, j:nat |
i < row, j < col}

(M: matrix(a,row,col), i: int i, j: int j): a =

let
val ’(pfl | row, col, A) = M
val ’(pf2 | p) = i imul col

// proves: p >= 0
prval _ = lemma2 (pf2)
// proves: p + col <= row * col
prval _ = lemma3 (pfl, pf2)
in
arraySub (A, p iadd j)
end

Figure 14. An example of combining programs with proofs

in which each element is of tydg. The usual array subscripting

function arraySub is given the following type:

Va : type.Nn : nat.Vi : nat.
it < n D ((array(a,n),int(:)) — a)

prval _ = lemma3 (pfl, pf2) // ...

The use of the keyworgdrval is to indicate that the pattern fol-
lowing it is to match a proof value. If we assume tipd, is of

prop MUL(%, col, p) for some integep, thenlemmas (pf,) is of

prop (p > 0) A 1; the codeprval _ = lemma2 (pf2) essen-
tially elaborates intdet A (z) = lemma2z(pf,) in ..., which
meansg > 0 can be assumed when we solve the constraints gener-
ated in the scope of this let-binding; the typing rule involved here
is (ty-pr- A-). Similarly, prval _ = lemma3 (pf1, pf2) essen-
tially elaborates intéet A(z) = lemmas(pf,, pf,) in ...; the prop

of lemmas(pfy, pfy) is (p + col < size) A 1, where we assume
pf, is of propMUL(row, col, size), and thup + col < size can

be assumed when we solve the constraints generated in the scope
of this let-binding. Lastly, we need to show that bgth- j > 0
andp + j < size hold when callingarraySub(A, p iadd j); the
former constraint is easily proven singés a natural number and

p > 0 can be assumed; the latter constraint is also easily proven
since bothp + col < size andj < col can be assumed.

Hence, if the pair of supplied indexésnd; are natural num-
bers satisfying < row andj < col, accessing a matrix of dimen-
sionrow by col via matrixSubis guaranteed to be safe. What is
significant here is that this property is captured in the type system
of ATS.

After matrix subscripting is properly handled, it is straightfor-
ward to implement various other functions (e.g., multiplication) on
matrices. At this point, we stress that the programmer may also
decide to insert run-time array bound checks to implement the ma-
trix subscripting functiormatrixSub By doing so, it is no longer
necessary to construct the proof functiemmas, though this also
means that the absence of illegal array subscripting can no longer
be guaranteed in the underlying type system.

5. Related Work and Conclusion

A fundamental problem in programming is to find approaches that
can effectively facilitate the construction of safe and reliable soft-
ware, and we have so far seen numerous attempts to address this
problem. An interesting idea is to build a language based on Martin-
Lof’s constructive type theory [9, 13] or its variants in which soft-
ware specifications can be formally stated and proven and an im-
plementation can be algorithmically extracted from the proof of a
specification to guarantee that the extracted implementation meets
the specification. While the practicality of such an idealistic ap-
proach to software development is yet to be proven, the notion ex-
pressed in this approach of integrating software design and imple-
mentation in a verifiably consistent manner is certainly inspiring.
Constructive type theory, which was originally proposed by

Therefore, the index used to access an array is required to be withinMartin-Lof pri_marily fo_r the purpose of _establishing a foundation
the bounds of the array (we assume the index of a given arrayfor mathematics, requires pure reasoning on programs (or proofs,

ranges from0 until n — 1, wheren is the size of the array). In
Figure 14, we define a type construcimatrix; given a typeT’
and two integerd; andl;, matrix(7T, I1, I) is defined to be:

Tp : int. MUL(11, I, p) x int([1) * int(12) * array (T, p)

which indicates that a matrix of dimensidi by 75 is represented
as an array of sizé, * I». The functionmatrixSubimplemented in
Figure 14 is assigned the following type as can be expected:

Ya : type.Nrow : nat.Vcol : nat.Vi : nat.Vj : nat.
i<row D (j<colD
((matrix(a, row, col), int(7),int(j)) — a))

The following two lines of code in the definition ofiatrixSubare

uncommon, and we now provide some explanation.

prval _ = lemma2 (pf2) // ...

more precisely). This requirement seems to have imposed a funda-
mental limitation on the use of constructive type theory in practical
programming as pure reasoning on (large and realistic) programs
seems simply untenable. We have recently rectified the situation
by formalizing a frameworlApplied Type Systef7S) [25, 27],
completely eliminating the need for pure reasoning on programs.
Also, by introducing the notion of conditional type equality, we
have maded7S highly expressive in capturing programming in-
variants. For instance, we have already formally demonstrated that
ATS can be used as a basis to support in a typeful manner a variety
of programming paradigms such as functional programming, im-
perative programming, object-oriented programming, modular pro-
gramming meta-programming, etc.

