
Under consideration for publication in J. Functional Programming 1

Dependent ML: An Approach to Practical

Programming with Dependent Types

Hongwei Xi∗

Boston University

(e-mail: hwxi@cs.bu.edu)

Abstract

We present an approach to enriching the type system of ML with a restricted form of de-
pendent types, where type index terms are required to be drawn from a given type index
language L that is completely separate from run-time programs, leading to the DML(L)
language schema. This enrichment allows for specification and inference of significantly
more precise type information, facilitating program error detection and compiler opti-
mization. The primary contribution of the paper lies in our language design, which can
effectively support the use of dependent types in practical programming. In particular,
this design makes it both natural and straightforward to accommodate dependent types
in the presence of effects such as references and exceptions.

Contents

1 Introduction 2

2 λpat: A starting point 6

2.1 Static semantics 7

2.2 Dynamic semantics 9

2.3 Type soundness 11

2.4 Operational equivalence 12

3 Type index language 14

3.1 Regular constraint relation 15

3.2 Models for type index languages 16

3.3 Some examples of type index languages 17

4 λΠ,Σ
pat : Extending λpat with dependent types 21

4.1 Syntax 21

4.2 Static semantics 25

4.3 Dynamic semantics 29

4.4 Type soundness 30

4.5 Type index erasure 31

4.6 Dynamic subtype relation 33

4.7 A restricted form of dependent types 33

∗ Supported in part by NSF grants no. CCR-0224244 and no. CCR-0229480

2 Hongwei Xi

5 Elaboration 34

5.1 The judgments and rules for elaboration 36

5.2 Some explanation on synthesis elaboration rules 37

5.3 Some explanation on analysis elaboration rules 41

5.4 The soundness of elaboration 43

5.5 Implementing elaboration 43

6 Extensions 44

6.1 Parametric polymorphism 44

6.2 Exceptions 46

6.3 References 47

7 Some programming examples 50

7.1 Arrays 51

7.2 Red-black trees 53

7.3 A type-preserving evaluator 56

8 Related work 59

9 Conclusion 62

References 63

A Proof of Lemma 2.14 67

B Proof of Theorem 4.11 70

C Proof Sketch of Theorem 6.8 73

1 Introduction

In this paper, we report some research on supporting the use of dependent types

in practical programming, drawing most of the results from (Xi, 1998). We do not

attempt to incorporate into this paper some recent, closely related results (e.g.,

guarded recursive datatypes (Xi et al., 2003), Applied Type System (Xi, 2004)),

with which we only provide certain comparison.

Type systems for functional languages can be broadly classified into those for

rich, realistic programming languages such as Standard ML (Milner et al., 1997),

Objective Caml (INRIA, n.d.), or Haskell (Peyton Jones et al. , 1999), and those

for small, pure languages such as the ones underlying Coq (Dowek et al., 1993),

NuPrl (Constable et al. , 1986), or PX (Hayashi & Nakano, 1988). In practical

programming, type-checking should be theoretically decidable as well as practically

feasible for typical programs without requiring an overwhelmingly large number of

type annotations. In order to achieve this, the type systems for realistic program-

ming languages are often relatively simple, and only relatively elementary properties

of programs can be expressed and thus checked by a type-checker. For instance, the

error of taking the first element out of an empty list cannot be prevented by the

type system of ML since it does not distinguish an empty list from a non-empty

one. Richer type theories such as the Calculus of Inductive Constructions (under-

lying Coq) or Martin-Löf type theories (underlying NuPrl) allow full specifications

to be formulated, which means that type-checking becomes undecidable or requires

excessively verbose type annotations. It also constrains the underlying functional

Journal of Functional Programming 3

datatype ’a list (int) =

nil(0) | {n:nat} cons(n+1) of ’a * ’a list(n)

fun(’a)

append (nil, ys) = ys

| append (cons (x, xs), ys) = cons (x, append (xs, ys))

withtype {m:nat,n:nat} ’a list(m) * ’a list(n) -> ’a list(m+n)

Fig. 1. An introductory example: appending lists

language to remain relatively pure, so that it is possible to effectively reason about

program properties within a type theory.

Some progress has been made towards bridging this gap, for example, by ex-

tracting Caml programs from Coq proofs, by synthesizing proof skeletons from

Caml programs (Parent, 1995), or by embedding fragments of ML into NuPrl (Kre-

itz et al., 1998). In this paper, we address the issue by designing a type system

for practical programming that supports a restricted form of dependent types, al-

lowing more program invariants to be captured by types. We conservatively extend

the type system of ML by allowing some dependencies while maintaining practical

and unintrusive type-checking. It will be shown that a program that is typable in

the extended type system is already typable in ML. However, the program may be

assigned a more precise type in the extended type system than in ML. It is in this

sense we refer to the extended type system as a conservative extension of ML.

We now present a short example from our implementation before going into

further details. A correct implementation of the append function on lists should

return a list of length m + n when given two lists of length m and n, respectively.

This property, however, cannot be captured by the type system of ML, and the

inadequacy can be remedied if we introduce a restricted form of dependent types.

The code in Figure 1 is written in the style of ML with a type annotation. The

declared type constructor list takes a type τ and a type index n (of sort int) to

form a type (τ)list(n) for lists of length n in which each element is of type τ . The

value constructors associated with list are then assigned certain dependent types:

• The syntax nil(0) states that the list constructor nil is assigned the type

∀α.(α)list(0), that is, nil is a list of length 0.

• The syntax {n:nat} cons(n+1) of ’a * ’a list(n) states that the list

constructor cons is assigned the following type,

∀α.Πn:nat. α ∗ (α)list(n) → (α)list(n + 1)

that is, cons yields a list of length n + 1 when given a pair consisting of

an element and a list of length n. We use nat for a subset sort defined as

{a : int | a ≥ 0} and the syntax {n:nat} for a universal quantifier over type

index variable n of the subset sort nat.

The withtype clause in the definition of the function append is a type annotation,

which precisely states that append returns a list of length m + n when given a pair

of lists of length m and n, respectively. The annotated type can be formally written

4 Hongwei Xi

fun (’a)

filter p [] = []

| filter p (x :: xs) = if p (x) then x :: filter p xs else filter p xs

withtype {m:nat} ’a list (m) -> [n:nat | n <= m] ’a list (n)

Fig. 2. Another introductory example: filtering lists

as follows:

∀α.Πm:nat.Πn:nat. (α)list(m) ∗ (α)list(n) → (α)list(m + n)

which we often call a universal dependent type. In general, the programmer is

responsible for assigning dependent types to value constructors associated with

a declared datatype constructor; he or she is also responsible for providing type

annotations against which programs are automatically checked.

Adding dependent types to ML raises a number of theoretical and pragmatic

questions. In particular, the kind of pure type inference in ML, which is certainly

desirable in practice, becomes untenable, and a large portion of the paper is devoted

to addressing various issues involved in supporting a form of partial type inference.

We briefly summarize our results and design choices as follows.

The first question that arises is the meaning of expressions with effects when they

occur as type index terms. In order to avoid the difficulty, we require that type index

terms be pure. In fact, our type system is parameterized over a pure type index

language from which type index terms are drawn. We can maintain this purity

and still make the connection to run-time values by using singleton types, such as

int(n), which is the type for integer expressions of value equal to n. This is critical

for practical applications such as static elimination of array bound checks (Xi &

Pfenning, 1998).

The second question is the decidability and practicality of type-checking. We

address this in two steps: the first step is to define an explicitly typed (and unac-

ceptably verbose) language for which type-checking is easily reduced to constraint

satisfaction in some type index language L. The second step is to define an elab-

oration from DML(L), a slightly extended fragment of ML, to the fully explicitly

typed language which preserves the standard operational semantics. The correct-

ness of elaboration and decidability of type-checking modulo constraint satisfiability

constitute the main technical contribution of this paper.

The third question is the interface between dependently annotated and other

parts of a program or a library. For this we use existential dependent types, although

they introduce non-trivial technical complications into the elaboration procedure.

Our experience clearly shows that existential dependent types, which are involved

in nearly all the realistic examples in our experiments, are indispensable in practice.

For instance, the function filter defined in Figure 2 is assigned the following types:

∀α.Πm:nat. (α)list(m) → Σn:{a : nat | a ≤ m}. (α)list(n)

where {a : nat | a ≤ m} is a sort for natural numbers that are less than or equal to

m. The type Σn :{a : nat | a ≤ m}. (α)list(n), which is for lists of length less than

or equal to m, is what we call an existential dependent type. The type assigned to

Journal of Functional Programming 5

filter simply means that the output list returned by filter cannot be longer than the

input list taken by filter. Without existential dependent types, in order to assign a

type to filter, we may have to compute in the type system the exact length of the

output list returned by filter in terms of the input list and the predicate taken by

filter. This would most likely make the type system too complicated for practical

programming.

We have so far finished developing a theoretical foundation for combining de-

pendent types with all the major features in the core of ML, including datatype

declarations, higher-order functions, general recursion, polymorphism, mutable ref-

erences and exceptions. We have also implemented our design for a fragment of

ML that encompasses all these features. In addition, we have experimented with

different constraint domains and applications. Many non-trivial examples can be

found in (Xi, 1999). At this point, we suggest that the reader first take a look at

the examples in Section 7 so as to obtain a sense as to what can be effectively done

in DML.

In our experience, DML(L) is acceptable from the pragmatic point of view: pro-

grams can often be annotated with little internal change and type annotations are

usually concise and to the point. The resulting constraint simplification problems

can be solved efficiently in practice once the type index language L is properly

chosen. Also the type annotations are mechanically verified, and therefore can be

fully trusted as program documentation.

The form of dependent types studied in this paper is substantially different from

the usual form of dependent types in Martin-Löf’s development of constructive type

theory (Martin-Löf, 1984; Martin-Löf, 1985). In some earlier research work (Xi,

1998; Xi & Pfenning, 1999) on which this paper is largely based, the dependent

types studied in this paper are called a restricted form of dependent types. From

now on, we may also use the name DML-style dependent types to refer to such a

restricted form of dependent types.

The remainder of the paper is organized as follows. In Section 2, we present as a

starting point a simply typed language λpat, which essentially extends the simply

typed λ-calculus with recursion and general pattern matching. We then formally

describe in Section 3 how type index languages can be formed. In particular, we

explain how constraint relations can be properly defined in type index languages.

The core of the paper lies in Section 4, where a language λΠ,Σ
pat is introduced that

extends λpat with both universal and existential dependent types. We also formally

prove the subject reduction theorem and the progress theorem for λΠ,Σ
pat , thus estab-

lishing the type soundness of λΠ,Σ
pat . In Section 5, we introduce an external language

DML0 designed for the programmer to construct programs that can be elaborated

into λΠ,Σ
pat . We present a set of elaboration rules and then justify these rules by

proving that they preserve the dynamic semantics of programs. In support of the

practicality of λΠ,Σ
pat , we extend λΠ,Σ

pat in Section 6 with parametric polymorphism (as

is supported in ML), exceptions and references. Also, we present some interesting

examples in Section 7 to give the reader a feel as to how dependent types can be

6 Hongwei Xi

base types δ ::= bool | int | . . .
types τ ::= δ | 1 | τ1 ∗ τ2 | τ1 → τ2

patterns p ::= x | f | 〈〉 | 〈p1, p2〉 | cc(p)
matching clause seq. ms ::= (p1 ⇒ e1 | · · · | pn ⇒ en)
constants c ::= cc | cf
expressions e ::= xf | c(e) | 〈〉 | 〈e1, e2〉 | fst(e) | snd(e) | case e of ms |

lamx. e | e1(e2) | fix f. e | let x = e1 in e2 end
values v ::= x | cc(v) | 〈〉 | 〈v1, v2〉 | lamx. e
contexts Γ ::= · | Γ, xf : τ
substitutions θ ::= [] | θ[x 7→ v] | θ[f 7→ e]

Fig. 3. The syntax for λpat

used in practice to capture program invariants. We mention some closely related

work in Section 8 and then conclude.

2 λpat: A starting point

We introduce a simply typed programming language λpat, which essentially extends

the simply typed λ-calculus with pattern matching. We emphasize that there are

no new contributions in this section. Instead, we primarily use λpat as an example

to show how a type system is developed. In particularly, we show how various

properties of λpat are chained together in order to establish the type soundness of

λpat. The subsequent development of the dependent type system in Section 4 and

all of its extensions will be done in parallel to the development of λpat. Except

Lemma 2.14, all the results in this section are well-known and thus their proofs are

omitted.

The syntax of λpat is given in Figure 3. We use δ for base types such as int

and bool and τ for types. We use x for lam-bound variables and f for fix-bound

variables, and xf for either x or f . Given an expression e, we write FV(e) for the

set of free variables xf in e, which is defined as usual.

A lam-bound variable is considered a value but a fix-bound variable is not. We

use the name observable value for a closed value that does not contain a lambda

expression lamx. e as its substructure. We use c for a constant, which is either a

constant constructor cc or a constant function cf . Each constant c is assigned a

constant type (or c-type, for short) of the form τ ⇒ δ. Note that a c-type is not

regarded as a (regular) type. For each constant constructor cc assigned the type

1 ⇒ δ, we may write cc as a shorthand for cc(〈〉), where 〈〉 stands for the unit of

the unit type 1. In the following presentation, we assume that the boolean values

true and false are assigned the type 1 ⇒ bool and every integer i is assigned the

type 1 ⇒ int.

Note that we do not treat the tuple constructor 〈·, ·〉 as a special case of con-

structors. Instead, we introduce tuples into λpat explicitly. The primary reason for

this decision is that tuples are to be handled specially in Section 5, where an elabo-

ration procedure is presented for supporting a form of partial type inference in the

presence of dependent types.

Journal of Functional Programming 7

x ↓ τ ⇒ x : τ
(pat-var)

〈〉 ↓ 1 ⇒ ∅
(pat-unit)

p1 ↓ τ1 ⇒ Γ1 p2 ↓ τ2 ⇒ Γ2

〈p1, p2〉 ↓ τ1 ∗ τ2 ⇒ Γ1, Γ2

(pat-prod)

` cc(τ) : δ p ↓ τ ⇒ Γ

cc(p) ↓ δ ⇒ Γ
(pat-const)

Fig. 4. The typing rules for patterns in λpat

We use θ for a substitution, which is a finite mapping that maps lam-bound

variables x to values and fix-bound variables to fixed-point expressions. We use []

for the empty substitution and θ[xf 7→ e] for the substitution that extends θ with

a link from xf to e, where it is assumed that xf is not in the domain dom(θ) of θ.

Also, we may write [xf 1 7→ e1, . . . , xf n 7→ en] for a substitution that maps xf i to ei

for 1 ≤ i ≤ n. We omit the further details on substitution, which are completely

standard. Given a piece of syntax • (representing expressions, evaluation contexts,

etc.), we use •[θ] for the result of applying θ to •.

We use ∅ for the empty context and Γ, xf : τ for the context that extends Γ with

one additional declaration xf : τ , where we assume that xf is not already declared

in Γ. A context Γ = ∅, xf 1 : τ1, . . . , xf n : τn may also be treated as a finite mapping

that maps xf i to τi for 1 ≤ i ≤ n, and we use dom(Γ) for the domain of Γ. Also, we

may use Γ, Γ′ for the context ∅, xf 1 : τ1, . . . , xf n : τn, xf ′1 : τ ′
1, . . . , xf

′

n : τ ′
n′ , where

Γ = ∅, xf 1 : τ1, . . . , xf n : τn and Γ′ = ∅, xf ′1 : τ ′
1, . . . , xf

′

n : τ ′
n′ and all variables

xf 1, . . . , xf n, xf ′1, . . . , xf
′

n′ are distinct.

As a form of syntactic sugar, we may write let 〈x1, x2〉 = e1 in e2 end for the

following expression:

let x = e1 in let x1 = fst(x) in let x2 = snd(x) in e2 end end end

where x is assumed to have no free occurrences in e1, e2.

2.1 Static semantics

We use p for patterns and require that a variable occur at most once in a pattern.

Given a pattern p and a type τ , we can derive a judgment of the form p ↓ τ ⇒ Γ

with the rules in Figure 4, which reads that checking pattern p against type τ

yields a context Γ. Note that the rule (pat-prod) is unproblematic since p1 and p2

cannot share variables. Also note that we write ` cc(τ) : δ in the rule (pat-const)

to indicate that cc is a constant constructor of c-type τ ⇒ δ. As an example, let

us assume that intlist is a base type, and nil and cons are constructors of c-types

1 ⇒ intlist and int ∗ intlist ⇒ intlist, respectively; then the following judgments

8 Hongwei Xi

Γ(xf) = τ

Γ ` xf : τ
(ty-var)

` c(τ) : δ Γ ` e : τ

Γ ` c(e) : δ
(ty-const)

Γ ` 〈〉 : 1
(ty-unit)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 ∗ τ2

(ty-prod)

Γ ` e : τ1 ∗ τ2

Γ ` fst(e) : τ1

(ty-fst)

Γ ` e : τ1 ∗ τ2

Γ ` snd(e) : τ2

(ty-snd)

p ↓ τ1 ⇒ Γ1 Γ, Γ1 ` e : τ2

Γ ` p ⇒ e : τ1 → τ2

(ty-clause)

Γ ` pi ⇒ ei : τ1 → τ2 for i = 1, . . . , n

Γ ` (p1 ⇒ e1 | · · · | pn ⇒ en) : τ1 → τ2

(ty-clause-seq)

Γ ` e : τ1 Γ ` ms : τ1 → τ2

Γ ` case e of ms : τ2

(ty-case)

Γ, x : τ1 ` e : τ2

Γ ` lamx. e : τ1 → τ2

(ty-lam)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1(e2) : τ2

(ty-app)

Γ, f : τ ` e : τ

Γ ` fix f. e : τ
(ty-fix)

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x = e1 in e2 end : τ2

(ty-let)

Fig. 5. The typing rules for expressions in λpat

are derivable:

cons (〈x, xs〉) ↓ intlist ⇒ x : int, xs : intlist

cons (〈x,nil (〈〉)〉) ↓ intlist ⇒ x : int

We present the typing rules for expressions in Figure 5. The rule (ty-clause) is

for assigning types to clauses. Generally speaking, a clause p ⇒ e can be assigned

the type τ1 → τ2 if e can be assigned the type τ2 under the assumption that p is

given the type τ1.

In the following presentation, given some form of judgment J , we use D :: J for

a derivation of J . The structure of a derivation D is a tree, and we use height(D)

for its height, which is defined as usual.

The following standard lemma simply reflects that extra assumptions can be

Journal of Functional Programming 9

discarded in intuitionistic reasoning. It is needed, for instance, in the proof of

Lemma 2.3, the Substitution Lemma for λpat.

Lemma 2.1 (Thinning)

Assume D :: Γ ` e : τ . Then there is a derivation D′ :: Γ, xf : τ ′ ` e : τ such that

height(D) = height(D′), where τ ′ is any well-formed type.

The following lemma indicates a close relation between the type of a closed value

and the form of the value. This lemma is needed to establish Theorem 2.9, the

Progress Theorem for λpat.

Lemma 2.2 (Canonical Forms)

Assume that ∅ ` v : τ is derivable.

1. If τ = δ for some base type δ, then v is of the form cc(v0), where cc is a

constant constructor assigned a c-type of the form τ0 ⇒ δ.

2. If τ = 1, then v is 〈〉.

3. If τ = τ1 ∗ τ2 for some types τ1 and τ2, then v is of the form 〈v1, v2〉.
4. If τ = τ1 → τ2 for some types τ1 and τ2, then v is of the form lamx. e.

Note the need for c-types in the proof of Lemma 2.2 when the last case is handled.

If c-types are not introduced, then a (primitive) constant function needs to be

assigned a type of the form τ1 → τ2 for some τ1 and τ2. As a consequence, we can

no longer claim that a value of the type τ1 → τ2 for some τ1 and τ2 must be of the

form lamx. e as the value may also be a constant function. So the precise purpose

of introducing c-types is to guarantee that only a value of the form lamx. e can be

assigned a type of the form τ1 → τ2.

Given Γ, Γ0 and θ, we write Γ ` θ : Γ0 to indicate that Γ ` θ(xf) : Γ0(xf) is

derivable for each xf in dom(θ) = dom(Γ0). The following lemma is often given

the name Substitution Lemma, which is needed in the proof of Theorem 2.8, the

Subject Reduction Theorem for λpat.

Lemma 2.3 (Substitution)

Assume that Γ ` θ : Γ0 holds. If Γ, Γ0 ` e : τ is derivable, then Γ ` e[θ] : τ is also

derivable.

2.2 Dynamic semantics

We assign dynamic semantics to expressions in λpat through the use of evaluation

contexts defined as follows.

Definition 2.4 (Evaluation Contexts)

evaluation contexts E ::= [] | c(E) | 〈E, e〉 | 〈v, E〉 | fst(E) | snd(E) |

case E of ms | E(e) | v(E) | let x = E in e end

We use FV(E) for the set of free variables xf in E. Note that every evaluation

context contains exactly one hole [] in it. Given an evaluation context E and an

expression e, we use E[e] for the expression obtained from replacing the hole []

in E with e. As the hole [] in no evaluation context can appear in the scope of a

10 Hongwei Xi

match(v, x) ⇒ [x 7→ v]
(mat-var)

match(〈〉, 〈〉) ⇒ []
(mat-unit)

match(v1, p1) ⇒ θ1 match(v2, p2) ⇒ θ2

match(〈v1, v2〉, 〈p1, p2〉) ⇒ θ1 ∪ θ2

(mat-prod)

match(v, p) ⇒ θ

match(c(v), c(p)) ⇒ θ
(mat-const)

Fig. 6. The pattern matching rules for λpat

lam-binder or a fix-binder, there is no issue of capturing free variables in such a

replacement.

Given a pattern p and a value v, a judgment of the form match(v, p) ⇒ θ,

which means that matching a value v against a pattern p yields a substitution for

the variables in p, can be derived through the application of the rules in Figure 6.

Note that the rule (mat-prod) is unproblematic because p1 and p2 can share no

common variables as 〈p1, p2〉 is a pattern.

Definition 2.5

We define evaluation redexes (or ev-redex, for short) and their reducts in λpat as

follows:

• fst(〈v1, v2〉) is an ev-redex, and its reduct is v1.

• snd(〈v1, v2〉) is an ev-redex, and its reduct is v2.

• (lamx. e)(v) is an ev-redex, and its reduct is e[x 7→ v].

• fix f. e is an ev-redex, and its reduct is e[f 7→ fix f. e].

• let x = v in e end is an ev-redex, and its reduct is e[x 7→ v].

• case v of (p1 ⇒ e1 | · · · | pn ⇒ en) is an ev-redex if match(v, pk) ⇒ θ is

derivable for some 1 ≤ k ≤ n, and its reduct is ek[θ].

• cf (v) is an ev-redex if (1) v is an observable value and (2) cf (v) is defined

to be some value v′. In this case, the reduct of cf (v) is v′. Note that a value

is observable if it does not contain any lambda expression lamx. e as its

substructure.