In AZS, a constraint relation is involved in determining type
equality. In order to support effective constraint solving, we adopted
a design in the past that imposes certain restrictions on the syntac-



tic form of constraints that are allowed in practice. For instance, plete separation between types and programs is also employed. Ba-
arithmetic constraints are required to be linear in the current imple- sically, the notions of type language and computational language in
mentation of ATS [27]. While this is a simple design, itis evidently the type system correspond to the notions of statics and dynamics in
ad hocby its nature and can also be too restrictive, sometimes, A7S, respectively, though the type language is based on the calcu-
in a situation where nonlinear constraints need to be handled. Welus of constructions extended with inductive definitions (CiC) [15].
have presented a different design in this paper. Instead of imposingHowever, the notion of a constraint relation.t¥S does not have
restrictions, we provide a means for the programmer to construct a counterpart in [18]. Instead, the equality between two types is de-
proofs that attest to the validity of constraints. termined by comparing the normal forms of these types. Also, there

Itis interesting to see a comparison between our design for com- seems so far no attempt to build a source programming language,
bining programs with proofs and theorem proving systems such and in particular, the theme of combining programs with proofs
as NuPrl [4] (based on Martindf’s constructive type theory) and  (which is done by the programmer) is not addressed there.
Coq [7] (based on the calculus of construction [5]). In order to rea- In summary, we have presented a novel design in this paper
son effectively about program properties within a type theory, the for combining programs with proofs in support of the use of (ad-
underlying functional language of a theorem proving system such vanced) types in capturing program invariants, opening a promis-
as Coq or NuPrl is often required to be pure, making it difficult ing avenue to making theorem proving available for practical pro-
to support many realistic programming features (e.g., general re- gramming. In support of the practicality of this design, we have
cursion, reference, exception). In general, programming in such afinished a running implementation of ATS and tested a variety of
setting amounts to constructing proofs (of specifications) and pro- examples. In particular, a large part of the library of ATS involves
grams are automatically extracted out of the constructed proofs. the combination of programs and proofs as is described here. The
This means that only total programs can be constructed in principle. presented design to support programming with theorem proving is
Therefore, such a programming paradigm can often be inflexible both general and flexible, and we naturally expect to capture more
or even infeasible in many common situations. For instance, par- program properties by exploring other logics (in addition to intu-
tial functions such aswvaluate mentioned in Section 4 are rather itionistic logic) and proof systems and investigating whether they
common in practice and they in principle cannot be extracted from can be incorporated into ATS. As a matter of fact, we have already
any proofs. To a large extent, this argument also applies to Epi- succeeded in developing a proof system (based on a form of linear
gram [11], a recently developed functional programming language logic) to reason about properties on memory and then incorporated
with a dependent type system based on UTT [8], and it is yet to be it into ATS [29] by following the design of combining program-
seen whether monads can be successfully employed to incorporataming with theorem proving. In the future, we plan to study whether
effects (including partiality of functions) into Epigram in support reasoning about concurrency and distribution can also be supported
of practical programming. in a similar fashion.

The sortgprop andtype in ATS roughly correspond to the kinds
Prop andSet in Coq [;4]. However, there is a subtle difference. I References
Apf, types may contain props but props may never contain types. . ) )
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to construct in ATS programs that may be nonterminating, raising (2 GHEN: C., ZHU, D., AND X1, H. Implementing Cut Elimination:

- . - : - A Case Study of Simulating Dependent Types in Haskell. In
exceptions or causing effects, which on the other hand is forbid- Proceedings of the 6th International Symposium on Practical Aspects

den in Cog. Moreover, the design we have presented for combin- of Declarative LanguagegDallas, TX, June 2004), Springer-Verlag
ing programs with proofs is largely rooted in a programming lan- LNCS vol. 3057.