The one-step evaluation relation ↪→ev is defined as follows: We write e1 ↪→ev e2 if

e1 = E[e] for some evaluation context E and ev-redex e, and e2 = E[e′], where e′ is

a reduct of e. We use ↪→∗
ev for the reflexive and transitive closure of ↪→ev and say

that e1 ev-reduces (or evaluates) to e2 if e1 ↪→∗
ev e2 holds. There is certain amount

of nondeterminism in the evaluation of expressions: case v of ms may reduce to

e[θ] for any clause p ⇒ e in ms such that match(v, p) ⇒ θ is derivable. This form

of nondeterminism can cause various complications, which we want to avoid in the

first place. In this paper, we require that the patterns p1, . . . , pn in a matching clause

sequence (p1 ⇒ e1 | · · · | pn ⇒ en) be disjoint, that is, for 1 ≤ i 6= j ≤ n, there are

no values v that can match both pi and pj .

Journal of Functional Programming 11

In the actual implementation, we do allow overlapping patterns in a matching

clause sequence, and we avoid nondeterminism by performing pattern matching in a

deterministic sequential manner. We could certainly do the same in the theoretical

development, but this may complicate the evaluation of open programs, that is,

programs containing free variables. For instance, let e1 and e2 be the following

expressions case cons(x, xs) of (nil ⇒ true | x′ ⇒ false) and case x of (nil ⇒

true | x′ ⇒ false), respectively. Clearly, we should evaluate e1 to false, but we

should not evaluate e2 to false as we do not know whether x matches nil or not.

This complication is simply avoided when patterns in a matching clause sequence

are required to be disjoint.

The meaning of a judgment of the form p ↓ τ ⇒ Γ is captured precisely by

following lemma.

Lemma 2.6

Assume that the typing judgment ∅ ` v : τ is derivable. If p ↓ τ ⇒ Γ and

match(v, p) ⇒ θ are derivable, then ∅ ` θ : Γ holds.

Definition 2.7

We introduce some forms to classify closed expressions in λpat. Given a closed

expression e in λpat, which may or may not be well-typed,

• e is in V-form if e is a value.

• e is in R-form if e = E[e0] for some evaluation context E and ev-redex e0. So

if e is in R-form, then it can be evaluated further.

• e is in M-form if e = E[case v of ms] such that case v of ms is not an

ev-redex. This is a case where pattern matching fails because none of the

involved patterns match v.

• e is in U-form if e = E[cf (v)] and cf (v) is undefined. For instance, division

by zero is such a case.

• e is in E-form otherwise. We will prove that this is a case that can never occur

during the evaluation of a well-typed program.

We introduce three symbols Error, Match and Undefined, and use EMU for the

set {Error,Match,Undefined} and EMUV for the union of EMU and the set

of observable values. We write e ↪→∗
ev Error, e ↪→∗

ev Match and e ↪→∗
ev Undefined

if e ↪→∗
ev e′ for some e′ in E-form, M-form and U-form, respectively.

It can be readily checked that the evaluation of a (not necessarily well-typed)

program in λpat may either continue forever or reach an expression in V-form, M-

form, U-form, or E-form. We will show that an expression in E-form can never

be encountered if the evaluation starts with a well-typed program in λpat. This is

precisely the type soundness of λpat.

2.3 Type soundness

We are now ready to state the subject reduction theorem for λpat, which implies

that the evaluation of a well-typed expression in λpat does not alter the type of the

expression.

12 Hongwei Xi

For each constant function cf of c-type τ ⇒ δ, if ∅ ` v : τ is derivable and c(v) is

defined to be v′, then we require that ∅ ` v′ : δ be also derivable. In other words,

we require that each constant function meet its specification, that is, the c-type

assigned to it.

Theorem 2.8 (Subject Reduction)

Assume that ∅ ` e1 : τ is derivable and e1 ↪→ev e2 holds. Then ∅ ` e2 : τ is also

derivable.

Lemma 2.3 is used in the proof of Theorem 2.8.

Theorem 2.9 (Progress)

Assume that ∅ ` e1 : τ is derivable. Then there are only four possibilities:

• e1 is a value, or

• e1 is in M-form, or

• e1 is in U-form, or

• e1 ↪→ev e2 holds for some expression e2.

Note that it is implied here that e1 cannot be in E-form.

Lemma 2.2 is needed in the proof of Theorem2.9.

By Theorem 2.8 and Theorem 2.9, we can readily claim that for a well-typed

closed expression e, either e evaluates to a value, or e evaluates to an expression

in M-form, or e evaluates to an expression in U-form, or e evaluates forever. In

particular, it is guaranteed that e ↪→∗
ev Error can never happen for any well-typed

expression e in λpat.

2.4 Operational equivalence

We will present an elaboration procedure in Section 5, which maps a program

written in an external language into one in an internal language. We will need

to show that the elaboration of a program preserves the operational semantics of

the program. For this purpose, we first introduce the notion of general contexts as

follows:

general contexts G ::=

[] | c(G) | 〈G, e〉 | 〈e, G〉 | fst(G) | snd(G) | lamx. G | G(e) | e(G) |

case G of (p1 ⇒ e1 | · · · | pn ⇒ en) |

case e of (p1 ⇒ e1 | · · · | pi−1 ⇒ ei−1 | pi ⇒ G | pi+1 ⇒ ei+1 | · · · | pn ⇒ en) |

fix f. G | let x = G in e end | let x = e in G end

Given a general context G and an expression e, G[e] stands for the expression

obtained from replacing with e the hole [] in G. We emphasize that this replacement

may capture free variables in e. For instance, G[x] = lamx. x if G = lamx. []. The

notion of operational equivalence can then be defined as follows.

Definition 2.10

Given two expressions e1 and e2 in λpat, which may contain free variables, we say

that e1 is operationally equivalent to e2 if the following holds.

Journal of Functional Programming 13

• Given any context G, G[e1] ↪→∗
ev v∗ holds if and only if G[e2] ↪→∗

ev v∗, where

v∗ ranges over EMUV, that is, the union of EMU and the set of observable

values.

We write e1
∼= e2 if e1 is operationally equivalent to e2, which is clearly an equiva-

lence relation.

Unfortunately, this operational equivalence relation is too strong to suit our pur-

pose. The reason can be explained with a simple example. Suppose we have a

program lamx : int∗ int. x in which the type int∗ int is provided by the program-

mer; for some reason (to be made clear later), we may elaborate the program into

the following one:

e = lamx. let 〈x1, x2〉 = x in 〈x1, x2〉 end

Note that if we erase the type int ∗ int in the original program, we obtain the

expression lamx. x, which is not operationally equivalent to e; for instance they are

distinguished by the simple context G = [](〈〉). To address this rather troublesome

issue, we introduce a reflexive and transitive relation ≤dyn on expressions in λpat.

Definition 2.11

Given two expressions e1 and e2 in λpat, which may contain free variables, we say

that e1 ≤dyn e2 holds if for any context G,

• either G[e2] ↪→∗
ev Error holds, or

• G[e1] ↪→∗
ev v∗ if and only if G[e2] ↪→∗

ev v∗, where v∗ ranges over EMUV, that

is, the union of EMU and the set of observable values.

It is straightforward to verify the reflexivity and transitivity of ≤dyn .

Corollary 2.12

Assume that e1 ≤dyn e2 holds. For any context G such that G[e2] is a closed well-

typed expression in λpat, G[e1] evaluates to v∗ if and only if G[e2] evaluates to v∗,

where v∗ ranges over EMUV.

Proof

This simply follows the definition of ≤dyn and Theorem 2.9.

In other words, e1 ≤dyn e2 implies that e1 and e2 are operationally indistinguishable

in a typed setting. We now present an approach to establishing the relation ≤dyn

in certain special cases.

Definition 2.13

We define general redexes (or g-redexes, for short) and their reducts in λpat as

follows:

• An ev-redex is a g-redex, and the reduct of the ev-redex is also the reduct of

the g-redex.

• let x = e in E[x] end is a g-redex if x has no free occurrences in E, and its

reduct is E[e].

• 〈fst(v), snd(v)〉 is a g-redex and its reduct is v.

14 Hongwei Xi

index signatures S ::= ∅ | S, C : (s1, . . . , sn) ⇒ s
index base sorts b ::= bool | . . .
index sorts s ::= b | s1 ∗ s2 | s1 → s2

index terms I ::= a | C(I1, . . . , In) | 〈I1, I2〉 | π1(I) | π2(I) |
λa : s. I | I1(I2)

index contexts φ ::= ∅ | φ, a : s
index substitutions Θ ::= [] | Θ[a 7→ I]

Fig. 7. The syntax for a generic type index language

φ(a) = s

φ ` a : s
(st-var)

S(C) = (s1, . . . , sn) ⇒ s φ ` Ik : sk for 1 ≤ k ≤ n

φ ` C(I1, . . . , In) : s
(st-const)

φ ` I1 : s1 φ ` I2 : s2

φ ` 〈I1, I2〉 : s1 ∗ s2

(st-prod)

φ ` I : s1 ∗ s2

φ ` π1(I) : s1

(st-fst)
φ ` I : s1 ∗ s2

φ ` π2(I) : s2

(st-snd)

φ, a : s1 ` I : s2

φ ` λa : s1. I : s1 → s2

(st-lam)

φ ` I1 : s1 → s2 φ ` I2 : s1

φ ` I1(I2) : s2

(st-app)

Fig. 8. The sorting rules for type index terms

• lamx. v(x) is a g-redex and its reduct is v.

We write e1 ↪→g e2 if e1 = G[e] for some general context G and g-redex e, and

e2 = G[e′], where e′ is a reduct of e. We use ↪→∗
g for the reflexive and transitive

closure of ↪→g and say that e1 g-reduces to e2 if e1 ↪→∗
g e2 holds. We now mention

a lemma as follows:

Lemma 2.14

Given two expressions e and e′ in λpat that may contain free variables, e ↪→∗
g e′

implies e′ ≤dyn e.

Proof

A (lengthy) proof of the lemma is given in Appendix A.

This lemma is to be of important use in Section 5, where we need to establish that

the dynamic semantics of a program cannot be altered by elaboration.

3 Type index language

We are to enrich λpat with a restricted form of dependent types. The enrichment is

to parameterize over a type index language from which type index terms are drawn.

Journal of Functional Programming 15

φ; ~P |= true
(reg-true)

φ; ~P , false |= P
(reg-false)

φ; ~P |= P0

φ, a : s; ~P |= P0

(reg-var-thin)
φ ` P : bool φ; ~P |= P0

φ; ~P , P |= P0

(reg-prop-thin)

φ, a : s; ~P |= P φ ` I : s

φ; ~P [a 7→ I] |= P [a 7→ I]
(reg-subst)

φ; ~P |= P0 φ; ~P , P0 |= P1

φ; ~P |= P1

(reg-cut)

φ ` I : s

φ; ~P |= I
.
=s I

(reg-eq-refl)
φ; ~P |= I1

.
=s I2

φ; ~P |= I2

.
=s I1

(reg-eq-symm)

φ; ~P |= I1

.
=s I2 φ; ~P |= I2

.
=s I3

φ; ~P |= I1

.
=s I3

(reg-eq-tran)

Fig. 9. The regularity rules

In this section, we show how a generic type index language L can be formed and

then present some concrete examples of type index languages. For generality, we

will include both tuples and functions in L. However, we emphasize that a type

index language can but does not necessarily have to support tuples or functions.

The generic type index language L itself is typed. In order to avoid potential

confusion, we call the types in L type index sorts (or sorts, for short). The syntax

of L is given in Figure 7. We use b for base sorts. In particular, there is a base sort

bool for boolean values. We use a for index variables and C for constants, which

are either constant functions or constant constructors. Each constant is assigned a

constant sort (or c-sort, for short) of the form (s1, . . . , sn) ⇒ b, which means that

C(I1, . . . , In) is an index term of sort b if Ii are of sorts si for i = 1, . . . , n. For

instance, true and false are assigned the c-sort () ⇒ bool. We may write C for C() if

C is a constant of c-sort () ⇒ b for some base sort b. We assume that the c-sorts of

constants are declared in some signature S associated with L, and for each sort s,

there is a constant function
.
=s of the c-sort (s, s) ⇒ bool. We may use

.
= to mean

.
=s for some sort s if there is no risk of confusion.

We present the sorting rules for type index terms in Figure 8, which are mostly

standard. We use P for index propositions, which are index terms that can be

assigned the sort bool (under some index context φ), and ~P for a sequence of propo-

sitions, where the ordering of the terms in this sequence is of no significance.

We may write φ ` ~P : bool to mean that φ ` P : bool is derivable for every P in
~P . In addition, we may use φ ` Θ : φ0 to indicate that φ ` Θ(a) : φ0(a) holds for

each a in dom(Θ) = dom(φ0).

3.1 Regular constraint relation

A constraint relation φ; ~P |= P0 is defined on triples φ, ~P , P0 such that both φ `
~P : bool and φ ` P0 : bool are derivable. We may also write φ; ~P |= ~P0 to mean that

φ; ~P |= P0 holds for each P0 in ~P0. We say that a constraint relation φ; ~P |= P0 is

16 Hongwei Xi

regular if all the regularity rules in Figure 9 are valid, that is, the conclusion of a

regularity rule holds whenever all the premises of the regularity rule do. Note that

the rules (reg-eq-refl), (reg-eq-symm) and (reg-eq-tran) indicate that for each

sort s,
.
=s needs to be interpreted as an equivalence relation on expressions of the

sort s.

Essentially, we want to treat a constraint relation as an abstract notion. However,

in order to use it, we need to specify certain properties it possesses, and this is

precisely the motivation for introducing regularity rules. For instance, we need the

regularity rules to prove the following lemma.

Lemma 3.1 (Substitution)

• Assume φ, φ0; ~P |= P0 and φ ` Θ : φ0. Then φ; ~P [Θ] |= P0[Θ] holds.

• Assume φ; ~P , ~P0 |= P0 and φ; ~P |= ~P0. Then φ; ~P |= P0 holds.

Note that these two properties are just simple iterations of the rules (reg-subst)

and (reg-cut).

In the rest of this section, we first present a model-theoretic approach to estab-

lishing the consistency of a regular constraint relation, and then show some concrete

examples of type index languages. At this point, an alternative is for the reader to

proceed directly to the next section and then return at a later time.

3.2 Models for type index languages

We now present an approach to constructing regular constraint relations for type

index languages. The approach, due to Henkin (Henkin, 1950), is commonly used

in the construction of models for simple type theories. The presentation of this ap-

proach given below is entirely adopted from Chapter 5 (Andrews, 1986). Also, some

details on constructing Henkin models can be found in (Andrews, 1972; Mitchell &

Scott, 1989).

We use D for domains (sets). Given two domains D1 and D2, we use D1 × D2

for the usual product set {〈a1, a2〉 | a1 ∈ D1 and a2 ∈ D2}, and π1 and π2 for the

standard projection functions from D1 ×D2 to D1 and D2, respectively.

Let sort be the (possibly infinite) set of all sorts in L. A frame is a collec-

tion {Ds}s∈sort of nonempty domains Ds, one for each sort s. We require that

Dbool = {tt,ff}, where tt and ff refer to two distinct elements representing truth

and falsehood, respectively, and Ds1∗s2
= Ds1

× Ds2
and Ds1→s2

be some collec-

tion of functions from Ds1
to Ds2

(but not necessarily all the functions from Ds1
to

Ds2
). An interpretation 〈{Ds}s∈sort, I〉 of L consists of a frame {Ds}s∈sort and a

function I that maps each constant C of c-sort (s1, . . . , sn) ⇒ b to a function I(C)

from Ds1
× . . .×Dsn into Db (or to an element in Db if n = 0), where b stands for

a base sort. In particular, we require that

• I(true) = tt and I(false) = ff, and

• I(
.
=s) be the equality function of the domain Ds for each sort s.

Assume that the arity of a constructor C is n. Then C(I1, . . . , In)
.
= C(I ′1, . . . , I

′
n)

Journal of Functional Programming 17

implies that Ii
.
= I ′i for 1 ≤ i ≤ n. Therefore, for each constructor C, we require

that I(C) be an injective (a.k.a. 1-1) function.

An assignment η is a finite mapping from index variables to D = ∪s∈sortDs, and

we use dom(η) for the domain of η. As usual, we use [] for the empty mapping

and η[a 7→ a] for the mapping that extends η with one additional link from a to

a, where a 6∈ dom(η) is assumed. We write η : φ if η(a) ∈ Dφ(a) holds for each

a ∈ dom(η) = dom(φ).

An interpretation M = 〈{Ds}s∈sort, I〉 of S, which is the signature associated

with L, is a model for L if there exists a (partial) binary function VM such that

for each assignment η satisfying η : φ for some φ and each index term I , VM(η, I)

is properly defined such that VM(η, I) ∈ Ds holds whenever φ ` I : s is derivable

for some sort s, and the following conditions are also met:

1. VM(η, a) = η(a) for each a ∈ dom(η), and

2. VM(η, C(I1, . . . , In)) = I(C)(VM(η, I1), . . . ,VM(η, In)), and

3. VM(η, 〈I1, I2〉) = 〈VM(η, I1),VM(η, I2)〉, and

4. VM(η, π1(I)) = π1(VM(η, I)) whenever φ ` I : s1 ∗ s2 is derivable for some

sorts s1 and s2, and

5. VM(η, π2(I)) = π2(VM(η, I)), whenever φ ` I : s1 ∗ s2 is derivable for some

sorts s1 and s2, and

6. VM(η, I1(I2)) = VM(η, I1)(VM(η, I2)) whenever φ ` I1(I2) : s is derivable for

some sort s, and

7. VM(η, λa : s1.I) is the function that maps each element a in the domain Ds1

to VM(η[a 7→ a], I) whenever φ ` λa : s1.I : s1 → s2 is derivable for some

sort s2.

Note that not all interpretations are models (Andrews, 1972). Given a model M for

L, we can define a constraint relation |=M as follows: φ; ~P |=M P0 holds if and only

if for each assignment η such that η : φ holds, VM(η, P0) = tt or VM(η, P) = ff for

some P ∈ ~P .

Proposition 3.2

The constraint relation |=M is regular.

Proof

It is a simple routine to verify that each of the regularity rules listed in Figure 9 is

valid.

Therefore, we have shown that for any given type index language L, there always

exists a regular constraint relation if a model can be constructed for L. Of course,

in practice, we need to focus on regular constraint relations that can be decided in

an algorithmically effective manner.

3.3 Some examples of type index languages

3.3.1 A type index language Lalg

We now describe a type index language Lalg in which only algebraic terms can be

formed. Suppose that there are some base sorts in Lalg . For each base sort b, there

18 Hongwei Xi

exists some constructors of c-sorts (b1, . . . , bn) ⇒ b for constructing terms of the

base sort b, and we say that these constructors are associated with the sort b. In

general, the terms in Lalg can be formed as follows,

index terms I ::= a | C(I1, . . . , In)

where C is a constructor or an equality constant function
.
=s for some sort s. For

instance, we may have a sort Nat and two constructors Z and S of c-sorts () ⇒ Nat

and (Nat) ⇒ Nat, respectively, for constructing terms of sort Nat. A constraint in

Lalg is of the following form:

a1 : b1, . . . , an : bn; I1
.
= I ′1, . . . , In

.
= I ′n |= I

.
= I ′

where each
.
= is

.
=s for some sort s. A simple rule-based algorithm for solving this

kind of constraints can be found in (Xi et al., 2003), where algebraic terms are used

to represent types.

In practice, we can provide a mechanism for adding into Lalg a new base sort b as

well as the constructors associated with b. As an example, we may use the following

concrete syntax:

datasort stp =

Bool | Integer | Arrow of (stp, stp) | Pair of (stp, stp)

to introduce a sort stp and then associate with it some constructors of the following

c-sorts:

Bool : () ⇒ stp

Integer : () ⇒ stp

Arrow : (stp, stp) ⇒ stp

Pair : (stp, stp) ⇒ stp

We can then use index terms of the sort stp to represent the types in a simply typed

λ-calculus where tuples are supported and there are also base types for booleans and

integers. In Section 7.3, we will present a concrete programming example involving

the type index language Lalg .

3.3.2 Another type index language Lint

We now formally describe another type index language Lint in which we can form

integer expressions. The syntax for Lint is given as follows:

index sorts s ::= bool | int

index terms I ::= a | C(I1, . . . , In)

There are no tuples and functions (formed through λ-abstraction) in Lint , and the

constants C in Lint together with their c-sorts are listed in Figure 10. Let Dint

be the domain (set) of integers and Mint be 〈{Dbool ,Dint}, Iint 〉, where Iint maps

each constant in Lint to its standard interpretation. For instance, I(+) and I(−)

are the standard addition and subtraction functions on integers, respectively. It can

be readily verified that Mint is a model for Lint . Therefore, the constraint relation

|=Mint
is regular.

Journal of Functional Programming 19

true : () → bool
false : () → bool

i : () → int for every integer i
¬ : (bool) → bool negation
∧ : (bool, bool) → bool conjunction
∨ : (bool, bool) → bool disjunction
+ : (int, int) → int
− : (int, int) → int

: (int, int) → int
/ : (int, int) → int

max : (int, int) → int
min : (int, int) → int
mod : (int, int) → int modulo operation

≥ : (int, int) → bool
> : (int, int) → bool
≤ : (int, int) → bool
< : (int, int) → bool
= : (int, int) → bool
6= : (int, int) → bool

. . . : . . .

Fig. 10. The constants and their c-sorts in Lint

datasort typ = Arrow of (typ, typ) | All of (typ -> typ)

datatype EXP (typ) =

| {a1:typ, a2:typ} EXPlam (Arrow (a1, a2)) of (EXP (a1) -> EXP (a2))

| {a1:typ, a2:typ} EXPapp (a2) of (EXP (Arrow (a1, a2)), EXP (a1))

| {f:typ -> typ} EXPalli (All (f)) of ({a:typ} EXP (f a))

| {f:typ -> typ,a:typ} EXPalle (f a) of (EXP (All f))

Fig. 11. An example involving higher-order type index terms

Given a constraint φ; ~P |=Mint
P0, where φ = a1 : int, . . . , an : int, and each P in

~P is a linear inequality on integers, and P0 is also a linear inequality on integers,

we can use linear integer programming to solve such a constraint. We will mention

later that we can make use of the type index language Lint in the design of a

dependently type functional programming language where type equality between

two types can be decided through linear integer programming. Though the problem

of linear integer programming itself is NP-complete, we have observed that the

overwhelming majority of constraints encountered in practice can be solved in a

manner that is efficient enough to support realistic programming.

3.3.3 Higher-order type index terms

There are no higher-order type indexes, that is, type index terms of function sorts, in

either Lalg or Lint . In general, the constraint relation involving higher-order type

indexes are often difficult or simply intractable to solve. We now present a type

20 Hongwei Xi

index language Lλ, which extends Lalg with higher-order type indexes as follows:

index terms I ::= . . . | λa : s.I | I1(I2)

Like in Lalg , a constraint in Lλ is of the following form:

a1 : b1, . . . , an : bn; I1
.
= I ′1, . . . , In

.
= I ′n |= I

.
= I ′

For instance, we may ask whether the following constraint holds:

a1 : b → b, a2 : b; a1(a1(a2))
.
= a1(a2) |= a1(a2) = a2

If there are two distinct constants C1 and C2 of sort b, then the answer is negative

since a counterexample can be constructed by letting a1 and a2 be λa : b.C1 and

C2, respectively. Clearly, the problem of solving constraints in Lλ is undecidable as

(a special case of) it can be reduced to the problem of higher-order unification. For

instance, φ; I1
.
= I2 |= false holds if and only if there exists no substitution Θ : φ

such that I1[Θ] and I2[Θ] are βη-equivalent.

In practice, we can decide to only handle constraints of the following simplified

form:

φ; a1
.
= I1, . . . , an

.
= In |= I

.
= I ′

where for 1 ≤ i ≤ j ≤ n, there are no free occurrences of aj in Ii. Solving such

a constraint can essentially be reduced to deciding the βη-equality on two simply

typed λ-terms, which is done by comparing whether the two λ-terms have the same

long βη-normal form.

We now present an example that makes use of higher-order type indexes. The

constraints on type indexes involved in this example have the above simplified

form and thus can be easily solved using βη-normalization. The concrete syntax in

Figure 11 declares a sort typ and a type constructor EXP that takes an index term

I of sort typ to form a type EXP(I). The value constructors associated with EXP

are assigned the following c-types:

EXPlam : Πa1 :typ.Πa2 :typ.

(EXP(a1) → EXP(a2)) ⇒ EXP(Arrow(a1, a2))

EXPapp : Πa1 :typ.Πa2 :typ.

(EXP(Arrow(a1, a2)),EXP(a1)) ⇒ EXP(a2)

EXPalli : Πf :typ → typ.

(Πa:typ. EXP(f(a))) ⇒ EXP(All(f))

EXPalle : Πf :typ → typ.Πa:typ.

(EXP(All(f))) ⇒ EXP(f(a))

The intent is to use an index term I of sort typ to represent a type in the second-

order polymorphic λ-calculus λ2 (a.k.a. system F), and a value of type EXP(I)

to represent a λ-term in λ2 that can be assigned the type represented by I . For

instance, the type ∀α. α → α is represented as All(λa : typ. Arrow(a, a)), and the

following term:

EXPalli(Π+(EXPalli(Π+(EXPlam(lamx.EXPlam(lam y.EXPapp(y, x)))))))

Journal of Functional Programming 21

types τ ::= . . . | δ(~I) | P ⊃ τ | P ∧ τ | Πa:s. τ | Σa:s. τ

expressions e ::= . . . | ⊃+(v) | ⊃−(e) | Π+(v) | Π−(e) |
∧(e) | let ∧ (x) = e1 in e2 end |
Σ(e) | let Σ(x) = e1 in e2 end

values v ::= . . . | ⊃+(v) | Π+(v) | ∧(v) | Σ(v)

Fig. 12. The syntax for λΠ,Σ
pat

which can be given the following type:

EXP(All(λa1 : typ. All(λa2 : typ. Arrow(a1,Arrow(Arrow(a1, a2), a2)))))

represents the λ-term Λα1.Λα2.λx : α1.λy : α1 → α2.y(x). This is a form of higher-

order abstract syntax (h.o.a.s.) representation for λ-terms (Church, 1940; Pfenning

& Elliott, 1988; Pfenning, n.d.). As there is some unfamiliar syntax involved in this

example, we suggest that the reader revisit it after studying Section 4.

4 λΠ,Σ
pat : Extending λpat with dependent types

In this section, we introduce both universal and existential dependent types into

the type system of λpat, leading to the design of a programming language schema

λΠ,Σ
pat (L) that parameterizes over a given type index language L.

4.1 Syntax

Let us fix a type index language L. We now present λΠ,Σ
pat = λΠ,Σ

pat (L), which is an

extension of λpat with universal and existential dependent types. The syntax of

λΠ,Σ
pat is given in Figure 12, which extends the syntax in Figure 3. For instance, we

use . . . in the definition of types in λΠ,Σ
pat for the following definition of types in λpat:

1 | τ1 ∗ τ2 | τ1 → τ2

We now use δ for base type families. We may write δ for δ(), which is just an

unindexed type. We do not specify here as to how new type families can actually

be declared. In our implementation, we do provide a means for the programmer to

declare type families. For instance, in Section 1, there is such a declaration in the

example presented in Figure 1.

We use the names universal (dependent) types, existential (dependent) types,

guarded types and asserting types for types of the forms Πa:s. τ , Σa:s. τ , P ⊃ τ and

P ∧ τ , respectively. Note that the type constructor ∧ is asymmetric. In addition,

we use the names universal expressions, existential expressions, guarded expressions

and asserting expressions for expressions of the forms Π+(v), Σ(e), ⊃+(v) and ∧(e),

respectively.

In the following presentation, we may write ~I for a (possibly empty) sequence

of index terms I1, . . . , In; ~P for a (possibly empty) sequence of index propositions

P1, . . . , Pn; Πφ for a (possibly empty) sequence of quantifiers: Πa1 : s1 . . . Πan : sn,

22 Hongwei Xi

` δ(s1, . . . , sn) φ ` Ik : sk for 1 ≤ k ≤ n

φ ` δ(I1, . . . , In) [type]
(tp-base)

φ ` 1 [type]
(tp-unit)

φ ` τ1 [type] φ ` τ2 [type]

φ ` τ1 ∗ τ2 [type]
(tp-prod)

φ ` τ1 [type] φ ` τ2 [type]

φ ` τ1 → τ2 [type]
(tp-fun)

φ ` P : bool φ ` τ [type]

φ ` P ⊃ τ [type]
(tp-⊃)

φ, a : s ` τ [type]

φ ` Πa:s. τ [type]
(tp-Π)

φ ` P : bool φ ` τ [type]

φ ` P ∧ τ [type]
(tp-∧)

φ, a : s ` τ [type]

φ ` Σa:s. τ [type]
(tp-Σ)

φ ` ∅ [ctx]
(ctx-emp)

φ ` Γ [ctx] φ ` τ [type] xf 6∈ dom(Γ)

φ ` Γ, xf : τ [ctx]
(ctx-ext)

Fig. 13. The type and context formation rules in λΠ,Σ
pat

where the index context φ is a1 : s1, . . . , an : sn; ~P ⊃ τ for P1 ⊃ (. . . (Pn ⊃ τ) . . .)

if ~P = P1, . . . , Pn.

Notice that a form of value restriction is imposed in λΠ,Σ
pat : It is required that

e be a value in order to form expressions Π+(e) and ⊃ +(e). This form of value

restriction can in general greatly simplify the treatment of effectful features such

as references (Wright, 1995), which are to be added into λΠ,Σ
pat in Section 6. We

actually need to slightly relax this form of value restriction in Section 6.3 by only

requiring that e be a value-equivalent expression (instead of a value) when Π+(e)

or ⊃+(e) is formed. Generally speaking, a value-equivalent expression, which is to

be formally defined later, refers to an expression that is operationally equivalent to

a value.

Intuitively, in order to turn a value of a guarded type P ⊃ τ into a value of

type τ , we must establish the proposition P ; if a value of an asserting type P ∧ τ

is generated, then we can assume that the proposition P holds. For instance, the

following type can be assigned to the usual division function on integers,

Πa1 :int.Πa2 :int. (a2 6= 0) ⊃ (int(a1) ∗ int(a2) → int(a1/a2))

where / stands for the integer division function in some type index language. The

Journal of Functional Programming 23

φ; ~P |= I1

.
= I ′

1 · · · φ; ~P |= In
.
= I ′

n

φ; ~P |= δ(I1, . . . , In) ≤s
tp δ(I ′

1, . . . , I
′

n)
(st-sub-base)

φ; ~P |= 1 ≤s
tp 1

(st-sub-unit)

φ; ~P |= τ1 ≤s
tp τ ′

1 φ; ~P |= τ2 ≤s
tp τ ′

2

φ; ~P |= τ1 ∗ τ2 ≤s
tp τ ′

1 ∗ τ ′

2

(st-sub-prod)

φ; ~P |= τ ′

1 ≤s
tp τ1 φ; ~P |= τ2 ≤s

tp τ ′

2

φ; ~P |= τ1 → τ2 ≤s
tp τ ′

1 → τ ′

2

(st-sub-fun)

φ; ~P , P ′ |= P φ; ~P , P ′ |= τ ≤s
tp τ ′

φ; ~P |= P ⊃ τ ≤s
tp P ′ ⊃ τ ′

(st-sub-⊃)

φ, a : s; ~P |= τ ≤s
tp τ ′

φ; ~P |= Πa:s. τ ≤s
tp Πa:s. τ ′

(st-sub-Π)

φ; ~P , P |= P ′ φ; ~P , P |= τ ≤s
tp τ ′

φ; ~P |= P ∧ τ ≤s
tp P ′ ∧ τ ′

(st-sub-∧)

φ, a : s; ~P |= τ ≤s
tp τ ′

φ; ~P |= Σa:s. τ ≤s
tp Σa:s. τ ′

(st-sub-Σ)

Fig. 14. The static subtype rules in λΠ,Σ
pat

x ↓ τ ⇒ (∅; ∅; x : τ)
(pat-var)

〈〉 ↓ 1 ⇒ (∅; ∅; ∅)
(pat-unit)

p1 ↓ τ1 ⇒ (φ1; ~P1; Γ1) p2 ↓ τ2 ⇒ (φ2; ~P2; Γ2)

〈p1, p2〉 ↓ τ1 ∗ τ2 ⇒ (φ1, φ2; ~P1, ~P2; Γ1, Γ2)
(pat-prod)

φ0; ~P0 ` cc(τ) : δ(I1, . . . , In) p ↓ τ ⇒ (φ; ~P ; Γ)

cc(p) ↓ δ(I ′

1, . . . , I
′

n) ⇒ (φ0, φ; ~P0, ~P , I1

.
= I ′

1, . . . , In
.
= I ′

n; Γ)
(pat-const)

Fig. 15. The typing rules for patterns

following type is a rather interesting one:

Πa:bool. bool(a) → (a
.
= true) ∧ 1

This type can be assigned to a function that checks at run-time whether a boolean

expression holds. In the case where the boolean expression fails to hold, some form

of exception is to be raised. Therefore, this function acts as a verifier for run-time

assertions made in programs.

In practice, we also have a notion of subset sort. We use ŝ to range over subset

24 Hongwei Xi

φ; ~P ; Γ ` e : τ1 φ; ~P |= τ1 ≤s
tp τ2

φ; ~P ; Γ ` e : τ2

(ty-sub)

φ ` Γ [ctx] Γ(xf) = τ

φ; ~P ; Γ ` xf : τ
(ty-var)

φ0; ~P0 ` c(τ) : δ(~I0) φ ` Θ : φ0 φ; ~P |= ~P0[Θ] φ; ~P ; Γ ` e : τ [Θ]

φ; ~P ; Γ ` c(e) : δ(~I0[Θ])
(ty-const)

φ ` Γ [ctx]

φ; ~P ; Γ ` 〈〉 : 1
(ty-unit)

φ; ~P ; Γ ` e1 : τ1 φ; ~P ; Γ ` e2 : τ2

φ; ~P ; Γ ` 〈e1, e2〉 : τ1 ∗ τ2

(ty-prod)

φ; ~P ; Γ ` e : τ1 ∗ τ2

φ; ~P ; Γ ` fst(e) : τ1

(ty-fst)
φ; ~P ; Γ ` e : τ1 ∗ τ2

φ; ~P ; Γ ` snd(e) : τ2

(ty-snd)

p ↓ τ1 ⇒ (φ0; ~P0, Γ0) φ, φ0; ~P ; ~P0; Γ, Γ0 ` e : τ2

φ; ~P ; Γ ` p ⇒ e : τ1 → τ2

(ty-clause)

φ; ~P ; Γ ` pk ⇒ ek : τ1 → τ2 for k = 1, . . . , n

φ; ~P ; Γ ` (p1 ⇒ e1 | · · · | pn ⇒ en) : τ1 → τ2

(ty-clause-seq)

φ; ~P ; Γ ` e : τ1 φ; ~P ; Γ ` ms : τ1 → τ2

φ; ~P ; Γ ` case e of ms : τ2

(ty-case)

φ; ~P ; Γ, x : τ1 ` e : τ2

φ; ~P ; Γ ` lamx. e : τ1 → τ2

(ty-lam)

φ; ~P ; Γ ` e1 : τ1 → τ2 φ; ~P ; Γ ` e2 : τ1

φ; ~P ; Γ ` e1(e2) : τ2

(ty-app)

φ; ~P ; Γ, f : τ ` e : τ

φ; ~P ; Γ ` fix f. e : τ
(ty-fix)

φ; ~P ; Γ ` e1 : τ1 φ; ~P ; Γ, x : τ1 ` e2 : τ2

φ; ~P ; Γ ` let x = e1 in e2 end : τ2

(ty-let)

Fig. 16. The typing rules for λΠ,Σ
pat (1)

sorts, which are formally defined as follows:

subset sort ŝ ::= s | {a : ŝ | P}

where the index variable a in {a : ŝ | P} binds the free occurrences of a in P .

Note that subset sorts, which extend sorts, are just a form of syntactic sugar.

Intuitively, the subset sort {a : ŝ | P} is for index terms I of subset sort ŝ that

satisfy the proposition P [a 7→ I]. For instance, the subset sort nat is defined to be

{a : int | a ≥ 0}. In general, we may write {a : s | P1, . . . , Pn} for the subset sort

ŝn defined as follows:

ŝ0 = s ŝk = {a : ŝk−1 | Pk}

Journal of Functional Programming 25

φ; ~P , P ; Γ ` v : τ

φ; ~P ; Γ `⊃+(v) : P ⊃ τ
(ty-⊃-intro)

φ; ~P ; Γ ` e : P ⊃ τ φ; ~P |= P

φ; ~P ; Γ `⊃−(e) : τ
(ty-⊃-elim)

φ, a : s; ~P ; Γ ` v : τ

φ; ~P ; Γ ` Π+(v) : Πa:s. τ
(ty-Π-intro)

φ; ~P ; Γ ` e : Πa:s. τ φ ` I : s

φ; ~P ; Γ ` Π−(e) : τ [a 7→ I]
(ty-Π-elim)

φ; ~P ; Γ ` e : τ φ; ~P |= P

φ; ~P ; Γ ` ∧(e) : P ∧ τ
(ty-∧-intro)

φ; ~P ; Γ ` e1 : P ∧ τ1 φ; ~P , P ; Γ, x : τ1 ` e2 : τ2

φ; ~P ; Γ ` let ∧ (x) = e1 in e2 end : τ2

(ty-∧-elim)

φ; ~P ; Γ ` e : τ [a 7→ I] φ ` I : s

φ; ~P ; Γ ` Σ(e) : Σa:s. τ
(ty-Σ-intro)

φ; ~P ; Γ ` e1 : Σa:s. τ1 φ, a : s; ~P ; Γ, x : τ1 ` e2 : τ2

φ; ~P ; Γ ` let Σ(x) = e1 in e2 end : τ2

(ty-Σ-elim)

Fig. 17. The typing rules for λΠ,Σ
pat (2)

where k = 1, . . . , n.

We use φ; ~P ` I : {a : s | P1, . . . , Pn} to mean that φ; ~P ` I : s is derivable and

φ; ~P ` Pi[a 7→ I] hold for i = 1, . . . , n. Given a subset sort ŝ, we write Πa : ŝ. τ for

Πa:s. τ if ŝ is s, or for Πa: ŝ1. P ⊃ τ if ŝ is {a : ŝ1 | P}. Similarly, we write Σa: ŝ. τ

for Σa :s. τ if ŝ is s, or for Σa : ŝ1. P ∧ τ if ŝ is {a : ŝ1 | P}. For instance, we write

Πa1 :nat. int(a1) → Σa2 :nat. int(a2) for the following type:

Πa1 :int .(a1 ≥ 0) ⊃ (int(a1) → Σa2 :int .(a2 ≥ 0) ∧ int(a2)),

which is for functions that map natural numbers to natural numbers.

4.2 Static semantics

We start with the rules for forming types and contexts, which are listed in Fig-

ure 13. We use the syntax ` δ(s1, . . . , sn) to indicate that we can construct a type

δ(I1, . . . , In) when given type index terms I1, . . . , In of sorts s1, . . . , sn, respectively.

A judgment of the form φ ` τ [type] means that τ is a well-formed type under

the index context φ, and a judgment of the form φ ` Γ [ctx] means that Γ is a

well-formed (expression) context under φ. The domain dom(Γ) of a context Γ is

defined to be the set of variables declared in Γ. We write φ; ~P |= P0 for a regular

constraint relation in the fixed type index language L.

26 Hongwei Xi

In λΠ,Σ
pat , type equality, that is, equality between types, is defined in terms of the

static subtype relation ≤s
tp: We say that τ and τ ′ are equal if both τ ≤s

tp τ ′ and

τ ′ ≤s
tp τ hold. By overloading |=, we use φ; ~P |= τ ≤s

tp τ ′ for a static subtype

judgment and present the rules for deriving such a judgment in Figure 14. Note

that all of these rules are syntax-directed.

The static subtype relation ≤s
tp is often too weak in practice. For instance, we may

need to use a function of the type τ1 = Πa:int. int(a) → int(a) as a function of the

type τ2 = (Σa : int. int(a)) → (Σa : int. int(a)), but it is clear that τ1 ≤s
tp τ2 does

not hold (as ≤s
tp is syntax-directed). We are to introduce in Section 4.6 another

subtype relation ≤d
tp, which is much stronger than ≤s

tp and is given the name

dynamic subtype relation.

The following lemma, which is parallel to Lemma 3.1, essentially states that the

rules in Figure 14 are closed under substitution.

Lemma 4.1

1. If φ, φ0; ~P |= τ ≤s
tp τ ′ is derivable and φ ` Θ : φ0 holds, then φ; ~P [Θ] |=

τ [Θ] ≤s
tp τ ′[Θ] is also derivable.

2. If φ; ~P , ~P0 |= τ ≤s
tp τ ′ is derivable and φ; ~P |= ~P0 holds, then φ; ~P |= τ ≤s

tp τ ′

is also derivable.

Proof

(Sketch) (1) and (2) are proven by structural induction on the derivations of

φ, φ0; ~P |= τ ≤s
tp τ ′ and φ; ~P , ~P0 |= τ ≤s

tp τ ′, respectively. Lemma 3.1 is needed

in the proof.

As can be expected, the static subtype relation is both reflexive and transitive.

Proposition 4.2 (Reflexitivity and Transitivity of ≤s
tp)

1. φ; ~P |= τ ≤s
tp τ holds for each τ such that φ ` τ [type] is derivable.

2. φ; ~P |= τ1 ≤s
tp τ3 holds if φ; ~P |= τ1 ≤s

tp τ2 and φ; ~P |= τ2 ≤s
tp τ3 do.

Proof

Straightforward.

We now present the typing rules for patterns in Figure 15 and then the typing

rules for expressions in Figure 16 and Figure 17.

The typing judgments for patterns are of the form p ↓ τ ⇒ (φ; ~P ; Γ), and the

rules for deriving such judgments are given in Figure 15. A judgment of the form

p ↓ τ ⇒ (φ; ~P ; Γ) means that for any value v of the type τ , if v matches p, that

is, match(v, p) ⇒ θ holds for some substitution θ, then there exists an index

substitution Θ such that ∅ ` Θ : φ, ∅; ∅ |= ~P [Θ] and (∅; ∅; ∅) ` θ : Γ[Θ]. This is

captured precisely by Lemma 4.10. In the rule (pat-prod), it is required that φ1

and φ2 share no common index variables in their domains. In the rule (pat-const),

we write φ0; ~P0 ` cc(τ) : δ(I1, . . . , In) to mean that cc is a constant constructor

assigned (according to some signature for constants) the following c-type:

Πφ0. ~P0 ⊃ (τ ⇒ δ(I1, . . . , In))

Journal of Functional Programming 27

In other words, given a constant constructor cc, we can form a rule (pat-const)

for this particular cc based on the c-type assigned to cc.

The typing rules given in Figure 16 are mostly expected. The rule (ty-clause)

requires that τ2 contain only type index variables declared in φ. For universal de-

pendent types, existential dependent types, guarded types, and assertion types, the

typing rules are given in Figure 17. Note that we have omitted certain obvious side

conditions that need to be attached to some of these rules. For instance, in the rule

(ty-Π-intro), the type index variable a is assumed to have no free occurrences in

either ~P or Γ. Also, in the rule (ty-Σ-elim), the type index variable a is assumed

to have no free occurrences in either ~P , Γ or τ2. We now briefly go over some of the

typing rules in Figure 17.

• If a value v can be assigned a type τ under an assumption P , then the typing

rule (ty-⊃-intro) assigns ⊃+(v) the guarded type P ⊃ τ . Notice the presence

of value restriction here.

• Given an expression e of type P ⊃ τ , the typing rule (ty-⊃-elim) states that

the expression ⊃−(e) can be formed if the proposition P holds. Intuitively, a

guarded expression is useful only if the guard can be discharged.

• If e can be assigned a type τ and P holds, then the typing rule (ty-∧-intro)

assigns ∧(e) the asserting type P ∧ τ .

• The elimination rule for the type constructor ∧ is (ty-∧-elim). Assume that

e2 can be assigned a type τ2 under the assumption that P holds and x is of

type τ1. If e1 is given the asserting type P ∧ τ1, then the rule (ty-∧-elim)

assigns the type τ2 to the expression let ∧ (x) = e1 in e2 end. Clearly, this

rule resembles the treatment of existentially quantified packages (Mitchell &

Plotkin, 1988).

The following lemma is parallel to Lemma 2.1. We need to make use of the

assumption that the constraint relation involved here is regular when proving the

first two statements in this lemma.

Lemma 4.3 (Thinning)

Assume D :: φ; ~P ; Γ ` e : τ .

1. For every index variable a that is not declared in φ, we have a derivation

D′ :: φ, a : s; ~P ; Γ ` e : τ such that height(D) = height(D′).

2. For every P such that φ ` P : bool is derivable, we have a derivation D′ ::

φ; ~P , P ; Γ ` e : τ such that height(D) = height(D′).

3. For every variable xf that is not declared in Γ and τ ′ such that φ ` τ ′ [type]

is derivable, we have a derivation D′ :: φ; ~P ; Γ, xf : τ ′ ` e : τ such that

height(D) = height(D′).

Proof

Straightforward.

The following lemma indicates a close relation between the type of a closed value

in λΠ,Σ
pat and the form of the value, which is needed in the proof of Theorem 4.12,

the Progress Theorem for λΠ,Σ
pat .

28 Hongwei Xi

Lemma 4.4 (Canonical Forms)
Assume that ∅; ∅; ∅ ` v : τ is derivable.

1. If τ = δ(~I) for some type family δ, then v is of the form cc(v0), where cc is a

constant constructor assigned a c-type of the form Πφ. ~P ⊃ (τ0 ⇒ δ(~I0)).
2. If τ = 1, then v is 〈〉.
3. If τ = τ1 ∗ τ2, then v is of the form 〈v1, v2〉.
4. If τ = τ1 → τ2, then v is of the form lamx. e.
5. If τ = P ⊃ τ0, then v is of the form ⊃+(v0).
6. If τ = Πa:s. τ0, then v is of the form Π+(v0).
7. If τ = P ∧ τ0, then v is of the form ∧(v0).
8. If τ = Σa:s. τ0, then v is of the form Σ(v0).