guage, which can readlly accommodatg programming features s_uch [3] CHENEY, J., AND HINZE, R. Phantom Types. Technical Report
as general recursion and effects. Intuitively speaking, the design CUCIS-TR2003-1901, Cornell University, 2003. Available at

somewhat provides the programmer with some flexibility in deter- http://techreports.library.cornell.edu:8081/

mining the extent of theorem proving to be involved according to Dienst/UI/1.0/Display/cul.cis/TR2003-1901.
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A. Implementing the call-by-value evaluation for

the pure untyped \-calculus via closures

We present an implementation of the call-by-value evaluation for
the pure untyped-calculus in Figure 15. In this case, we use a
first-order representation forterms that essentially uses deBrujin
indexes to represent free variables. Given a static teofithe sort

tm, EXPy(s) is the type for the dynamic value that represents the
A-term represented by, andVAL(s) is the type for the closures
that represents thi&-term represented by. The following type is
assigned to the functioewaluate:

Va : tm. EXPg(a) — 3a’ : tm. EVAL(a,a’) *x VAL(a’)
whereEVAL, is like EVAL in Section 4.




datasort tm = TMlam of (tm -> tm) | TMapp of (tm, tm)
datasort tms = TMSemp | TMSmore of (tms, tm)

dataprop EVAL (tm, tm, int) = // the third index is needed for form metrics
| {f: tm -> tm} EVALlam (TMlam f, TMlam f, O)
| {t1: tm, t2: tm, f: tm -> tm, vl: tm, v2: tm, nl:nat, n2:nat, n3:nat}
EVALapp (TMapp (t1, t2), v2, nl+n2+n3+1) of
(EVAL (t1, TMlam f, nl1), EVAL (t2, vi, n2), EVAL (f vi, v2, n3))

propdef EVALO (t:tm, t’:tm) = [n:nat] EVAL (t, t’, n)
dataprop ISVAL (tm) = {f: tm -> tm} ISVALlam (TMlam f) // a prop definition

prfun lemmal {t:tm} (pf: ISVAL (t)): EVALO (t, t) = // a value evaluates to itself
case pf of ISVALlam => EVALlam

// a lambda-term can only be evaluated to a value
prfun lemma2 {t: tm, t’:tm, n:nat} .<n>. (pf: EVAL (t, t’, n)): ISVAL (t’) =
case pf of
| EVALlam => ISVALlam
| EVALapp (_, _, pf3) => lemma2 pf3

datatype IN (tm, tms) = // deBruijn indexes
| {ts: tms, t: tm} INone (t, TMSmore (ts, t))
| {ts: tms, t: tm, t’:tm} INshi (t, TMSmore (ts, t’)) of IN (t, ts)

datatype EXP (tms, tm) = // first-order representation for lambda-terms
| {ts: tms, t: tm} EXPvar (ts, t) of IN (t, ts)
| {ts: tms, f: tm -> tm} EXPlam (ts, TMlam f) of {t: tm} EXP (TMSmore (ts, t), f t)
| {ts: tms, tl: tm, t2: tm} EXPapp (ts, TMapp (t1, t2)) of (EXP (ts, tl1), EXP (ts, t2))

typedef EXPO (t: tm) = EXP (TMSemp, t) // a type definition

datatype VAL (tm) = // value representation
| {ts: tms, f: tm -> tm } VALclo (TMlam f) of (ENV (ts), {t: tm} EXP (TMSmore (ts, t), f t))

and ENV (tms) = // environment representation
| ENVnil (TMSemp)
| {ts: tms, t: tm} ENVcons (TMSmore (ts, t)) of (ISVAL t | VAL (t), ENV (ts))

fun eval {ts: tms, t: tm} (env: ENV (ts), e: EXP (ts, t)): [t’:tm] ’(EVALO (t, t’) | VAL (t’)) =
case e of
| EXPvar i => evalVar (env, i)
| EXPlam body => ’(EVALlam | VALclo (env, body))
| EXPapp (el, e2) =>
let
val ’(pfl | VALclo (env’, body)) = eval (env, el)
val ’(pf2 | arg) = eval (env, e2)
val ’(pf3 | v) = eval (ENVcons (lemma2 pf2 | arg, env’), body)
in
> (EVALapp (pfl, pf2, pf3) | v)
end

and evalVar {ts: tms, t: tm} (env: ENV (ts), i: IN (t, ts)): ’(EVALO (¢, t) | VAL (t)) =
case i of
| INone => let val ENVcons (pf | v, _) = env in ’(lemmal pf | v) end
| INshi i => let val ENVcons (_ | _, env) = env in evalVar (env, i) end

fun evaluate {t: tm} (e: EXPO (t))
[t’:tm] ’(EVALO (t, t’) | VAL (t’)) = eval (ENVnil, e)

Figure 15. An implementation of the call-by-value evaluation for the pure untypedlculus via closures