Proof
By a thorough inspection of the typing rules in Figure 16 and Figure 17.

Clearly, the following rule is admissible in λΠ,Σ
pat as it is equivalent to the rule

(ty-var) followed by the rule (ty-sub):

φ ` Γ [ctx] Γ(xf) = τ φ; ~P |= τ ≤s
tp τ ′

φ; ~P ; Γ ` xf : τ ′
(ty-var’)

In the following presentation, we retire the rule (ty-var) and simply replace it with

the rule (ty-var’).

The following technical lemma is needed for establishing Lemma 4.6.

Lemma 4.5
Assume D :: φ; ~P ; Γ, xf : τ1 ` e : τ2. If φ; ~P |= τ ′

1 ≤s
tp τ1, then there exists D′ ::

φ; ~P ; Γ, xf : τ ′
1 ` e : τ2 such that height(D) = height(D′).

Proof
(Sketch) By structural induction on the derivation D. We need to make use of the

fact that the rule (ty-var) is replaced with the rule (ty-var’) in order to show

height(D) = height(D′).

The following lemma is needed in the proof of Theorem 4.11, the Subject Reduc-

tion Theorem for λΠ,Σ
pat .

Lemma 4.6
Assume D :: φ; ~P ; Γ ` v : τ . Then there exists a derivation D′ :: φ; ~P ; Γ ` v : τ such

that height(D′) ≤ height(D) and the last typing rule applied in D′ is not (ty-sub).

Proof
(Sketch) The proof proceeds by structural induction on D. When handling the case

where the last applied rule in D is (ty-lam), we make use of Lemma 4.5 and thus

see the need for replacing (ty-var) with (ty-var’).

Note that the value v in Lemma 4.6 cannot be replaced with an arbitrary expression.

For instance, if we replace v with an expression of the form Π−(e), then the lemma

cannot be proven.

The following lemma plays a key role in the proof of Theorem 4.11, the Subject

Reduction Theorem for λΠ,Σ
pat .

Journal of Functional Programming 29

Lemma 4.7 (Substitution)

1. Assume that φ, φ0; ~P ; Γ ` e : τ is derivable. If φ ` Θ : φ0 holds, then

φ; ~P [Θ]; Γ[Θ] ` e : τ [Θ] is also derivable.

2. Assume that φ; ~P , ~P0; Γ ` e : τ is derivable. If φ; ~P |= ~P0 holds, then φ; ~P ; Γ `

e : τ is also derivable.

3. Assume that φ; ~P ; Γ, Γ0 ` e : τ is derivable. If φ; ~P ; Γ ` θ : Γ0 holds, then

φ; ~P ; Γ ` e[θ] : τ is also derivable.

Proof

(Sketch) All (1), (2) and (3) are proven straightforwardly by structural induction

on the derivations of the typing judgments φ, φ0; ~P ; Γ ` e : τ , and φ; ~P , ~P0; Γ ` e : τ ,

and φ; ~P ; Γ, Γ0 ` e : τ , respectively.

4.3 Dynamic semantics

We now need to extend the definition of evaluation contexts (Definition 2.4) as

follows.

Definition 4.8 (Evaluation Contexts)

evaluation contexts E ::= . . . | ⊃+(E) | ⊃−(E) | Π+(E) | Π−(E) |

∧(E) | let ∧ (x) = E in e end |

Σ(E) | let Σ(x) = E in e end

We are also in need of extending the definition of redexes and their reducts (Defi-

nition 2.5).

Definition 4.9

In addition to the forms of redexes in Definition 2.5, we have the following new

forms of redexes:

• ⊃−(⊃+(v)) is a redex, and its reduct is v.

• Π−(Π+(v)) is a redex, and its reduct is v.

• let ∧ (x) = ∧(v) in e end is a redex, and its reduct is e[x 7→ v].

• let Σ(x) = Σ(v) in e end is a redex, and its reduct is e[x 7→ v].

Note that Definition 2.7, where V-form, R-form, M-form, U-form and E-form are

defined, can be readily carried over from λpat into λΠ,Σ
pat .

The following lemma captures the meaning of the typing judgments for patterns;

such judgments can be derived according to the rules in Figure 15.

Lemma 4.10

Assume that ∅; ∅; ∅ ` v : τ is derivable. If p ↓ τ ⇒ (φ; ~P ; Γ) and match(v, p) ⇒ θ are

also derivable, then there exists Θ satisfying ∅ ` Θ : φ such that both ∅; ∅ |= ~P [Θ]

and (∅; ∅; ∅) ` θ : Γ[Θ] hold.

Proof

(Sketch) By structural induction on the derivation of p ↓ τ ⇒ (φ; ~P ; Γ).

30 Hongwei Xi

fun zip (nil, nil) = nil

| zip (cons (x, xs), cons (y, ys)) = (x, y) :: zip (xs, ys)

Fig. 18. An example of exhaustive pattern matching

4.4 Type soundness

In order to establish the type soundness for λΠ,Σ
pat , we make the following assumption:

For each constant function cf assigned c-type Πφ. ~P ⊃ (τ ⇒ δ(~I)), if ∅; ∅ |= ~P [Θ]

holds for some substitution Θ satisfying ∅ ` Θ : φ and ∅; ∅; ∅ ` v : τ [Θ] is derivable

and cf (v) is defined to be v′, then ∅; ∅; ∅ ` v′ : δ(~I [Θ]) is also derivable. In other

words, we assume that each constant function meets its specification. That is, each

constant function respects its c-type assignment.

Theorem 4.11 (Subject Reduction)

Assume ∅; ∅; ∅ ` e1 : τ and e1 ↪→ev e2. Then ∅; ∅; ∅ ` e2 : τ is also derivable.

Proof

A completed proof of this theorem is given in Appendix B.

Theorem 4.12 (Progress)

Assume that ∅; ∅; ∅ ` e1 : τ is derivable. Then there are only four possibilities:

• e1 is a value, or

• e1 is in M-form, or

• e1 is in U-form, or

• e1 ↪→ev e2 holds for some expression e2.

In particular, this implies that e1 cannot be in E-form.

Proof

(Sketch) The proof immediately follows from structural induction on the derivation

of ∅; ∅; ∅ ` e1 : τ . Lemma 4.4 plays a key role in this proof.

By Theorem 4.11 and Theorem 4.12, we can readily claim that for a well-typed

closed expression e in λΠ,Σ
pat , either e evaluates to a value, or e evaluates to an

expression in M-form, or e evaluates to an expression in U-form, or e evaluates

forever.

When compared to λpat, it is interesting to see what progress we have made

in λΠ,Σ
pat . We may now assign a more accurate type to a constant functions cf to

eliminate the occurrences of undefined cf (v) for certain values v. For instance, if

the division function on integers is assigned the following c-type:

Πa1 :int.Πa2 :int. (a2 6= 0) ⊃ (int(a1) ∗ int(a2) ⇒ int(a1/a2))

then division by zero causes to a type error and thus can never occur at run-time.

Similarly, we may now assign a more accurate type to a function to eliminate some

occurrences of expressions of the form case v of ms that are not ev-redexes. For

instance, when applied to two lists of unequal length, the function zip in Figure 18

evaluates to some expression of the form E[case v of ms] where case v of ms is not

an ev-redex. If we annotate the definition of zip with the following type annotation,

Journal of Functional Programming 31

withtype {n:nat} ’a list (n) * ’b list (n) -> (’a * ’b) list (n)

that is, we assign zip the following type (which requires the feature of parametric

polymorphism that we are to introduce in Section 6):

∀α1.∀α2.Πa:nat. (α1)list(a) ∗ (α2)list(a) → (α1 ∗ α2)list(a)

then zip can no longer be applied to two lists of unequal length. In short, we can

now use dependent types to eliminate various (but certainly not all) occurrences of

expressions in M-form or U-form, which would not have been possible previously.

Now suppose that we have two lists xs and ys of unknown length, that is, they

are of the type Σa:nat. (τ)list(a) for some type τ . In order to apply zip to xs and

ys, we can insert a run-time check as follows:

let

val m = length (xs) and n = length (ys)

in

if m = n then zip (xs, ys) else raise UnequalLength

end

where the integer equality function = and the list length function length are assumed

to be of the following types:

= : Πa1 :int.Πa2 :int. int(a1) ∗ int(a2) → bool(a1
.
= a2)

length : ∀α.Πa:nat. (α)list(a) → int(a)

Of course, we also have the option to implement another zip function that can

directly handle lists of unequal length, but this implementation is less efficient than

the one given in Figure 18.

4.5 Type index erasure

In general, there are two directions for extending a type system such as the one in

ML: One is to extend it so that more programs can be admitted as type-correct,

and the other is to extend it so that programs can be assigned more accurate types.

In this paper, we are primarily interested in the latter as is shown below.

We can define a function | · | in Figure 19 that translates types, contexts and

expressions in λΠ,Σ
pat into types, contexts and expressions in λpat, respectively. In

particular, for each type family δ in λΠ,Σ
pat , we assume that there is a corresponding

type δ in λpat, and for each constant c of c-type Πφ. ~P ⊃ (τ ⇒ δ(~I)) in λΠ,Σ
pat , we

assume that c is assigned the c-type |τ | ⇒ δ in λpat.

Theorem 4.13

Assume that φ; ~P ; Γ ` e : τ is derivable in λΠ,Σ
pat . Then |Γ| ` |e| : |τ | is derivable in

λpat.

Proof

(Sketch) By structural induction on the derivation of φ; ~P ; Γ ` e : τ .

32 Hongwei Xi

|δ(~I)| = δ

|1| = 1

|τ1 ∗ τ2| = |τ1| ∗ |τ2|

|τ1 → τ2| = |τ1| → |τ2|

|P ⊃ τ | = |τ |

|Πa:s. τ | = |τ |

|P ∧ τ | = |τ |

|Σa:s. τ | = |τ |

|∅| = ∅

|Γ, xf : τ | = |Γ|, xf : |τ |

|xf | = xf

|c(e)| = c(|e|)

|case e of (p1 ⇒ e1 | . . . | pn ⇒ en)| = case |e| of (p1 ⇒ |e1| | . . . | pn ⇒ |en|)
|〈〉| = 〈〉

|〈e1, e2〉| = 〈|e1|, |e2|〉

|fst(e)| = fst(|e|)
|snd(e)| = snd(|e|)

|lamx. e| = lamx. |e|

|e1(e2)| = |e1|(|e2|)

|fix f. e| = fix f. |e|

|⊃+(e)| = |e|

|⊃−(e)| = |e|

|Π+(e)| = |e|

|Π−(e)| = |e|

| ∧ (e)| = |e|

|let ∧ (x) = e1 in e2 end| = let x = |e1| in |e2| end

|Σ(e)| = |e|

|let Σ(x) = e1 in e2 end| = let x = |e1| in |e2| end

Fig. 19. The erasure function | · | on types, contexts and expressions in λΠ,Σ
pat

Given a closed expression e0 in λpat, we say that e0 is typable in λpat if ∅ ` e0 : τ0

is derivable for some type τ0; and we say that e0 is typable in λΠ,Σ
pat if there exists

an expression e in λΠ,Σ
pat such that |e| = e0 and ∅; ∅; ∅ ` e : τ is derivable for some

type τ . Then by Theorem 4.13, we know that if an expression e in λpat is typable

in λΠ,Σ
pat then it is already typable in λpat. In other words, λΠ,Σ

pat does not make more

expressions in λpat typable.

Theorem 4.14

Assume that ∅; ∅; ∅ ` e : τ is derivable.

1. If e ↪→∗
ev v in λΠ,Σ

pat , then |e| ↪→∗
ev |v| in λpat.

2. If |e| ↪→∗
ev v0 in λpat, then there is a value v such that e ↪→∗

ev v in λΠ,Σ
pat and

|v| = v0.

Journal of Functional Programming 33

Proof

(Sketch) It is straightforward to prove (1). As for (2), it follows from structural

induction on the derivation of ∅; ∅; ∅ ` e : τ .

Theorem 4.14 indicates that we can evaluate a well-typed program in λΠ,Σ
pat by first

erasing all the markers Π+(·), Π−(·), ⊃+(·), ⊃−(·), Σ(·) and ∧(·) in the program and

then evaluating the erasure in λpat. Combining Theorem 4.13 and Theorem 4.14,

we say that λΠ,Σ
pat is a conservative extension of λpat in terms of both static and

dynamic semantics.

4.6 Dynamic subtype relation

The dynamic subtype relation defined below is much stronger than the static sub-

type relation ≤s
tp and it plays a key role in Section 5, where an elaboration process

is presented to facilitate program construction in λΠ,Σ
pat .

Definition 4.15 (Dynamic Subtype Relation)

We write φ; ~P |= E : τ ≤d
tp τ ′ to mean that for any expression e and context Γ, if

φ; ~P ; Γ ` e : τ is derivable then both φ; ~P ; Γ ` E[e] : τ ′ is derivable and |e| ≤dyn

|E[e]| holds. We may write φ; ~P |= τ ≤d
tp τ ′ if, for some E, φ; ~P |= E : τ ≤d

tp τ ′

holds, where E can be thought of as a witness to τ ≤d
tp τ ′.

As is desired, the dynamic subtype relation ≤d
tp is both reflexive and transitive.

Proposition 4.16 (Reflexitivity and Transitivity of ≤d
tp)

1. φ; ~P |= [] : τ ≤d
tp τ holds for each τ such that φ ` τ [type] is derivable.

2. φ; ~P |= E2[E1] : τ1 ≤d
tp τ3 holds if φ; ~P |= E1 : τ1 ≤d

tp τ2 and φ; ~P |= E2 :

τ2 ≤d
tp τ3 do, where E2[E1] is the evaluation context formed by replacing the

hole [] in E2 with E1.

Proof

(Sketch) The proposition follows from the fact that the relation ≤dyn is both re-

flexive and transitive.

4.7 A restricted form of dependent types

Generally speaking, we use the name dependent types to refer to a form of types

that correspond to formulas in some first-order many-sorted logic. For instance, the

following type in λΠ,Σ
pat :

Πa:int. a ≥ 0 ⊃ (int(a) → int(a + a))

corresponds to the following first-order formula:

∀a : int.a ≥ 0 ⊃ (int(a) → int(a + a))

where int is interpreted as some predicate on integers, and both ⊃ and → stand

for the implication connective in logic. However, it is not possible in λΠ,Σ
pat to form

a dependent type of the form Πa : τ1. τ2, which on the other hand is allowed in a

34 Hongwei Xi

expressions e ::= x | c(e) | case e of (p1 ⇒ e
1
| . . . pn ⇒ en) |

〈〉 | 〈e
1
, e

2
〉 | fst(e) | snd(e) |

lamx. e | lamx : τ. e | e1(e2) |
fix f : τ. e | let x = e

1
in e

2
end |

λa : ŝ. e | e[I] | (e : τ)

Fig. 20. The syntax for DML0

(full) dependent type system such as λP (Barendregt, 1992). To see the difficulty in

supporting practical programming with such types that may depend on programs,

let us recall the following rule that is needed for determining the static subtype

relation ≤s
tp in λΠ,Σ

pat :

φ; ~P |= I
.
= I ′

φ; ~P |= δ(I) ≤s
tp δ(I ′)

If I and I ′ are programs, then I
.
= I ′ is an equality on programs. In general,

if recursion is allowed in program construction, then it is not just undecidable

to determine whether two programs are equal; it is simply intractable. In addition,

such a design means that the type system of a programming language can be rather

unstable as adding a new programming feature into the programming language

may significantly affect the type system. For instance, if some form of effect (e.g.,

exceptions, references) is added, then equality on programs can at best become

rather intricate to define and is in general impractical to reason about. Currently,

there are various studies aiming at addressing these difficulties in order to support

full dependent types in practical programming. For instance, a plausible design is

to separate pure expressions from potentially effectful ones by employing monads

and then require that only pure expressions be used to form types. As for deciding

equalities on (pure) expressions, the programmer may be asked to provide proofs

of these equalities. Please see (McBride, n.d.; Westbrook et al., 2005) for further

details.

We emphasize that the issue of supporting the use of dependent types in practical

programming is largely not shared by Martin-Löf’s development of constructive

type theory (Martin-Löf, 1984; Martin-Löf, 1985), where the principal objective

is to give a constructive foundation of mathematics. In such a pure setting, it is

perfectly reasonable to define type equality in terms of equality on programs (or

more accurately, proofs).

5 Elaboration

We have so far presented an explicitly typed language λΠ,Σ
pat . This presentation has

a serious drawback from the point of view of a programmer: One may quickly be

overwhelmed with the need for writing types when programming in such a setting. It

then becomes apparent that it is necessary to provide an external language DML0

together with a mapping from DML0 to the internal language λΠ,Σ
pat , and we call

Journal of Functional Programming 35

such a mapping elaboration. We may also use the phrase type-checking loosely to

mean elaboration, sometimes.

We are to introduce a set of rules to perform elaboration. The elaboration process

itself is nondeterministic. Nonetheless, we can guarantee based on Theorem 5.3

that if e in DML0 can be elaborated into e in λΠ,Σ
pat , then e and e are operationally

equivalent. In other words, elaboration cannot alter the dynamic semantics of a

program. This is what we call the soundness of elaboration, which is considered a

major contribution of the paper. We are to perform elaboration with bi-directional

strategy that casually resembles the one adopted by Pierce and Turner in their

study on local type inference (Pierce & Turner, 1998), where the primary focus is

on the interaction between polymorphism and subtyping.

We present the syntax for DML0 in Figure 20, which is rather similar to that

of λΠ,Σ
pat . In general, it should not be difficult to relate the concrete syntax used in

our program examples to the formal syntax of DML0. We now briefly explain as to

how some concrete syntax can be used to provide type annotations for functions.

We essentially support two forms of type annotations for functions, both of which

are given below:

fun succ1 (x) = x + 1

withtype {a:int | a >= 0} int (a) -> int (a+1)

fun succ2 {a:int | a >= 0} (x: int(a)): int(a+1) = x + 1

The first form of annotation allows the programmer to easily read out the type of

the annotated function while the second form makes it more convenient to handle a

case where the body of a function needs to access some bound type index variables

in the type annotation. The concrete syntax for the definition of succ1 translates

into the following formal syntax,

fix f : τ. λa : ŝ.lamx : int(a). (x + 1 : int(a + 1))

where ŝ = {a : int | a ≥ 0}, and so does the concrete syntax for the definition

of succ2. As an example, both forms of annotation are involved in the following

program, which computes the length of a given list:

fun length {n:nat} (xs: ’a list n): int n =

let // this is a tail-recursive implementation

fun aux xs j = case xs of

| nil => j

| cons (_, xs) => aux xs (j+1)

withtype {i:nat, j:nat | i+j=n} ’a list i -> int j -> int n

in

aux xs 0

end

Note that the type index variable n is used in the type annotation for the inner

auxiliary function aux .

In the following presentation, we may use ⊃+
n (·) for ⊃+(. . . (⊃+(·)) . . .), where

36 Hongwei Xi

φ; ~P |= I1

.
= I ′

1 · · · φ; ~P |= In
.
= I ′

n

φ; ~P ` [] : δ(I1, . . . , In) ≤ δ(I ′

1, . . . , I
′

n)
(dy-sub-base)

φ; ~P ` [] : 1 ≤ 1
(dy-sub-unit)

φ; ~P ; x1 : τ1, x2 : τ2 ` 〈x1, x2〉 ↓ τ ⇒ e

φ; ~P ` let 〈x1, x2〉 = [] in e end : τ1 ∗ τ2 ≤ τ
(dy-sub-prod)

φ; ~P ; x : τ, x1 : τ1 ` x(x1) ↓ τ2 ⇒ e

φ; ~P ` let x = [] in lamx1. e end : τ ≤ τ1 → τ2

(dy-sub-fun)

ŝ = {a : s | P1, . . . , Pn} φ, a : s; ~P , P1, . . . , Pn ` E : τ ≤ τ ′

φ; ~P ` Π+(⊃+
n (E)) : τ ≤ Πa:ŝ. τ ′

(dy-sub-Π-r)

ŝ = {a : s | P1, . . . , Pn} φ, a : s; ~P , P1, . . . , Pn ` E : τ ≤ τ ′

φ; ~P ` let Σ(∧n(x)) = [] in E[x] end : Σa:ŝ. τ ≤ τ ′

(dy-sub-Σ-l)

ŝ = {a : s | P1, . . . , Pn} φ ` I : ŝ φ; ~P ` E : τ [a 7→ I] ≤ τ ′

φ; ~P ` E[⊃−

n (Π−([]))] : Πa:ŝ. τ ≤ τ ′

(dy-sub-Π-l)

ŝ = {a : s | P1, . . . , Pn} φ ` I : ŝ φ; ~P ` E : τ ≤ τ ′[a 7→ I]

φ; ~P ` Σ(∧n(E)) : τ ≤ Σa:ŝ. τ ′

(dy-sub-Σ-r)

Fig. 21. The dynamic subtype rules in λΠ,Σ
pat

.

there are n occurrences of ⊃ +, and ∧n(·) for ∧(. . . (∧(·)) . . .), where there are n

occurrences of ∧, and let Σ(∧0(x)) = e1 in e2 end for let Σ(x) = e1 in e2 end,

and let Σ(∧n+1(x)) = e1 in e2 end for the following expression:

let Σ(∧n(x)) = (let ∧ (x) = e1 in x end) in e2 end,

where n ranges over natural numbers.

Proposition 5.1

We have |let x = e1 in e2 end| ≤dyn |let Σ(∧n(x)) = e1 in e2 end|.

Proof

This immediately follows from Lemma 2.14 and the observation that

|let Σ(∧n(x)) = e1 in e2 end| ↪→∗
g |let x = e1 in e2 end|

holds.

5.1 The judgments and rules for elaboration

We introduce a new form of judgment φ; ~P ` E : τ1 ≤ τ2, which we call dynamic

subtype judgment. We may write φ; ~P ` τ1 ≤ τ2 to mean φ; ~P ` E : τ1 ≤ τ2 for

some evaluation context E. The rules for deriving such a new form of judgment

Journal of Functional Programming 37

are given in Figure 21. We are to establish that if φ; ~P ` E : τ ≤ τ ′ is derivable,

then φ; ~P |= E : τ ≤d
tp τ ′ holds, that is, for any expression e of type τ , E[e] can be

assigned the type τ ′ and |e| ≤dyn |E[e]| holds.

There is another new form of judgment φ; ~P ; Γ ` e ↓ τ ⇒ e involved in the

rule (dy-sub-prod) and the rule (dy-sub-fun), and the rules for deriving such a

judgment, which we call analysis elaboration judgment, are to be presented next.

We actually have two forms of elaboration judgments involved in the process of

elaborating expressions from DML0 to λΠ,Σ
pat .

• A synthesis elaboration judgment is of the form φ; ~P ; Γ ` e ↑ τ ⇒ e, which

means that given φ, ~P , Γ and e, we can find a type τ and an expression e such

that φ; ~P ; Γ ` e : τ is derivable and |e| ≤dyn |e| holds. Intuitively, τ can be

thought of as being synthesized through an inspection on the structure of e.

• An analysis elaboration judgment is of the form φ; ~P ; Γ ` e ↓ τ ⇒ e, which

means that given φ; ~P ; Γ, e and τ , we can find an expression e such that

φ; ~P ; Γ ` e : τ is derivable and |e| ≤dyn |e| holds.

We use |e| for the erasure of an expression e in DML0, which is obtained from

erasing in e all occurrences of the markers Π+(·), Π−(·), ⊃+(·), ⊃−(·), Σ(·) and

∧(·). The erasure function is formally defined in Figure 24.

The rules for deriving synthesis and analysis elaboration judgments are given in

Figure 22 and Figure 23, respectively. Note that there are various occasions where

the two forms of elaboration judgments meet. For instance, when using the rule

(elab-up-app-1) to elaborate e1(e2), we may first synthesize a type τ1 → τ2 for

e1 and then check e2 against τ1.

We next present some explanation on the elaboration rules. First and foremost,

we emphasize that many elaboration rules are not syntax-directed. If in a case

there are two or more elaboration rules applicable, the actual elaboration procedure

should determine (based on some implementation strategies) which elaboration rule

is to be chosen. We are currently not positioned to argue which implementation

strategies are better than others, though we shall mention some key points about

the strategies we have implemented. Given that the elaboration is not a form of

pure type inference,1 it is difficult to even formalize the question as to whether an

implementation of the elaboration is complete or not.

5.2 Some explanation on synthesis elaboration rules

The rules for synthesis elaboration judgments are presented in Figure 22. The pur-

pose of the rules (elab-up-Π-elim-1) and (elab-up-Π-elim-2) is for eliminating

Π quantifiers. For instance, let us assume that we are elaborating an expression

e1(e2), and a type of the form Πa : ŝ. τ is already synthesized for e1; then we

need to apply the rule (elab-up-Π-elim-1) so as to eliminate the Π quantifier in

1 By pure type inference, we refer to the question that asks whether a given expression in λpat is

typable in λ
Π,Σ
pat , that is, whether a given expression in λpat can be the erasure of some typable

expression in λ
Π,Σ
pat .

38 Hongwei Xi

ŝ = {a : s | P1, . . . , Pn} φ; ~P ` I : ŝ φ; ~P ; Γ ` e ↑ Πa:ŝ. τ ⇒ e

φ; ~P ; Γ ` e ↑ τ [a 7→ I] ⇒⊃−

n (Π−(e))
(elab-up-Π-elim-1)

ŝ = {a : s | P1, . . . , Pn} φ; ~P ` I : ŝ φ; ~P ; Γ ` e ↑ Πa:ŝ. τ ⇒ e

φ; ~P ; Γ ` e[I] ↑ τ [a 7→ I] ⇒⊃−

n (Π−(e))
(elab-up-Π-elim-2)

ŝ = {a : s | P1, . . . , Pn} φ, a : s; ~P ,P1, . . . , Pn; Γ ` e ↑ τ ⇒ e

φ; ~P ; Γ ` λa : ŝ. e ↑ Πa:ŝ. τ ⇒ Π+(⊃+
n (e))

(elab-up-Π-intro)

φ; ~P ; Γ ` e ↓ τ ⇒ e

φ; ~P ; Γ ` (e : τ) ↑ τ ⇒ e
(elab-up-anno)

φ ` Γ [ctx] Γ(xf) = τ

φ; ~P ; Γ ` xf ↑ τ ⇒ xf
(elab-up-var)

φ0; ~P0 ` c(τ0) : δ(~I0) φ ` Θ : φ0 φ |= ~P0[Θ] φ; ~P ; Γ ` e ↓ τ0[Θ] ⇒ e

φ; ~P ; Γ ` c(e) ↑ δ(~I0[Θ]) ⇒ c(e)
(elab-up-const)

φ; ~P ; Γ ` e
1
↑ τ1 ⇒ e1 φ; ~P ; Γ ` e

2
↑ τ2 ⇒ e2

φ; ~P ; Γ ` 〈e
1
, e

2
〉 ↑ τ1 ∗ τ2 ⇒ 〈e1, e2〉

(elab-up-prod)

φ; ~P ; Γ ` e ↑ τ1 ∗ τ2 ⇒ e

φ; ~P ; Γ ` fst(e) ↑ τ1 ⇒ fst(e)
(elab-up-fst)

φ; ~P ; Γ ` e ↑ τ1 ∗ τ2 ⇒ e

φ; ~P ; Γ ` snd(e) ↑ τ2 ⇒ snd(e)
(elab-up-snd)

φ; ~P ; Γ, x : τ1 ` e ↑ τ2 ⇒ lamx. e

φ; ~P ; Γ ` lamx : τ1. e ↑ τ1 → τ2 ⇒ lamx. e
(elab-up-lam)

φ; ~P ; Γ ` e
1
↑ τ1 → τ2 ⇒ e1 φ; ~P ; Γ ` e

2
↓ τ1 ⇒ e2

φ; ~P ; Γ ` e
1
(e

2
) ↑ τ2 ⇒ e1(e2)

(elab-up-app-1)

φ; ~P ; Γ ` e
1
↑ τ ⇒ e1 φ; ~P ; Γ ` e

2
↑ τ1 ⇒ e2

φ; ~P ;x1 : τ, x2 : τ1 ` x1(x2) ↑ τ2 ⇒ e

φ; ~P ; Γ ` e1(e2) ↑ τ2 ⇒ let x1 = e1 in let x2 = e2 in e end end
(elab-up-app-2)

φ; ~P ; Γ, f : τ ` e ↓ τ ⇒ e

φ; ~P ; Γ ` fix f : τ. e ↑ τ ⇒ fix f. e
(elab-up-fix)

φ; ~P ; Γ ` e
1
↑ τ1 ⇒ e1 φ; ~P ; Γ, x : τ1 ` e

2
↑ τ2 ⇒ e2

φ; ~P ; Γ ` let x = e
1

in e
2

end ↑ τ2 ⇒ let x = e1 in e2 end
(elab-up-let)

φ; ~P ; Γ, x1 : τ1, x2 : τ2 ` e[x 7→ 〈x1, x2〉] ↑ τ ⇒ e

φ; ~P ; Γ, x : τ1 ∗ τ2 ` e ↑ τ ⇒ let 〈x1, x2〉 = x in e end
(elab-up-prod-left)

ŝ = {a : s | P1, . . . , Pn} φ, a : s; ~P ,P1, . . . , Pn; Γ, x : τ1 ` e ↑ τ2 ⇒ e

φ; ~P ; Γ, x : Σa:ŝ. τ1 ` e ↑ Σa:ŝ. τ2 ⇒ let Σ(∧n(x)) = x in Σ(∧n(e)) end
(elab-up-Σ-left)

Fig. 22. The rules for synthesis elaboration from DML0 to λΠ,Σ
pat

Πa : ŝ. τ ; we continue to do so until the synthesized type for e1 does not begin

with a Π quantifier. In some (rare) occasions, the programmer may write e[I] to

indicate an explicit elimination of a Π quantifier, and the rule (elab-up-Π-elim-2)

is designed for this purpose.

The rule (elab-up-anno) turns a need for a synthesis elaboration judgment into

Journal of Functional Programming 39

ŝ = {a : s | P1, . . . , Pn} φ, a : s; ~P , P1, . . . , Pn; Γ ` e ↓ τ ⇒ e

φ; ~P ; Γ ` e ↓ Πa:ŝ. τ ⇒ Π+(⊃+
n (e))

(elab-dn-Π-intro)

φ; ~P ; Γ ` e
1
↓ τ1 ⇒ e1 φ; ~P ; Γ ` e

2
↓ τ2 ⇒ e2

φ; ~P ; Γ ` 〈e
1
, e

2
〉 ↓ τ1 ∗ τ2 ⇒ 〈e1, e2〉

(elab-dn-prod)

φ; ~P ; Γ, x : τ1 ` e ↓ τ2 ⇒ lamx. e

φ; ~P ; Γ ` lamx. e ↓ τ1 → τ2 ⇒ lamx. e
(elab-dn-lam)

p ↓ τ1 ⇒ (φ0; ~P0; Γ0) φ, φ0; ~P , ~P0; Γ,Γ0 ` e ↓ τ2 ⇒ e

φ; ~P ; Γ ` (p ⇒ e) ↓ (τ1 → τ2) ⇒ (p ⇒ e)
(elab-dn-clause)

φ; ~P ; Γ ` (pi ⇒ ei) ↓ (τ1 → τ2) ⇒ (pi ⇒ ei) for 1 ≤ i ≤ n
ms = (p1 ⇒ e

1
| . . . | pn ⇒ en) ms = (p1 ⇒ e1 | . . . | pn ⇒ en)

φ; ~P ; Γ ` ms ↓ τ1 → τ2 ⇒ ms
(elab-dn-clause-seq)

φ; ~P ; Γ ` e ↑ τ1 ⇒ e φ; ~P ; Γ ` ms ↓ τ1 → τ2 ⇒ ms

φ; ~P ; Γ ` case e of ms ↓ τ2 ⇒ case e of ms
(elab-dn-case)

φ; ~P ; Γ ` e ↑ τ1 ⇒ e φ; ~P ` E : τ1 ≤ τ2

φ; ~P ; Γ ` e ↓ τ2 ⇒ E[e]
(elab-dn-up)

φ; ~P ; Γ, x1 : τ1, x2 : τ2 ` e[x 7→ 〈x1, x2〉] ↓ τ ⇒ e

φ; ~P ; Γ, x : τ1 ∗ τ2 ` e ↓ τ ⇒ let 〈x1, x2〉 = x in e end
(elab-dn-prod-left)

ŝ = {a : s | P1, . . . , Pn} φ, a : s; ~P , P1, . . . , Pn; Γ, x : τ1 ` e ↓ τ2 ⇒ e

φ; ~P ; Γ, x : Σa:ŝ. τ1 ` e ↓ τ2 ⇒ let Σ(∧n(x)) = x in e end
(elab-dn-Σ-left)

Fig. 23. The rules for analysis elaboration from DML0 to λΠ,Σ
pat

|xf | = xf

|c(e)| = c(|e|)

|case e of (p1 ⇒ e
1
| . . . | pn ⇒ en)| = case |e| of (p1 ⇒ |e

1
| | . . . | pn ⇒ |en|)

|〈〉| = 〈〉

|〈e1, e2〉| = 〈|e1|, |e2|〉

|fst(e)| = fst(|e|)
|snd(e)| = snd(|e|)

|lamx. e| = lamx. |e|

|lamx : τ. e| = lamx. |e|

|e
1
(e

2
)| = |e

1
|(|e

2
|)

|fix f : τ. e| = fix f. |e|

|let x = e
1
in e

2
end| = let x = |e

1
| in |e

2
| end

|(e : τ)| = |e|

|λa : ŝ. e| = |e|

|e[I]| = |e|

Fig. 24. The erasure function on expressions in DML0

40 Hongwei Xi

τ1 = Πa1 :nat. int(a1) → Σa2 :nat. int(a2)
τ2(a) = int(a) → Σa2 :nat. int(a2)

τ3 = Σa2 :nat. int(a2)
e1 = ⊃−(Π−(f))(1)
e2 = ⊃−(Π−(x1))
e3 = let Σ(∧(x2)) = x2 in ⊃−(Π−(x1))(x2) end
e4 = let x1 = f in let x2 = e1 in e3 end end

D0 :: ∅; ∅; ∅, f : τ1 ` f ↑ τ1 ⇒ f
(elab-up-var)

D0 ∅; ∅ ` 1 : nat

D1 :: ∅; ∅; ∅, f : τ1 ` f ↑ τ2(1) ⇒⊃−(Π−(f))
(elab-up-Π-elim-1)

D2 :: ∅; ∅; ∅, f : τ1 ` 1 ↑ int(1) ⇒ 1
(elab-up-const)

D1

D2

∅; ∅ |= 1
.
= 1

∅; ∅ ` [] : int(1) ≤ int(1)
(dy-sub-base)

∅; ∅; ∅, f : τ1 ` 1 ↓ int(1) ⇒ 1
(elab-dn-up)

D3 :: ∅; ∅; ∅, f : τ1 ` f(1) ↑ τ3 ⇒ e1

(elab-up-app-1)

D4 :: ∅, a2 : int; ∅, a2 ≥ 0; ∅, x1 : τ1, x2 : int(a2) ` x1 ↑ τ1 ⇒ x1

(elab-up-var)

D4 ∅, a2 : int; ∅, a2 ≥ 0 ` a2 : nat

D5 :: ∅, a2 : int; ∅, a2 ≥ 0; ∅, x1 : τ1, x2 : int(a2) ` x1 ↑ τ2(a2) ⇒ e2

(elab-up-Π-elim-1)

D6 :: ∅, a2 : int; ∅, a2 ≥ 0; ∅, x1 : τ1, x2 : int(a2) ` x2 ↑ int(a2) ⇒ x2

(elab-up-var)

D5

D6

∅, a2 : int; ∅, a2 ≥ 0 |= a2
.
= a2

∅, a2 : int; ∅, a2 ≥ 0 ` [] : int(a2) ≤ int(a2)
(dy-sub-base)

∅, a2 : int; ∅, a2 ≥ 0; ∅, x1 : τ1, x2 : int(a2) ` x2 ↓ int(a2) ⇒ x2

(elab-dn-up)

∅, a2 : int; ∅, a2 ≥ 0; ∅, x1 : τ1, x2 : int(a2) ` x1(x2) ↑ τ3 ⇒ e2(x2)
(elab-up-app-1)

D7 :: ∅; ∅; ∅, x1 : τ1, x2 : τ3 ` x1(x2) ↑ Σa:nat. τ3 ⇒ e3

(elab-up-Σ-left)

D0 D3 D7

D8 :: ∅; ∅; ∅, x1 : τ1, x2 : τ3 ` f(f(1)) ↑ Σa:nat. τ3 ⇒ e4

(elab-up-app-2)

Fig. 25. An example of elaboration

a need for an analysis elaboration judgment. For instance, we may encounter a

situation where we need to synthesize a type for some expression lamx. e; however,

there is no rule for such a synthesis as the involved expression is a lam-expression;

to address the issue, the programmer may provide a type annotation by writing

(lamx. e : τ) instead; synthesizing a type for (lamx. e : τ) is then reduced to

analyzing whether lamx. e can be assigned the type τ .

The rule (elab-up-app-1) is fairly straightforward. When synthesizing a type

for e1(e2), we can first synthesize a type for e1; if the type is of the form τ1 → τ2, we

can then analyze whether e2 can be assigned the type τ1; if the analysis succeeds,

then we claim that the type τ2 is synthesized for e2.

Journal of Functional Programming 41

The rule (elab-up-app-2) is rather intricate but of great importance in practice,

and we provide some explanation for it. When synthesizing a type for e1(e2), we

may first synthesize a type τ for e1 that is not of the form τ1 → τ2; for instance,

τ may be a universally quantified type; if this is the case, we can next synthesize

a type for e2 and then apply the rule (elab-up-app-2). Let us now see a concrete

example involving (elab-up-app-2). Suppose that f is given the following type:

Πa1 :nat. int(a1) → Σa2 :nat. int(a2)

where nat = {a : int | a ≥ 0}, and we need to elaborate the expression f(1).

By applying the rule (elab-Π-elim-1) we can synthesize the type int(1) → Σa2 :

nat. int(a2) for f ; then we can analyze that 1 has the type int(1) and thus synthesize

the type Σa2 :nat. int(a2) for f(1); note that f(1) elaborates into ⊃−(Π−(f))(1),

which can be assigned the type Σa2 : nat. int(a2). Now suppose that we need to

elaborate the expression f(f(1)). If we simply synthesize a type of the form int(I) →

Σa2 :nat. int(a2) for the first occurrence of f in f(f(1)), then the elaboration for

f(f(1)) cannot succeed as it is impossible to elaborate f(1) into an expression in

λΠ,Σ
pat of the type int(I) for any type index I . With the rule (elab-up-app-2), we

are actually able to elaborate f(f(1)) into the following expression e in λΠ,Σ
pat :

let x1 = f in let x2 =⊃−(Π−(f))(1) in e′ end end

where e′ = let Σ(∧(x2)) = x2 in ⊃ −(Π−(x1))(x2) end. Please find that the

entire elaboration is formally carried out in Figure 25. Clearly, the erasure of e is

operationally equivalent to f(f(1)).

The rules (elab-up-prod-left) and (elab-up-Σ-left) are for simplifying the

types assigned to variables in a dynamic context. In practice, we apply these rules

during elaboration whenever possible.

5.3 Some explanation on analysis elaboration rules

The rules for analysis elaboration judgments are presented in Figure 23. For in-

stance, if e = 〈e1, e2〉 and τ = 〈τ1, τ2〉, then the rule (elab-dn-prod) reduces the

question whether e can be assigned the type τ to the questions whether ei can be

assigned the types τi for i = 1, 2. Most of analysis elaboration rules are straightfor-

ward. In the rule (elab-dn-up), we see that the three forms of judgments (dynamic

subtype judgment, synthesis elaboration judgment and analysis elaboration judg-

ment) meet. This rule simply means that when analyzing whether an expression e

can be given a type τ2, we may first synthesize a type τ1 for e and then show that

τ1 is a dynamic subtype of τ2 (by showing that E : τ1 ≤ τ2 is derivable for some

evaluation context E). In practice, we apply the rule (elab-dn-up) only if all other

analysis elaboration rules are inapplicable.

We now show some actual use of analysis elaboration rules by presenting in

Figure 26 a derivation of the following judgment for some E:

∅; ∅ ` E : Nat ∗Nat ≤ Σa1 :nat.Σa2 :nat. int(a1) ∗ int(a2)

where Nat = Σa : nat. int(a). In this derivation, we assume the existence of a

42 Hongwei Xi

τ0 = int(a1) ∗ int(a2)
τ1 = Σa2 :nat. int(a1) ∗ int(a2)
τ2 = Σa1 :nat.Σa2 :nat. int(a1) ∗ int(a2)
φ1 = ∅, a1 : int
φ2 = ∅, a1 : int, a2 : int
~P1 = ∅, a1 ≥ 0
~P2 = ∅, a1 ≥ 0, a2 ≥ 0
E0 = Σ(∧(Σ(∧(let 〈x1, x2〉 = [] in 〈x1, x2〉 end))))
e1 = E0[〈x1, x2〉]
e2 = let Σ(∧(x2)) = x2 in e1 end
e3 = let Σ(∧(x1)) = x1 in e2 end
E = let 〈x1, x2〉 = [] in e3 end

D1 :: φ2; ~P2; x1 : int(a1), x2 : int(a2) ` x1 ↑ int(a1) ⇒ x1

(elab-var-up)

D2 :: φ2; ~P2; x1 : int(a1), x2 : int(a2) ` x2 ↑ int(a2) ⇒ x2

(elab-var-up)

D1

φ2; ~P2 |= a1
.
= a1

φ2; ~P2 ` [] : int(a1) ≤ int(a1)

D3 :: φ2; ~P2;x1 : int(a1), x2 : int(a2) ` x1 ↓ int(a1) ⇒ x1

(elab-dn-up)

D2

φ2; ~P2 |= a2
.
= a2

φ2; ~P2 ` [] : int(a2) ≤ int(a2)

D4 :: φ2; ~P2;x1 : int(a1), x2 : int(a2) ` x2 ↓ int(a2) ⇒ x2

(elab-dn-up)

D3 D4

D5 :: φ2; ~P2;x1 : int(a1), x2 : int(a2) ` 〈x1, x2〉 ↓ τ0 ⇒ 〈x1, x2〉
(elab-dn-prod)

D5 D0 :: φ2; ~P2 ` E0 : τ0 ≤ τ2

D6 :: φ2; ~P2; x1 : int(a1), x2 : int(a2) ` 〈x1, x2〉 ↓ τ2 ⇒ e1

(elab-dn-up)

φ1; ~P1;x1 : int(a1), x2 : Nat ` 〈x1, x2〉 ↓ τ2 ⇒ e2

(elab-dn-Σ-left)

∅; ∅; x1 : Nat, x2 : Nat ` 〈x1, x2〉 ↓ τ2 ⇒ e3

(elab-dn-Σ-left)

D7 :: ∅; ∅ ` E : Nat ∗ Nat ≤ τ2

(dy-sub-prod)

Fig. 26. Another example of elaboration

derivation D0 :: φ2; ~P2 ` E0 : τ0 ≤ τ2 for the following evaluation context E0:

Σ(∧(Σ(∧(let 〈x1, x2〉 = [] in 〈x1, x2〉 end))))

which can be readily constructed.

As another example, the interested reader can readily derive the following judg-

ment for some E:

∅; ∅ ` E : Πa:int. int(a) → int(a) ≤ Int → Int

where Int = Σa : int. int(a). Therefore, we can always use a function of the type

Πa:int. int(a) → int(a) as a function of the type Int → Int.

Journal of Functional Programming 43

5.4 The soundness of elaboration

We now prove the soundness of elaboration, that is, elaboration cannot alter the

dynamic semantics of a program. To make the statement more precise, we define in

Figure 24 an erasure function | · | from DML0 to λpat. The following lemma is the

key to establishing the soundness of elaboration.

Lemma 5.2

Given φ, ~P , Γ, e, τ, τ ′ and e, we have the following:

1. If φ; ~P ` E : τ ≤ τ ′ is derivable, then φ; ~P |= E : τ ≤d
tp τ ′ holds.

2. If φ; ~P ; Γ ` e ↑ τ ⇒ e is derivable, then φ; ~P ; Γ ` e : τ is derivable in λΠ,Σ
pat ,

and |e| ↪→∗
g |e| holds.

3. If φ; ~P ; Γ ` e ↓ τ ⇒ e is derivable, then φ; ~P ; Γ ` e : τ is derivable in λΠ,Σ
pat ,

and |e| ↪→∗
g |e| holds.

Proof

(Sketch) (1), (2) and (3) are proven simultaneously by structural induction on the

derivations of φ; ~P ` E : τ ≤ τ ′, φ; ~P ; Γ ` e ↑ τ ⇒ e and φ; ~P ; Γ ` e ↓ τ ⇒ e.

The soundness of elaboration is justified by the following theorem:

Theorem 5.3

Assume that ∅; ∅; ∅ ` e ↑ τ ⇒ e is derivable. Then ∅; ∅; ∅ ` e : τ is derivable and

|e| ≤dyn |e|.

Proof

This follows from Lemma 5.2 and Lemma 2.14 immediately.

5.5 Implementing elaboration

A typed programming language ATS is currently under development (Xi, 2005),

and its type system supports the form of dependent types in λΠ,Σ
pat . The elaboration

process in ATS is implemented in a manner that follows the presented elaboration

rules closely, providing concrete evidence in support of the practicality of these

rules. We now mention some strategies adopted in this implementation to address

nondeterminism in elaboration.

• The dynamic subtype rules in Figure 21 are applied according to the order in

which they are listed. In other words, if two or more dynamic subtype rules are

applicable, then the one listed first is chosen. It is important to always choose

(dy-sub-Π-r) and (dy-sub-Σ-l) over (dy-sub-Π-l) and (dy-sub-Σ-r), re-

spectively. For instance, this is necessary when we prove ∅; ∅ ` τ ≤ τ for

τ = Πa:int. int(a) → int(a) and also for τ = Σa:int. int(a).

• The following ”left” rules:

— (elab-up-Σ-left) and (elab-dn-Σ-left)

— (elab-up-prod-left) and (elab-dn-prod-left)

are chosen whenever they are applicable.

44 Hongwei Xi

• The rule (elab-up-app-2) is in general chosen over the rule (elab-up-app-1).

However, we also provide some special syntax to allow the programmer to in-

dicate that the rule (elab-up-app-1) is preferred in a particular case. For

instance, the special syntax for doing this in ATS is {...}: we write e1{...}(e2)

to indicate that a type of the form τ1 → τ2 needs to be synthesized out of e1

and then e2 is to be checked against τ1. This kind of elaboration is mostly

used in a case where the expression e1 is a higher-order function, saving the

need for explicitly annotating the expression e2.

• We choose the rule (elab-dn-up), which turns analysis into synthesis, only

when no other analysis elaboration rules are applicable. The general principle

we follow is to prefer analysis over synthesis as the former often makes better

use of type annotations and yields more accurate error message report.

While the description of elaboration in terms of the rules in Figure 21, Figure 22

and Figure 23 is intuitively appealing, there is still a substantial gap between the

description and its implementation. For instance, the elaboration rules are further

refined in (Xi, 1998) to generate constraints when applied, and there are also var-

ious issues of reporting error messages as informative as possible. As these issues

are mostly concerned with an actual implementation of elaboration, they are of

relatively little theoretical significance and thus we plan to address them elsewhere

in different contexts.

6 Extensions

We extend λΠ,Σ
pat with parametric polymorphism, exceptions and references in this

section, attesting to the adaptability and practicality of our proposed approach to

supporting the use of dependent types in the presence of realistic programming

features.

6.1 Parametric polymorphism

We first extend the syntax of λΠ,Σ
pat as follows:

types τ ::= . . . | α

type schemes σ ::= ∀~α. τ

contexts Γ ::= · | Γ, xf : σ

where we use α to range over type variables. A c-type is now of the following form:

∀~α.Πφ. ~P ⊃ (τ ⇒ (~τ)δ(~I))

Journal of Functional Programming 45

and the typing rules (ty-var) and (ty-const) are modified as follows:

Γ(xf) = ∀~α. τ φ ` ~τ [type]

φ; ~P ; Γ ` xf : τ [~α 7→ ~τ]
(ty-var)

~α; φ0; ~P0 ` c(τ) : (~τ0)δ(~I0) φ ` ~τ [type]

φ ` Θ : φ0 φ; ~P |= ~P0[Θ] φ; ~P ; Γ ` e : τ [~α 7→ ~τ][Θ]

φ; ~P ; Γ ` c(e) : (~τ0[~α 7→ ~τ])δ(~I0[Θ])
(ty-const)

We write ~α; φ0; ~P0 ` c(τ) : (~τ0)δ(~I0) to indicate that the constant c is assigned the

c-type ∀~α.Πφ0. ~P0 ⊃ (τ ⇒ δ(~I0)), and φ ` ~τ [type] to mean that φ ` τ [type] is

derivable for each τ in ~τ , and [~α 7→ ~τ] for a substitution that maps ~α = α1, . . . , αn

to ~τ = τ1, . . . , τn. We now need the following static subtype rule to deal with type

variables:

φ; ~P |= α ≤s
tp α

(st-sub-var)

In addition, the rule (st-sub-base) needs to be modified as follows:

φ; ~P |= τ1 =s
tp τ ′

1 · · · φ; ~P |= τm =s
tp τ ′

m

φ; ~P |= I1
.
= I ′1 · · · φ; ~P |= In

.
= I ′n

φ; ~P |= (τ1, . . . , τm)δ(I1, . . . , In) ≤s
tp (τ ′

1, . . . , τ
′
m)δ(I ′1, . . . , I

′
n)

(st-sub-base)

where for types τ and τ ′, τ =s
tp τ ′ means both τ ≤s

tp τ ′ and τ ′ ≤s
tp τ hold. It is

possible to replace τi =s
tp τ ′

i with τi ≤s
tp τ ′

i (τ ′
i ≤

s
tp τi) if δ is covariant (contravariant)

with respect to its ith type argument. However, we do not entertain this possibility

in this paper (but do so in implementation).

The following typing rules (ty-poly) and (ty-let) are introduced for handling

let-polymorphism as is supported in ML:

φ; ~P ; Γ ` e : τ ~α # Γ

φ; ~P ; Γ ` e : ∀~α. τ
(ty-poly)

φ; ~P ; Γ ` e1 : σ1 φ; ~P ; Γ, x : σ1 ` e2 : σ2

φ; ~P ; Γ ` let x = e1 in e2 end : σ2

(ty-let)

Obviously, we need to associate with the rule (ty-poly) a side condition that

requires no free occurrences of ~α in Γ. This condition is written as ~α # Γ.

As usual, the type soundness of this extension is established by the subject re-

duction theorem and the progress theorem stated as follows:

Theorem 6.1 (Subject Reduction)

Assume that D :: ∅; ∅; ∅ ` e1 : σ is derivable and e1 ↪→ev e2 holds. Then ∅; ∅; ∅ `

e2 : σ is also derivable.

Theorem 6.2 (Progress)

Assume that ∅; ∅; ∅ ` e1 : σ is derivable. Then there are the following possibilities:

• e1 is a value, or

46 Hongwei Xi

c(raise(v)) ↪→ev raise(v)

〈raise(v), e〉 ↪→ev raise(v)

〈v0, raise(v)〉 ↪→ev raise(v)

(raise(v))(e) ↪→ev raise(v)

v0(raise(v)) ↪→ev raise(v)

case raise(v) of ms ↪→ev raise(v)

let x = raise(v) in e end ↪→ev raise(v)

⊃−(raise(v)) ↪→ev raise(v)

Π−(raise(v)) ↪→ev raise(v)

let ∧ (x) = raise(v) in e end ↪→ev raise(v)

let Σ(x) = raise(v) in e end ↪→ev raise(v)

try raise(v) with ms ↪→ev







e[θ] if match(v, p) ⇒ θ holds
for some p ⇒ e in ms;

raise(v) otherwise.

Fig. 27. Additional forms of redexes and their reducts

• e1 is in M-form, or
• e1 is in U-form, or
• e1 ↪→ev e2 holds for some expression e2.

We omit the proofs for these two theorems, which are essentially the same as the

ones for Theorem 4.11 and Theorem 4.12.

6.2 Exceptions

We further extend λΠ,Σ
pat with exceptions. First, we introduce the following additional

syntax, where exn is the type for values representing exceptions.

types τ ::= . . . | exn

expressions e ::= . . . | raise(e) | try e with ms

answers ans ::= v | raise(v)

An answer of the form raise(v) is called a raised exception, where v is the exception

being raised. We also introduce in Figure 27 some new forms of ev-redexes and their

reducts, which are needed for propagating a raised exception to the top level. In

addition, we introduce a new form of evaluation context to allow a raised exception

to be captured (potentially):

evaluation contexts E ::= . . . | try E with ms

The following typing rules are needed for handling the newly added language con-

structs:

φ; ~P ; Γ ` e : exn

φ; ~P ; Γ ` raise(e) : σ
(ty-raise)

φ; ~P ; Γ ` e : τ φ; ~P ; Γ ` ms : exn → τ

φ; ~P ; Γ ` try e with ms : τ
(ty-try)

Journal of Functional Programming 47

Again, the type soundness of this extension rests upon the following two theorems:

Theorem 6.3 (Subject Reduction)

Assume D :: ∅; ∅; ∅ ` e1 : σ e1 ↪→ev e2. Then ∅; ∅; ∅ ` e2 : σ is also derivable.

Theorem 6.4 (Progress)

Assume that ∅; ∅; ∅ ` e1 : σ is derivable. Then there are the following possibilities:

• e1 is a value, or

• e1 is a raised exception, or

• e1 is in M-form, or

• e1 is in U-form, or

• e1 ↪→ev e2 holds for some expression e2.

We omit the proofs for these two theorems, which are essentially the same as the

ones for Theorem 4.11 and Theorem 4.12.

Assume the existence of two exception constants Match and Undefined that are

assigned the c-type () ⇒ exn. We can then introduce the following evaluation rules

for handling expressions in M-form or U-form:

case v of ms ↪→ev raise(Match) if v matches none of the patterns in ms.

cf (v) ↪→ev raise(Undefined) if cf (v) is undefined.

Then the progress theorem can be stated as follows:

Theorem 6.5 (Progress)

Assume that ∅; ∅; ∅ ` e1 : σ is derivable. Then there are the following possibilities:

• e1 is a value, or

• e1 is a raised exception, or

• e1 ↪→ev e2 holds for some expression e2.

So we can now claim that the evaluation of a well-typed program either terminates

with an answer, that is, a value or a raised exception, or goes on forever.

6.3 References

In this section, we add into λΠ,Σ
pat another effectful programming feature: references.

We first introduce a unary type constructor ref that takes a type τ to form a

reference type (τ)ref. We need the following static subtype rule for dealing with

the type constructor ref:

φ; ~P |= τ1 ≤s
tp τ2 φ; ~P |= τ2 ≤s

tp τ1

φ; ~P |= (τ1)ref ≤s
tp (τ2)ref

(st-sub-ref)

which takes into account that ref is nonvariant on its type argument. We also

assume the existence of the following predefined functions ref, ! (prefix) and :=

(infix) with the assigned c-types:

ref : ∀α.(α) ⇒ (α)ref

! : ∀α.((α)ref) ⇒ α

:= : ∀α.((α)ref, α) ⇒ 1

48 Hongwei Xi

We use l to range over an infinite set of reference constants l1, l2, . . ., which one

may simply assume are represented as natural numbers. We use M and µ for stores

and store types, respectively, which are defined below as finite mappings:

stores M ::= [] | M [l 7→ v]

store types µ ::= [] | µ[l 7→ τ]

Note that we do allow type variables to occur in a store type. In other words, for

each l ∈ dom(µ), µ(l) may contain free type variables.

We say that a store M ′ extends another store M if M(l) = M ′(l) for every

l ∈ dom(M) ⊆ dom(M ′). Similarly, we say that a store type µ′ extends another

store type µ if µ(l) = µ′(l) for every l ∈ dom(µ) ⊆ dom(µ′).

Definition 6.6 (Stateful Reduction)
The stateful reduction relation (M1, e1) ↪→ev/st (M2, e2) is defined as follows:

• If e1 ↪→ev e2 holds, then we have (M, e1) ↪→ev/st (M, e2).
• If e1 = E[ref(v)], then we have (M, e1) ↪→ev/st (M [l 7→ v], E[〈〉]) for any

reference constant l 6∈ dom(M). So nondeterminism appears to be involved

in this case. This form of nondeterminism can be eliminated if we equate

(M, e) and (M ′, e′) whenever one can be obtained from the other by properly

renaming the reference constants. The precise definition of such a renaming

algorithm is omitted as it is not needed in this paper.
• If e1 = E[!l] and M(l) = v, then we have (M, e1) ↪→ev/st (M, E[v]).
• If e1 = E[l := v] and l ∈ dom(M), then we have (M, e1) ↪→ev/st (M ′, E[〈〉]),

where M ′ is a store such that dom(M ′) = dom(M) and M ′(l) = v and

M ′(l′) = M(l′) for every l′ in dom(M) that is not l.

As usual, we use ↪→∗

ev/st for the reflexive and transitive closure of ↪→ev/st .

Given an answer ans, we say that ans is observable if ans = v or ans = raise(v)

for some observable value v.

Definition 6.7
Given two expressions e1 and e2 in λpat extended with polymorphism, excep-

tions and references, we say that e1 ≤dyn e2 holds if for any store M1 and any

context G, either (M1, G[e2]) ↪→∗

ev/st (M2,Error) holds for some store M2, or

(M1, G[e1]) ↪→∗

ev/st (M2, ans∗) if and only if (M1, G[e2]) ↪→∗

ev/st (M2, ans∗), where

M2 ranges over stores and ans∗ ranges over the set of observable answers.

The definition of the dynamic subtype relation ≤d
tp (Definition 4.15) can be modified

according to the above definition of ≤dyn . In particular, we can readily verify that

Lemma 2.14 still holds (as the generate reduction relation ↪→g is still defined in the

same manner).

We now outline as follows an approach to typing references, which is largely

based upon the one presented in (Harper, 1994). A typing judgment is now of

the form φ; ~P ; Γ `µ e : σ, and all the previous typing rules need to be modified

accordingly. Also, we introduce the following typing rule for assigning types to

reference constants:
µ(l) = τ

φ; ~P ; Γ `µ l : (τ)ref
(ty-ref)

Journal of Functional Programming 49

We say that an expression e is value-equivalent if |e| ≤dyn v holds for some value

v. A form of value restriction is imposed by the following rules:

φ; ~P , P ; Γ `µ e : τ e is value-equivalent

φ; ~P ; Γ `µ⊃+(e) : P ⊃ τ
(ty-⊃-intro)

φ, a : s; ~P ; Γ `µ e : τ e is value-equivalent

φ; ~P ; Γ `µ Π+(e) : Πa:s. τ
(ty-Π-intro)

φ; ~P ; Γ `µ e : τ ~α # Γ ~α # µ e is value-equivalent

φ; ~P ; Γ `µ e : ∀~α. τ
(ty-poly)

In the rule (ty-poly), ~α # µ means that there is no free occurrence of α in µ(l) for

any α ∈ ~α, where l ranges over dom(µ). Also, we need to extend the definition of

evaluation contexts as follows:

E ::= . . . | ⊃+(E) | Π+(E)

As an example, when applying the rule (ty-Π-intro) to an expression, we need to

verify that the expression must be value-equivalent. This is slightly different from

the usual form of value restriction(Wright, 1995) imposed, for instance, in ML. The

minor change is needed since the elaboration of a value may not necessarily be

a value. For instance, this may happen if the rule (elab-dn-up) is applied. By

Lemma 5.2 and Lemma 2.14, we know that the elaboration of a value is always

value-equivalent.

Given a store M and a store type µ, we write M : µ to mean that the store M

can be assigned the store type µ, which is formally defined as follows:

∅; ∅; ∅ `µ M(l) : µ(l) for every l ∈ dom(M) = dom(µ)

M : µ
(ty-store)

Again, the type soundness of this extension rests upon the following two theorems:

Theorem 6.8 (Subject Reduction)

Assume M1 : µ1 holds and ∅; ∅; ∅ `µ1
e1 : σ is derivable. If (M1, e1) ↪→ev/st (M2, e2)

holds, then there exists a store typing µ2 that extends µ1 such that M2 : µ2 holds

and ∅; ∅; ∅ `µ2
e2 : σ is derivable.

Theorem 6.9 (Progress)

Assume that M : µ holds and ∅; ∅; ∅ `µ e : σ is derivable. Then there are the

following possibilities:

• e is a value v, or

• e is a raised exception raise(v), or

• (M, e) ↪→ev/st (M ′, e′) holds for some store M ′ and expression e′ such that

M ′ extends M .

The proofs for these two theorems are essentially the same as the ones for Theo-

rem 4.11 and Theorem 4.12, and some related details can also be found in (Harper,

1994). In Appendix C, we provide a proof sketch for Theorem 6.8 that clearly

demonstrates some involvement of value restriction.

50 Hongwei Xi

7 Some programming examples

We have finished prototyping a language Dependent ML (DML), which essentially

extends ML with a form of dependent types in which type index terms are drawn

from the type index languages Lint and Lalg presented in Section 3.3.2 and Sec-

tion 3.3.1, respectively. At this moment, DML has already become a part of ATS,

a programming language with a type system rooted in the framework Applied Type

System (Xi, 2004). The current implementation of ATS is available on-line (Xi,

2005), which includes a type-checker and a compiler (from ATS to C) and a sub-

stantial library (containing more than 25K lines of code written in ATS itself).

When handling integer constraints, we reject nonlinear ones outrightly rather

than postpone them as hard constraints (Michaylov, 1992), which is planned for

future work. This decision of rejecting nonlinear integer constraints may seem ad

hoc, and it can be too restrictive, sometimes, in a situation where nonlinear con-

straints (e.g., ∀n : int. n ∗ n ≥ 0) need to be dealt with. To address this issue,

an approach to combining programming with theorem proving has been proposed

recently (Chen & Xi, 2005a).

If the constraints are linear, we negate them and test for unsatisfiability. For

instance, the following is a sample constraint generated when an implementation

of binary search on arrays is type-checked:

φ; ~P |= l + (h − l)/2 + 1 ≤ sz

where

φ = h : int, l : int, sz : int
~P = l ≥ 0, sz ≥ 0, 0 ≤ h + 1, h + 1 ≤ sz, 0 ≤ l, l ≤ sz, h ≥ l

The employed technique for solving linear constraints is mainly based on the Fourier-

Motzkin variable elimination approach (Dantzig & Eaves, 1973), but there are many

other practical methods available for this purpose such as the SUP-INF method

(Shostak, 1977) and the well-known simplex method. We have chosen Fourier-

Motzkin’s method mainly for its simplicity.2

We now briefly explain this method. We use x for integer variables, a for integers,

and l for linear expressions. Given a set of inequalities S, we would like to show that

S is unsatisfiable. We fix a variable x and transform all the linear inequalities into

one of the two forms: l ≤ ax and ax ≤ l, where a ≥ 0 is assumed. For every pair

l1 ≤ a1x and a2x ≤ l2, where a1, a2 > 0, we introduce a new inequality a2l1 ≤ a1l2
into S, and then remove from S all the inequalities involving x. Clearly, this is a

sound but incomplete procedure. If x were a real variable, then the procedure would

also be complete.

In order to handle modulo arithmetic, we also perform another operation to rule

out non-integer solutions: we transform an inequality of form

a1x1 + · · · + anxn ≤ a

2 Recently,, we have also implemented a constraint solver based the simplex method. Our expe-
rience indicates that Fourier-Motzkin’s method is almost always superior to the the simplex
method due to the nature of the constraints encountered in practice.

Journal of Functional Programming 51

into

a1x1 + · · · + anxn ≤ a′,

where a′ is the largest integer such that a′ ≤ a and the greatest common divisor

of a1, . . . , an divides a′. The method can be extended to become both sound and

complete while remaining practical (see, for example, (Pugh & Wonnacott, 1992;

Pugh & Wonnacott, 1994)).

In DML, we do allow patterns in a matching clause sequence to be overlapping,

and sequential pattern matching is performed at run-time. This design can lead to

some complications in type-checking, which will be mentioned in Section 7.2. Please

refer to (Xi, 2003) for more details on this issue.

We now present some programing examples taken from a prototype implementa-

tion of DML, giving the reader some concrete feel as to how dependent types can

actually be used to capture programming invariants in practice.

7.1 Arrays

Arrays are a widely used data structure in practice. We use array as a built-in

type constructor that takes a type τ and a natural number n to form the type

(τ)array(n) for arrays of size n in which each element has the type τ .3 We also

have the built-in functions sub, update and make, which are given the following

c-types:

sub : ∀α.Πn:nat.Πi:{a : nat | a < n}. (α)array(n) ∗ int(i) ⇒ α

update : ∀α.Πn:nat.Πi:{a : nat | a < n}. (α)array(n) ∗ int(i) ∗ α ⇒ 1

make : ∀α.Πn:nat. int(n) ∗ α ⇒ (α)array(n)

There is no built-in function for computing the size of an array. Notice that the

c-type of sub indicates that the function can be applied to an array and an index

only if the value of the index is a natural number less than the size of the array.

In other words, the quantification Πn : nat.Πi : {a : nat | a < n} acts like a pre-

condition for the function sub. The c-type of update imposes a similar requirement.

We may, however, encounter a situation where the programmer knows or believes

for some reason that the value of the index is within the bounds of the array, but

this property is difficult or even impossible to be captured in the type system of

DML. In such a situation, the programmer may need to use run-time array bound

checks to overcome the difficulty. We now present some type-theoretical justification

for run-time array bound checking in DML.

In Figure 28, we declare a type constructor Array for forming types for arrays

with size information. The only value constructor Array associated with the type

constructor Array is assigned the following c-type:

∀α.Πn:nat. int(n) ∗ (α)array(n) ⇒ (α)Array(n)

The defined functions arraySub, arrayUpdate and makeArray correspond to the

3 Each valid index of an array is a natural number less than the size of the array

52 Hongwei Xi

datatype ’a Array with nat = {n:nat} Array(n) of int(n) * ’a array(n)

exception Subscript

fun(’a) arraySub (Array(n, a), i) =

if (i < 0) then raise Subscript

else if (i >= n) then raise Subscript

else sub (a, i)

withtype {n:nat,i:int} ’a Array(n) * int(i) -> ’a

fun(’a) arrayUpdate (Array(n, a), i, x) =

if (i < 0) then raise Subscript

else if (i >= n) then raise Subscript

else update (a, i, x)

withtype {n:nat,i:int} ’a Array(n) * int(i) * ’a -> unit

fun(’a) makeArray (n, x) = Array (n, make (n, x))

withtype {n:nat} int(n) * ’a -> ’a Array(n)

fun(’a) arrayLength (Array(n, _)) = n

withtype {n:nat} ’a Array(n) -> int(n)

Fig. 28. A datatype for arrays with size information and some related functions

functions sub, update and make, respectively. Note that run-time array bound checks

are inserted in the implementation of arraySub and arrayUpdate. For an array carry-

ing size information, the function arrayLength simply extracts out the information.

Additional examples can be found in (Xi & Pfenning, 1998) that makes use of

dependent types in eliminating run-time array bound checks.

Clearly, the programmer now has the option to decide which subscripting (up-

dating) function should be used: sub or arraySub (update or arrayUpdate)? When

compared to the former, the latter is certainly less efficient and may incur a run-

time exception. However, in order to use the former, the programmer often needs

to capture more program invariants by supplying type annotations. This point is

shown clearly when we compare the two (essentially identical) implementations of

the standard binary search on integer arrays in Figure 29. In the first implementa-

tion, we use the array subscripting function arraySub, which incurs run-time array

bound checks. In the second implementation, we instead use sub, which incurs no

run-time array bound checks. Clearly, the second implementation is superior to the

first one when either safety or efficiency is of the concern. However, the program-

mer needs to provide a more informative type for the inner function loop in order

to eliminate the array bound checks. In this case, the provided type captures the

invariant that i ≤ j +1 ≤ n holds whenever loop is called, where i and j are integer

values of l and u, respectively, and n is the size of the array being searched.

Journal of Functional Programming 53

datatype ORDER = LESS | EQUAL | GREATER

fun binarySearch cmp (key, Vec) = let (* require run-time bound checks *)

fun loop (l, u) =

if u < l then NONE

else let

val m = l + (u-l) / 2

val x = arraySub (Vec, m) (* require bound checks *)

in case cmp (x, key) of

LESS => loop (m+1, u)

| GREATER => loop (l, m-1)

| EQUAL => SOME (m)

end

withtype int * int -> int option

in loop (0, length Vec - 1) end

withtype {n:nat} (’a * ’a -> Bool) -> (’a * ’a Array(n)) -> int option

fun binarySearch cmp (key, Vec) = let (* require NO run-time bound checks *)

val Array (n, vec) = Vec

fun loop (l, u) =

if u < l then NONE

else let

val m = l + (u-l) / 2

val x = sub (vec, m) (* require no bound checks *)

in case cmp (x, key) of

LESS => loop (m+1, u)

| GREATER => loop (l, m-1)

| EQUAL => SOME (m)

end

withtype {i:nat,j:int | i <= j+1 <= n} int(i) * int(j) -> int option

in loop (0, n-1) end

withtype {n:nat} (’a * ’a -> Bool) -> (’a * ’a Array(n)) -> int option

Fig. 29. Two implementations of binary search on integer arrays in DML

7.2 Red-black trees

We now show a typical use of dependent types in capturing certain inherent invari-

ants in data structures.

A red-black tree (RBT) is a balanced binary tree that satisfies the following

conditions:

1. All leaves are marked black and all other nodes are marked either red or black;

2. for every node there are the same number of black nodes on every path con-

necting the node to a leaf, and this number is called the black height of the

node;

3. the two children of every red node are black.

It is a common practice to use the RBT data structure to implement a dictio-

nary. We declare a datatype in Figure 30, which precisely captures the above three

properties of being a RBT.

54 Hongwei Xi

sort color = {a:int | 0 <= a <= 1} (* sort declaration *)

datatype ’a rbtree (color, nat, nat) = (* color, black height, violation *)

E(0, 0, 0)

| {cl:color, cr:color, bh:nat}

B(0, bh+1, 0) of ’a rbtree(cl, bh, 0) * ’a * ’a rbtree(cr, bh, 0)

| {cl:color, cr:color, bh:nat}

R(1, bh, cl+cr) of ’a rbtree(cl, bh, 0) * ’a * ’a rbtree(cr, bh, 0)

fun restore (R(R(a, x, b), y, c), z, d) = R(B(a, x, b), y, B(c, z, d))

| restore (R(a, x, R(b, y, c)), z, d) = R(B(a, x, b), y, B(c, z, d))

| restore (a, x, R(R(b, y, c), z, d)) = R(B(a, x, b), y, B(c, z, d))

| restore (a, x, R(b, y, R(c, z, d))) = R(B(a, x, b), y, B(c, z, d))

| restore (a, x, b) = B(a, x, b)

withtype {cl:color, cr:color, bh:nat, vl:nat, vr:nat | vl+vr <= 1}

’a rbtree(cl, bh, vl) * ’a * ’a rbtree(cr, bh, vr) ->

[c:color] ’a rbtree(c, bh+1, 0)

exception ItemAlreadyExists

fun insert cmp (x, t) = let

fun ins (E) = R(E, x, E)

| ins (B (a, y, b)) = (

case cmp (x, y) of

LESS => restore (ins a, y, b)

| GREATER => restore(a, y, ins b)

| EQUAL => raise ItemAlreadyExists

)

| ins (R (a, y, b)) = (

case cmp (x, y) of

LESS => R (ins a, y, b)

| GREATER => R(a, y, ins b)

| EQUAL => raise ItemAlreadyExists

)

withtype {c:color, bh:nat}

’a rbtree(c, bh, 0) -> [c’:color, v:nat | v <= c] ’a rbtree(c’, bh, v)

in case ins t of R(a, y, b) => B(a, y, b) | t => t end

withtype {c:color, bh:nat} (’a * ’a -> ORDER) ->

key * ’a rbtree(c, bh, 0) -> [bh’:nat] ’a rbtree(0, bh’, 0)

Fig. 30. A red-black tree implementation

A sort color is declared for the type index terms representing the colors of nodes.

We use 0 for black and 1 for red. The type constructor rbtree is indexed with a

triple (c, bh, v), where c, bh, v stand for the color of the node, the black height of the

tree rooted at the node, and the number of color violations in the tree, respectively.

We record one color violation if a red node is followed by another red one, and thus

a valid RBT must have no color violations. Clearly, the types of value constructors

associated with the type constructor rbtree indicate that color violations can only

occur at the top node. Also, notice that a leaf, that is, E, is considered black. Given

Journal of Functional Programming 55

the datatype declaration and the explanation, it should be clear that the type of a

RBT in which all keys are of type τ is simply:

Σc:color.Σbh:nat. (τ)rbtree(c, bh, 0),

that is, a RBT is a tree that has some top node color c and some black height bh

but no color violations.

It is an involved task to implement RBT. The implementation we present in

Figure 30 is largely adopted from one in (Okasaki, 1998), though there are some

minor modifications. We explain how the insertion operation on a RBT is imple-

mented. Clearly, the invariant we intend to capture is that inserting an entry into

a RBT yields another RBT. In other words, we intend to declare that the insertion

operation has the following type:

∀α.(α ∗ α → Bool) → α ∗ (α)RBT → (α)RBT

where Bool is the type for booleans and (α)RBT is defined to be:

Σc:color.Σbh:nat. (α)rbtree(c, bh, 0)

If we insert an entry into a RBT, some properties on RBT may be invalidated, and

the invalidated properties can then be restored through some rotation operations.

The function restore in Figure 30 is defined for this purpose.

The type of restore, though long, is easy to understand. It states that this function

takes a tree with at most one color violation, an entry and a RBT, and returns

a RBT. The two trees in the argument must have the same black height bh for

some natural number bh and the black height of the returned RBT is bh + 1. This

information can be of great help for understanding the code. It is not trivial at all to

verify the information manually, and we could imagine that almost everyone who did

this would appreciate the availability of a type-checker to perform it automatically.

There is a substantial difference between type-checking a matching clause se-

quence in DML and in ML. The operational semantics of ML requires that pattern

matching be performed sequentially, that is, the chosen pattern matching clause is

always the first one that matches a given value. For instance, in the definition of the

function restore, if the last clause is chosen at run-time, then we know the argument

of restore does not match any one of the clauses ahead of the last one. This must be

taken into account when we type-check pattern matching in DML. One approach

is to expand patterns into disjoint ones. For instance, the pattern (a, x, b) expands

into 36 patterns (pattern1, x, pattern2), where pattern1 and pattern2 range over

the following six patterns:

R(B , , B), R(B , , E), R(E, , B), R(E, , E), B , E

Unfortunately, such an expansion may lead to combinatorial explosion. An alterna-

tive is to require the programmer to indicate whether such an expansion is needed.

Neither of these was available in the original implementation of DML, and the

author had to take the inconvenience to expand patterns into disjoint ones when

necessary. Recently, we have implemented the alternative mentioned above. For

instance, the last clause in the definition of restore can be written as follows:

56 Hongwei Xi

| restore (a, x, b) == B(a, x, b)

where the special symbol == indicates to the type-checker that the pattern involved

here needs to be (automatically) expanded into ones that are disjoint from the the

patterns in the previous clauses. For a thorough study on the issue of type-checking

pattern matching clauses in DML, please refer to (Xi, 2003).

The complete implementation of the insertion operation follows immediately.

Notice that the type of the function ins indicates that ins may return a tree with

one color violation if it is applied to a tree with a red top node. This violation can

be eliminated by replacing the top node with a black one for every returned tree

with a red top node.

Moreover, we can use an extra index to capture the size information of a RBT. If

we do so, we can then show that the insert function always returns a RBT of size

n+1 when given a RBT of size n (note that an exception is raised if the entry to be

inserted already exists in the tree). A complete implementation of red-black trees

is available on-line (Xi, 2005), which includes deletion and join operations as well.

Also, several examples that make use of dependent types in capturing invariants in

other data structures (e.g., Braun trees, random-access lists, binomial heaps) can

be found in (Xi, 1999).

We point out that it is also possible to capture the invariants of being a RBT by

using nested datatypes (Kahrs, 2001). This is a rather different approach as it, to a

large extent, employs run-time checking (in the form of pattern matching) to ensure

that a binary tree meets the criteria of being a red-black tree. The use of nested

datatypes essentially guarantees the adequacy of such run-time checking. A more

systematic study on making use of nested types in capturing program invariants

can be found in (Hinze, 2001).

7.3 A type-preserving evaluator

We now implement an evaluator for an object language based on the simply typed λ-

calculus, capturing in the type system of DML that the evaluator is type-preserving

at the object level. Apart form using integer expressions as type indexes in the

previous examples, we employ algebraic terms as type indexes in this example.

We use the following syntax to define a sort ty for representing simple types in

the object language:

datasort ty = Bool | Int | Arrow of (ty, ty)

where we assume that Bool and Int represent two simple base types ˆbool and ˆint ,

respectively, and Arrow represents (the overloaded) constructor → for forming sim-

ple function types. For instance, we use the term Arrow(Int,Arrow(Int,Bool)) to

represent the simple type ˆint → (ˆint → ˆbool) in the object language, where ˆbool

and ˆint are two simple base types and (the overloaded) → is a simple type con-

structor. We use a form of higher-order abstract syntax (h.o.a.s) (Church, 1940;

Pfenning & Elliott, 1988; Pfenning, n.d.) to represent expressions in the object

language. In Figure 31, we declare a type constructor EXP, which takes a type

Journal of Functional Programming 57

datatype EXP (ty) =

EXPint (Int) of int

| EXPbool (Bool) of bool

| EXPadd (Int) of EXP (Int) * EXP (Int)

| EXPsub (Int) of EXP (Int) * EXP(Int)

| EXPmul(Int) of EXP (Int) * EXP (Int)

| EXPdiv(Int) of EXP (Int) * EXP (Int)

| EXPzero (Bool) of EXP (Int)

| {a: ty} EXPif (a) of EXP (Bool) * EXP (a) * EXP (a)

| {a1: ty, a2: ty} EXPlam (Arrow (a1, a2)) of (EXP (a1) -> EXP (a2))

| {a1: ty, a2: ty} EXPapp (a2) of (EXP (Arrow (a1, a2)), EXP (a1))

| {a1: ty, a2: ty} EXPlet (a2) of (EXP (a1), (EXP(a1) -> EXP(a2)))

| {a: ty} EXPfix (a) of (EXP (a) -> EXP (a))

Fig. 31. A datatype for higher-order abstract syntax

index term I of sort ty to form a type EXP(I) for the values that represent closed

expressions in the object language that can be assigned the type represented by I .

For example, the function λx : ˆint .x + x in the object language is represented as

EXPlam(lamx.EXPadd(x, x)), which can be given the type EXP(Arrow(Int, Int)).

The usual factorial function can be represented as follows (in the concrete syntax

of DML),

EXPfix (lam f =>

EXPlam (lam x =>

EXPif (EXPzero (x),

EXPint(1),

EXPmul (x, EXPapp (f, EXPsub (x, EXPint(1)))))))

which can also be given the type EXP(Arrow(Int, Int)). We often refer to such a

representation as a form of typeful representation since the type of an expression

in the object language is now reflected in the type of the representation of the

expression.

We now implement a function evaluate in Figure 32. The function is an evaluator

for the object language, taking (the representation of) an object expression and

returning (the representation of) the value of the object expression. Notice that

the function is assigned the type Πa : ty. EXP(a) → EXP(a), indicating that the

function is type-preserving at the object level. Also, we point out that (extended)

type-checking in DML guarantees that no pattern matching failure can occur in

this example.

Clearly, a natural question is whether we can also implement a type-preserving

evaluator for an object language based on the second-order polymorphic λ-calculus

or system F (Girard, 1972). In order to do so, we need to go beyond algebraic terms,

employing λ-terms to encode polymorphic types in the object language. First we

extend the definition of the sort ty as follows so that universally quantified types

can also be represented:

datasort ty = ... | All of (ty -> ty)

58 Hongwei Xi

fun evaluate (v as EXPint _) = v

| evaluate (v as EXPbool _) = v

| evaluate (EXPadd (e1, e2)) = let // no pattern matching failure

val EXPint (i1) = evaluate e1 and EXPint (i2) = evaluate e2

in EXPint (i1+i2) end

(* the cases for EXPsub, EXPmul, EXPdiv are omitted *)

| evaluate (EXPzero e) = let // no pattern matching failure

val EXPint (n) = evaluate e

in EXPbool (n=0) end

| evaluate (EXPif (e0, e1, e2)) = let // no pattern matching failure

val EXPbool (b) = evaluate e0

in if b then evaluate e1 else evaluate e2 end

| evaluate (EXPapp (e1, e2)) = let // no pattern matching failure

val EXPlam (f) = evaluate e1

in evaluate (f (evaluate e2)) end

(* the case for EXPlet is omitted *)

| evaluate (v as EXPlam _) = v

| evaluate (e as EXPfix f) = evaluate (f e)

withtype {a: ty} EXP (a) -> EXP (a)

Fig. 32. An implementation of a type-preserving evaluation function in DML

Given a term f of sort ty → ty, All(f) represents the type ∀α. τ if for each type

τ0, f(t) represents the type τ [α 7→ τ0] as long as t represents the type τ0. For

instance, All(λa.Arrow(a,Arrow(a, Int))) represents the type ∀α.α → α → int; the

term All(λa.(All(λb.Arrow(a,Arrow(b, a))))) represents the type ∀α.∀β.α → β →

α. With this strategy, we have no difficulty in implementing a type-preserving

evaluator for an object language based on the second-order polymorphic language

calculus. We have actually already done this in the programming language ATS (Xi,

2005). Note that the type indexes involved in this example are drawn from Lλ.

It is also possible to implement a type-preserving evaluator through the use of

first-order abstract syntax (f.o.a.s), and further details on this subject can be found

in (Chen & Xi, 2003; Chen et al., 2005), where some interesting typeful program

transformations (e.g., a call-by-value continuation-passing style (CPS) transforma-

tion (Meyer & Wand, 1985; Griffin, 1990)) are studied.

In (Xi et al., 2003), a typeful implementation of simply typed λ-calculus based on

guarded recursive (g.r.) datatypes is presented. There, a g.r. datatype constructor

HOAS (of the kind type → type) is declared such that for each simply typed

λ-expression of some simple type T , its representation can be assigned the type

Journal of Functional Programming 59

(T)HOAS, where T is the representation of T . More precisely, T can be defined as

follows:

b = b T1 → T2 = T1 → T2

where each simple base type b is represented by a type b (in the implementation

language). For instance, the type for the representation of the simply typed ex-

pression λx : ˆint .x is (ˆint → ˆint)HOAS, where ˆint is a simple base type. With

this representation for simply typed λ-calculus, an evaluation function of the type

∀α.(α)HOAS → α can be implemented. A particular advantage of this implemen-

tation is that we can use native tagless values in the implementation language to

directly represent values of object expressions. This can be of great use in a setting

(e.g., meta-programming) where the object language needs to interact with the

implementation language (Chen & Xi, 2005b). Given that DML is a conservative

extension of ML, this is clearly something that cannot be achieved in DML. The

very reason for this is that DML does not allow type equalities like τ1
.
= τ2 (meaning

both τ1 ≤ τ2 and τ2 ≤ τ1) to appear in index contexts φ. In ATS, this restriction

is lifted, resulting in a much more expressive type system but also a (semantically)

much more complicated constraint relation (on types and type indexes) (Xi, 2004).

8 Related work

Our work falls in between full program verification, either in type theory or systems

such as PVS (Owre et al., 1996), and traditional type systems for programming

languages. When compared to verification, our system is less expressive but more

automatic when constraint domains with practical constraint satisfaction problems

are chosen. Our work can be viewed as providing a systematic and uniform language

interface for a verifier intended to be used as a type system during the program

development cycle. Since it extends ML conservatively, it can be used sparingly as

existing ML programs will work as before (if there is no keyword conflict).

Most closely related to our work is the system of indexed types developed indepen-

dently by Zenger in his Ph.D. Thesis (Zenger, 1998) (an earlier version of which is

described in (Zenger, 1997)). He worked in the context of lazy functional program-

ming. His language is simple and clean and his applications (which significantly

overlap with ours) are compelling. In general, his approach seems to require more

changes to a given Haskell program to make it amenable to checking indexed types

than is the case for our system and ML. This is particularly apparent in the case of

existentially quantified dependent types, which are tied to data constructors. This

has the advantage of a simpler algorithm for elaboration and type-checking than

ours, but the program (and not just the type) has to be (much) more explicit. For

instance, one may introduce the following datatype to represent the existentially

quantified type Σa:int. int(a):

datatype IntType = {a: int} Int of int (a)

where the value constructor Int is assigned the c-type Πa : int. int(a) ⇒ IntType.

If one also wants a type for natural numbers, then another datatype needs to be

introduced as follows:

60 Hongwei Xi

datatype NatType = {a: int | a >= 0} Nat of int (a)

where Nat is assigned the c-type ∀a : int.a ≥ 0 ⊃ (int(a) ⇒ NatType). If types for

positive integers, negative integers, etc. are wanted, then corresponding datatypes

have to be introduced accordingly. Also, one may have to define functions between

these datatypes. For example, a function from NatType to IntType is needed to

turn natural numbers into integers. At this point, we have strong doubts about the

viability of such an approach to handling existentially quantified types, especially,

in cases where the involved type index terms are drawn from a (rich) type index

language such as Lint . Also, since the language in (Zenger, 1998) is pure, the issue

of supporting indexed types in the presence of effects is not studied there.

When compared to traditional type systems for programming languages, perhaps

the most closely related work is refinement types (Freeman & Pfenning, 1991), which

also aims at expressing and checking more properties of programs that are already

well-typed in ML, rather than admitting more programs as type-correct, which is

the goal of most other research studies on extending type systems. However, the

mechanism of refinement types is quite different and incomparable in expressive

power: While refinement types incorporate intersection and can thus ascribe multi-

ple types to terms in a uniform way, dependent types can express properties such as

“these two argument lists have the same length” which are not recognizable by tree

automata (the basis for type refinements). In (Dunfield, 2002), dependent types as

formulated in (Xi, 1998; Xi & Pfenning, 1999) are combined with refinement types

via regular tree grammar (Freeman & Pfenning, 1991), and this combination shows

that these two forms of types can coexist naturally. Subsequently, a pure type as-

signment system that includes intersection and dependent types, as well as union

and existential types, is constructed in (Dunfield & Pfenning, 2003). This is a rather

different approach when compared with the one presented in the paper as it does

not employ elaboration as a central part of the development. In particular, type-

checking is undecidable, and the issue of undecidable type-checking is addressed

in (Dunfield & Pfenning, 2004), where a new reconstruction of the rules for in-

definite types (existential, union, empty types) using evaluation contexts is given.

This new reconstruction avoids elaboration and is decidable in theory. However, its

effectiveness in practice is yet to be substantiated. In particular, the effectiveness

of handling existential types through the use contextual type annotations in this

reconstruction requires further investigation.

Parent (Parent, 1995) proposed to reverse the process of extracting programs

from constructive proofs in Coq (Dowek et al., 1993), synthesizing proof skeletons

from annotated programs. Such proof skeletons contain “holes” corresponding to

logical propositions not unlike our constraint formulas. In order to limit the ver-

bosity of the required annotations, she also developed heuristics to reconstruct

proofs using higher-order unification. Our aims and methods are similar, but much

less general in the kind of specifications we can express. On the other hand, this al-

lows a richer source language with fewer annotations and, in practice, avoids direct

interaction with a theorem prover.

Extended ML (Sannella & Tarlecki, 1989) is proposed as a framework for the

Journal of Functional Programming 61

formal development of programs in a pure fragment of Standard ML. The module

system of Extended ML can not only declare the type of a function but also the

axioms it satisfies. This design requires theorem proving during extended type-

checking. In contrast, we specify and check less information about functions, thus

avoiding general theorem proving.

Cayenne (Augustsson, 1998) is a Haskell-like language in which fully dependent

types are available, that is, language expressions can be used as type index objects.

The price for this is undecidable type-checking in Cayenne. For instance, the printf

in C, which is not directly typable in ML,4 can be made typable in Cayenne, and

modules can be replaced with records, but the notion of datatype refinement does

not exist. As a pure language, Cayenne also does not address issue of supporting

dependent types in the presence of effects. This clearly separates our language

design from that of Cayenne.

The notion of sized types is introduced in (Hughes et al., 1996) for proving the

correctness of reactive systems. Though there exist some similarities between sized

types and datatype refinement in DML(L) for some type index language L over

the domain of natural numbers, the differences are also substantial. We feel that

the language presented in (Hughes et al., 1996) seems too restrictive for general

programming as its type system can only handle (a minor variation) of primitive

recursion. On the other hand, the use of sized types in the correctness proofs of

reactive systems cannot be achieved in DML(L) at this moment.

Jay and Sekanina (Jay & Sekanina, 1996) have introduced a technique for array

bounds checking elimination based on the notion of shape types. Shape checking

is a kind of partial evaluation and has very different characteristics and source

language when compared to DML(L), where constraints are linear inequalities on

integers. We feel that their design is more restrictive and seems more promising for

languages based on iteration schema rather than general recursion.

A crucial feature in DML(L) that does not exist in either of the above two systems

is existential dependent types, or more precisely, existentially quantified dependent

types, which is indispensable in our experiment.

The work on local type inference by Pierce and Turner (Pierce & Turner, 1998),

which includes some empirical studies, is also based on a similar bi-directional strat-

egy for elaboration, although they are mostly concerned with the interaction be-

tween polymorphism and subtyping, while we are concerned with dependent types.

This work is further extended by Odersky, Zenger and Zenger in their study on

colored local type inference (Odersky et al., 2001). However, we emphasize that the

use of constraints for index domains is quite different from the use of constraints

to model subtyping constraints (see (Sulzmann et al., 1997), for example).

Along a different but closely related line of research, a new notion of types called

guarded recursive (g.r.) datatypes are introduced (Xi et al., 2003). Also, phantom

types are studied in (Cheney & Hinze, 2003), which are largely identical to g.r.

4 In ML, it is possible to implement a function similar to printf, which, instead of applying to a
format string, applies to a function argument corresponding to a parsed format string. Please
see (Danvy, 1998) for further details.

62 Hongwei Xi

datatypes. Recently, this notion of types are given the name generalized algebraic

datatypes (GADTs). On the syntactic level, GADTs are of great similarity to univer-

sal dependent datatypes in λΠ,Σ
pat , essentially using types as type indexes. However,

unlike DML-style dependent types, ML extended with GADTs is no longer a con-

servative extension over ML as strictly more programs can be typed in the presence

of GADTs. On the semantic level, g.r. datatypes are a great deal more complex

than dependent types. At this moment, we are not aware of any model-theoretical

explanation of GADTs.

Many examples in DML(L) can also be handled in terms of GADTS. As an exam-

ple, suppose we want to use types to represent natural numbers; we can introduce a

type Z and a type constructor S of the kind type → type; for each natural number n,

we use Sn(Z) to represent n, where Sn means n applications of S. There are some

serious drawbacks with this approach. For instance, it cannot rule out forming a

type like S(Z∗Z), which does not represent any natural number. More importantly,

the programmer may need to supply proofs in a program in order for the program

to pass type-checking (Sheard, 2004). There are also various studies on type infer-

ence addressing GADTs (Pottier & Régis-Gianas, 2006; Jones et al., 2005), which

are of rather different focus and style from the elaboration in Section 5.

Noting the close resemblance between DML-style dependent types and the guarded

recursive datatypes, we immediately initiated an effort to unify these two forms of

types in a single framework, leading to the design and formalization of Applied Type

System (ATS) (Xi, 2004). Compared to λΠ,Σ
pat , ATS is certainly much more general

and expressive, but it is also much more complicated, especially, semantically. For

instance, unlike in λΠ,Σ
pat , the definition of type equality in ATS involves impredica-

tivity. In DML, we impose certain restrictions on the syntactic form of constraints

so that some effective means can be found for solving constraints automatically.

Evidently, this is a rather ad hoc design in its nature. In ATS (Xi, 2005), a lan-

guage with a type system rooted in ATS , we adopt a different design. Instead of

imposing syntactical restrictions on constraints, we provide a means for the pro-

grammer to construct proofs to attest to the validity of constraints. In particular,

we accommodate a programming paradigm in ATS that enables the programmer

to combine programming with theorem proving (Chen & Xi, 2005a).

9 Conclusion

We have presented an approach that can effectively support the use of dependent

types in practical programming, allowing for specification and inference of signifi-

cantly more precise type information and thus facilitating program error detection

and compiler optimization. By separating type index terms from programs, we

make it both natural and straightforward to accommodate dependent types in the

presence of realistic programming features such as (general) recursion and effects

(e.g., exceptions and references). In addition, we have formally established the type

soundness of λΠ,Σ
pat , the core dependent type system in our development, and have

also justified the correctness of a set of elaboration rules, which play a crucial role

Journal of Functional Programming 63

in reducing (not eliminating) the amount of explicit type annotation needed in

practice.

On another front, we have finished a prototype implementation of Dependent ML

(DML), which essentially extends ML with a restricted form of dependent types

such that the type index terms are required to be integer expressions drawn from

the type index language Lint presented in Section 3. A variety of programming

examples have been constructed in support of the practicality of DML, some of

which are shown in Section 7.

Lastly, we point out that λΠ,Σ
pat can be classified as an applied type system in the

framework ATS (Xi, 2004). At this moment, DML has already been fully incorpo-

rated into ATS (Xi, 2005).

Acknowledgments The current paper is partly based on the author’s doctoral

dissertation (Xi, 1998) supervised by Frank Pfenning, and an extended abstract

of the dissertation is already in publication (Xi & Pfenning, 1999). The author

sincerely thanks Frank Pfenning for his suggestion of the research topic and his

guidance in the research conducted subsequently. In addition, the author acknowl-

edges many discussions with Chiyan Chen regarding the subject of elaboration pre-

sented in Section 5 and thanks him for his efforts on proofreading a draft of paper.

Also, the author thanks the anonymous referees for their voluminous constructive

comments, which have undoubtedly raised the quality of the paper significantly.

References

Andrews, Peter B. (1972). General Models, Descriptions and Choice in Type Theory.
Journal of symbolic logic, 37, 385–394.

Andrews, Peter B. (1986). An Introduction to Mathematical Logic: To Truth through Proof.
Orlando, Florida: Academic Press, Inc.

Augustsson, Lennart. (1998). Cayenne – a language with dependent types. Pages 239–250
of: Proceedings of the 3rd acm sigplan international conference on functional program-
ming.

Barendregt, Hendrik Pieter. (1984). The lambda calculus, its syntax and semantics. Re-
vised edition edn. Studies in Logic and the Foundations of Mathematics, vol. 103.
Amsterdam: North-Holland.

Barendregt, Hendrik Pieter. (1992). Lambda Calculi with Types. Pages 117–441 of:
Abramsky, S., Gabbay, Dov M., & Maibaum, T.S.E. (eds), Handbook of logic in computer
science, vol. II. Oxford: Clarendon Press.

Chen, Chiyan, & Xi, Hongwei. 2003 (June). Implementing Typeful Program Transforma-
tions. Pages 20–28 of: Proceedings of acm sigplan workshop on partial evaluation and
semantics based program manipulation.

Chen, Chiyan, & Xi, Hongwei. 2005a (September). Combining Programming with Theo-
rem Proving. Pages 66–77 of: Proceedings of the tenth acm sigplan international con-
ference on functional programming.

Chen, Chiyan, & Xi, Hongwei. (2005b). Meta-Programming through Typeful Code Rep-
resentation. Journal of functional programming, 15(6), 1–39.

Chen, Chiyan, Shi, Rui, & Xi, Hongwei. (2005). Implementing Typeful Program Trans-
formations. Fundamenta informaticae, 69(1-2), 103–121.

64 Hongwei Xi

Cheney, James, & Hinze, Ralf. (2003). Phantom Types. Technical Report CUCIS-TR2003-
1901. Cornell University. Available at
http://techreports.library.cornell.edu:8081/

Dienst/UI/1.0/Display/cul.cis/TR2003-1901.

Church, Alonzo. (1940). A formulation of the simple type theory of types. Journal of
Symbolic Logic, 5, 56–68.

Constable, Robert L., et al. . (1986). Implementing mathematics with the NuPrl proof
development system. Englewood Cliffs, New Jersey: Prentice-Hall.

Dantzig, G.B., & Eaves, B.C. (1973). Fourier-Motzkin elimination and its dual. Journal
of combinatorial theory (a), 14, 288–297.

Danvy, Olivier. (1998). Functional unparsing. Journal of functional programming, 8(6),
621–625.

Dowek, Gilles, Felty, Amy, Herbelin, Hugo, Huet, Gérard, Murthy, Chet, Parent, Cather-
ine, Paulin-Mohring, Christine, & Werner, Benjamin. (1993). The Coq proof assistant
user’s guide. Rapport Technique 154. INRIA, Rocquencourt, France. Version 5.8.

Dunfield, Joshua. 2002 (Sept.). Combining two forms of type refinement. Tech. rept.
CMU-CS-02-182. Carnegie Mellon University.

Dunfield, Joshua, & Pfenning, Frank. (2003). Type assignment for intersections and unions
in call-by-value languages. Pages 250–266 of: Gordon, A.D. (ed), Proceedings of the 6th
international conference on foundations of software science and computation structures
(fossacs’03). Warsaw, Poland: Springer-Verlag LNCS 2620.

Dunfield, Joshua, & Pfenning, Frank. (2004). Tridirectional typechecking. Pages 281–
292 of: X.Leroy (ed), Conference record of the 31st annual symposium on principles of
programming languages (popl’04). Venice, Italy: ACM Press. Extended version available
as Technical Report CMU-CS-04-117, March 2004.

Freeman, Tim, & Pfenning, Frank. (1991). Refinement types for ML. Pages 268–277 of:
Acm sigplan conference on programming language design and implementation.

Girard, Jean-Yves. 1972 (June). Interprétation fonctionnelle et Élimination des coupures
dans l’arithmétique d’ordre supérieur. Thèse de doctorat d’état, Université de Paris VII,
Paris, France.

Griffin, Timothy. 1990 (January). A Formulae-as-Types Notion of Control. Pages 47–58 of:
Conference record of popl ’90: 17th acm sigplan symposium on principles of programming
languages.

Harper, Robert. (1994). A simplified account of polymorphic references. Information
processing letters, 51, 201–206.

Hayashi, Susumu, & Nakano, Hiroshi. (1988). PX: A computational logic. The MIT Press.

Henkin, Leon. (1950). Completeness in the theory of types. Journal of symbolic logic, 15,
81–91.

Hinze, Ralf. (2001). Manufacturing Datatypes. Journal of Functional Programming, 11(5),
493–524.

Hughes, John, Pareto, Lars, & Sabry, Amr. (1996). Proving the Correctness of Reactive
Systems Using Sized Types. Pages 410–423 of: Proceeding of 23rd annual acm sigplan
symposium on principles of programming languages (popl ’96).

INRIA. Objective Caml. http://caml.inria.fr.

Jay, C.B., & Sekanina, M. (1996). Shape checking of array programs. Tech. rept. 96.09.
University of Technology, Sydney, Australia.

Jones, Simon Peyton, Vytiniotis, Dimitrios, Weirich, Stephanie, & Washburn, Geoffrey.
2005 (November). Simple unification-based type inference for gadts.

Journal of Functional Programming 65

Kahrs, Stefan. (2001). Red-black trees with types. Journal of functional programming,
11(4), 425–432.

Kreitz, Christoph, Hayden, Mark, & Hickey, Jason. (1998). A proof environment for the
development of group communication systems. Pages 317–332 of: Kirchner, Hlne, &
Kirchner, Claude (eds), 15th international conference on automated deduction. LNAI
1421. Lindau, Germany: Springer-Verlag.

Martin-Löf, Per. (1984). Intuitionistic type theory. Naples, Italy: Bibliopolis.

Martin-Löf, Per. (1985). Constructive mathematics and computer programming. Hoare,
C. R. A. (ed), Mathematical logic and programming languages. Prentice-Hall.

McBride, Conor. Epigram. Available at:
http://www.dur.ac.uk/CARG/epigram.

Meyer, Albert, & Wand, Mitchell. (1985). Continuation Semantics in Typed Lambda
Calculi (summary). Pages 219–224 of: Parikh, Rohit (ed), Logics of programs. Springer-
Verlag LNCS 224.

Michaylov, S. 1992 (August). Design and implementation of practical constraint logic
programming systems. Ph.D. thesis, Carnegie Mellon University. Available as Technical
Report CMU-CS-92-168.

Milner, Robin, Tofte, Mads, Harper, Robert W., & MacQueen, D. (1997). The definition
of standard ml (revised). Cambridge, Massachusetts: MIT Press.

Mitchell, John C., & Plotkin, Gordon D. (1988). Abstract types have existential type.
Acm transactions on programming languages and systems, 10(3), 470–502.

Mitchell, John C., & Scott, Philip J. (1989). Typed lambda models and cartesian closed
categories (preliminary version). Pages 301–316 of: Gray, John W., & Scedrov, Andre
(eds), Categories in computer science and logic. Contemporary Mathematics, vol. 92.
Boulder, Colorado: American Mathematical Society.

Odersky, Martin, Zenger, Christoph, & Zenger, Matthias. (2001). Colored Local Type
Inference. Pages 41–53 of: Proceedings of the 28th annual acm sigplan-sigact symposium
on principles of programming languages.

Okasaki, Chris. (1998). Purely Functional Data Structures. Cambridge University Press.

Owre, S., Rajan, S., Rushby, J.M., Shankar, N., & Srivas, M.K. (1996). PVS: Combin-
ing specification, proof checking, and model checking. Pages 411–414 of: Alur, Ra-
jeev, & Henzinger, Thomas A. (eds), Proceedings of the 8th international conference on
computer-aided verification (cav ’96). New Brunswick, NJ: Springer-Verlag LNCS 1102.

Parent, Catherine. (1995). Synthesizing proofs from programs in the calculus of induc-
tive constructions. Pages 351–379 of: Proceedings of the international conference on
mathematics for programs constructions. Springer-Verlag LNCS 947.

Peyton Jones, Simon, et al. . 1999 (Feb.). Haskell 98 – A non-strict, purely functional
language. Available at
http://www.haskell.org/onlinereport/.

Pfenning, Frank. Computation and Deduction. Cambridge University Press. (to appear).

Pfenning, Frank, & Elliott, Conal. 1988 (June). Higher-order abstract syntax. Pages 199–
208 of: Proceedings of the ACM SIGPLAN ’88 Symposium on Language Design and
Implementation.

Pierce, B., & Turner, D. (1998). Local type inference. Pages 252–265 of: Proceedings of
25th annual acm sigplan symposium on principles of programming languages (popl ’98).

Pottier, Franois, & Régis-Gianas, Yann. 2006 (Jan.). Stratified type inference for general-
ized algebraic data types. Pages 232–244 of: Proceedings of the 33rd ACM symposium
on principles of programming languages (popl’06).

Pugh, W., & Wonnacott, D. (1992). Eliminating false data dependences using the Omega

66 Hongwei Xi

test. Pages 140–151 of: Acm sigplan ’92 conference on programming language design
and implementation. ACM Press.

Pugh, W., & Wonnacott, D. 1994 (November). Experience with constraint-based array
dependence analysis. Tech. rept. CS-TR-3371. University of Maryland.

Sannella, D., & Tarlecki, A. 1989 (February). Toward formal development of ML pro-
grams: Foundations and methodology. Tech. rept. ECS-LFCS-89-71. Laboratory for
Foundations of Computer Science, Department of Computer Science, University of Ed-
inburgh.

Sheard, Tim. (2004). Languages of the future. Proceedings of the onward! track of objected-
oriented programming systems, languages, applications (oopsla). Vancouver, BC: ACM
Press.

Shostak, Robert E. (1977). On the SUP-INF method for proving Presburger formulas.
Journal of the acm, 24(4), 529–543.

Sulzmann, M., Odersky, M., & Wehr, M. (1997). Type inference with constrained types.
Proceedings of 4th international workshop on foundations of object-oriented languages.

Takahashi, M. (1995). Parallel Reduction. Information and computation, 118, 120–127.

Westbrook, Edwin, Stump, Aaron, & Wehrman, Ian. 2005 (September). A Language-
Based Approach to Functionally Correct Imperative Programming. Pages 268–279 of:
Proceedings of the tenth acm sigplan international conference on functional program-
ming.

Wright, Andrew. (1995). Simple imperative polymorphism. Journal of Lisp and Symbolic
Computation, 8(4), 343–355.

Xi, Hongwei. (1998). Dependent types in practical programming. Ph.D. thesis, Carnegie
Mellon University. pp. viii+189. Available at
http://www.cs.cmu.edu/~hwxi/DML/thesis.ps.

Xi, Hongwei. 1999 (September). Dependently Typed Data Structures. Pages 17–33 of:
Proceedings of workshop on algorithmic aspects of advanced programming languages.

Xi, Hongwei. (2003). Dependently Typed Pattern Matching. Journal of universal computer
science, 9(8), 851–872.

Xi, Hongwei. (2004). Applied Type System (extended abstract). Pages 394–408 of: post-
workshop proceedings of types 2003. Springer-Verlag LNCS 3085.

Xi, Hongwei. (2005). Applied Type System. Available at:
http://www.cs.bu.edu/~hwxi/ATS.

Xi, Hongwei, & Pfenning, Frank. 1998 (June). Eliminating array bound checking through
dependent types. Pages 249–257 of: Proceedings of acm sigplan conference on program-
ming language design and implementation.

Xi, Hongwei, & Pfenning, Frank. (1999). Dependent Types in Practical Programming.
Pages 214–227 of: Proceedings of 26th acm sigplan symposium on principles of pro-
gramming languages. San Antonio, Texas: ACM press.

Xi, Hongwei, Chen, Chiyan, & Chen, Gang. (2003). Guarded Recursive Datatype Con-
structors. Pages 224–235 of: Proceedings of the 30th ACM SIGPLAN Symposium on
Principles of Programming Languages. New Orleans, LA: ACM press.

Zenger, Christoph. (1997). Indexed types. Theoretical computer science, 187, 147–165.

Zenger, Christoph. (1998). Indizierte typen. Ph.D. thesis, Fakultät für Informatik, Uni-
versität Karlsruhe.

Journal of Functional Programming 67

xf ↪→→g xf

e ↪→→g e′

c(e) ↪→→g c(e′) 〈〉 ↪→→g 〈〉

e1 ↪→→g e′1 e2 ↪→→g e′2

〈e1, e2〉 ↪→→g 〈e′1, e
′

2〉

e ↪→→g e′

fst(e) ↪→→g fst(e′)

e ↪→→g e′

snd(e) ↪→→g snd(e′)

e ↪→→g e′ ms ↪→→g ms′

case e of ms ↪→→g case e′ of ms′

e ↪→→g e′

lamx. e ↪→→g lamx. e′
e1 ↪→→g e′1 e2 ↪→→g e′2

e1(e2) ↪→→g e′1(e
′

2)

e ↪→→g e′

fix f. e ↪→→g fix f. e′
e1 ↪→→g e′1 e2 ↪→→g e′2

let x = e1 in e2 end ↪→→g let x = e′1 in e′2 end

v1 ↪→→g v′

1

fst(〈v1, v2〉) ↪→→g v′

1

v2 ↪→→g v′

2

snd(〈v1, v2〉) ↪→→g v′

2

e ↪→→g e′ v ↪→→g v′

(lamx. e)(v) ↪→→g e′[x 7→ v′]

e ↪→→g e′

fix f. e ↪→→g e′[f 7→ fix f. e′]

e ↪→→g e′ v ↪→→g v′

let x = v in e end ↪→→g e′[x 7→ v′]

match(v, pk) ⇒ θ ek ↪→→g e′k θ ↪→→g θ′

case v of (p1 ⇒ e1 | · · · | pn ⇒ en) ↪→→g e′k[θ′]

x 6∈ FV(E) e ↪→→g e′ E ↪→→g E′

let x = e in E[x] end ↪→→g E′[e′]

v ↪→→g v′

〈fst(v), snd(v)〉 ↪→→g v′

v ↪→→g v′

lamx. v(x) ↪→→g v′

[] ↪→→g []

E ↪→→g E′

c(E) ↪→→g c(E′)

E ↪→→g E′ e ↪→→g e′

〈E, e〉 ↪→→g 〈E′, e′〉

v ↪→→g v′ E ↪→→g E′

〈v, E〉 ↪→→g 〈v′, E′〉

E ↪→→g E′

fst(E) ↪→→g fst(E′)

E ↪→→g E′

snd(E) ↪→→g snd(E′)

E ↪→→g E′ ms ↪→→g ms′

case E of ms ↪→→g case E′ of ms′

E ↪→→g E′ e ↪→→g e′

E(e) ↪→→g E′(e′)

v ↪→→g v′ E ↪→→g E′

v(E) ↪→→g v′(E′)

E ↪→→g E′ e ↪→→g e′

let x = E in e end ↪→→g let x = E′ in e′ end

e1 ↪→→g e′1 · · · en ↪→→g e′n

(p1 ⇒ e1 | · · · | pn ⇒ en) ↪→→g (p1 ⇒ e′1 | · · · | pn ⇒ e′n)

θ(xf) ↪→→g θ′(xf) for each xf in dom(θ) = dom(θ′)

θ ↪→→g θ′

Fig. A1. The rules for the parallel general reduction ↪→→g

A Proof of Lemma 2.14

The key step in the proof of Lemma 2.14 is to show that if e ↪→∗
g e′ and e ↪→ev e1

hold then there exists e′1 such that both e1 ↪→∗
g e′1 and e′ ↪→∗

ev e′1 hold. We are to

employ a notion of parallel reduction (Takahashi, 1995) to complete this key step.

Definition A.1 (Parallel general reduction)

68 Hongwei Xi

Given two expressions e and e′ in λpat, we say that e g-reduces to e′ in parallel if

e ↪→→g e′ can be derived according to the rules in Figure A 1.

Note that the symbol ↪→→g is overloaded to also mean parallel reduction on evalu-

ation contexts, matching clause sequences and substitutions.

Intuitively, e ↪→→g e′ means that e′ can be obtained from reducing (many) g-

redexes in e simultaneously. Clearly, if e g-reduces to e′, that is, e ↪→g e′ holds,

then e g-reduces to e′ in parallel, that is e ↪→→g e′ holds.

Proposition A.2

Assume that e and e′ are two expressions in λpat such that e ↪→→g e′ holds.

1. If e is an observable value, then e = e′.

2. If e is in V-form, then so is e′.

3. If e is in M-form, then so is e′.

4. If e is in U-form, then so is e′.

Proof

Straightforward.

Note that if e is in E-form and e ↪→→g e′ holds, then e′ is not necessarily in E-form.

For instance, assume e = 〈fst(lamx. x), snd(lamx. x)〉(〈〉). Then e is in E-form.

Note that e ↪→→g e′ holds for e′ = (lamx. x)(〈〉), which is not in E-form (e′ is actually

in R-form).

The essence of parallel general reduction is captured in the following proposition.

Proposition A.3

1. Assume E ↪→→g E′ and e ↪→→g e′ for some evaluation contexts E, E ′ and ex-

pressions e, e′ in λpat. Then we have E[e] ↪→→g E′[e′].

2. Assume e ↪→→g e′ and θ ↪→→g θ′ for some expressions e, e′ and substitutions θ, θ′

in λpat. Then we have e[θ] ↪→→g e′[θ′].

Proof

(Sketch) By structural induction.

In the proof of Proposition A.3, it needs to be verified that for each evaluation

context E and θ, E[θ], the evaluation context obtained from applying θ to E, is

also an evaluation context. This follows from the fact that θ maps each lam-variable

x (treated as a value) in its domain to a value.

Lemma A.4

Assume that match(v, p) ⇒ θ is derivable in λpat, where v, p, θ are a value, a

pattern and a substitution, respectively. If v ↪→→g v′ holds for some value v′, then

we can derive match(v′, p) ⇒ θ′ for some θ′ such that θ ↪→→g θ′ holds.

Proof

(Sketch) By structural induction on the derivation of match(v, p) ⇒ θ.

The following lemma is the key step to proving Lemma 2.14. Given two expressions

e, e′, we write e ↪→0/1
ev e′ to mean that e = e′ or e ↪→ev e′, that is, e ev-reduces to e′

in either 0 or 1 step.

Journal of Functional Programming 69

Lemma A.5

Assume that e1 and e′1 are two expressions in λpat such that e1 ↪→→g e′1 holds. If we

have e1 ↪→ev e2 for some e2, then there exists e′2 such that both e′1 ↪→0/1
ev e′2 and

e2 ↪→→g e′2 hold.

Proof

(Sketch) The proof proceeds by structural induction on the derivation D of e1 ↪→→g e′1,

and we present a few interesting cases as follows.

• D is of the following form:

e10 ↪→→g e′10 ms ↪→→g ms′

case e10 of ms ↪→→g case e′10 of ms′

where e1 = case e10 of ms and e′1 = case e′10 of ms′. We have two subcases.

— We have e10 ↪→ev e20 for some expression e20 and e1 ↪→ev e2, where e2 =

case e20 of ms. By induction hypothesis on the derivation of e10 ↪→→g e′10,

we can find an expression e′20 such that both e′10 ↪→0/1
ev e′20 and e20 ↪→→g e′20

hold. Let e′2 be case e′20 of ms′, and we are done.

— We have e1 ↪→ev e2 = e1k[θ], where e10 = v for some value v, and ms =

(p1 ⇒ e11 | · · · | pn ⇒ e1n) for some patterns p1, . . . , pn and expressions

e11, . . . , e1n, and match(v, pk) ⇒ θ is derivable. By Proposition A.2 (2),

we know that e′10 is in V-form (as e10 is V-form). Let v′ be e′10. By

Lemma A.4, we have match(v′, pk) ⇒ θ′ for some substitution θ′ such that

θ ↪→→g θ′ holds. Note that ms′ is of the form (p1 ⇒ e′11 | · · · | pn ⇒ e′1n),

where we have e11 ↪→→g e′11, . . . , e1n ↪→→g e′1n. Let e′2 be e′1k[θ′]. Clearly, we

have e′1 ↪→ev e′2. By Proposition A.3 (2), we also have e2 ↪→→g e′2.

• D is of the following form

x 6∈ FV(E) e10 ↪→→g e′10 E ↪→→g E′

let x = e10 in E[x] end ↪→→g E′[e′10]

where e1 = let x = e10 in E[x] end and e′1 = E′[e′10]. We have two subcases.

— We have e10 ↪→ev e20 and e1 ↪→ev e2 = let x = e20 in E[x] end. By

induction hypothesis on the derivation of e10 ↪→→g e′10, we can find an ex-

pression e′20 such that both e′10 ↪→0/1
ev e′20 and e20 ↪→→g e′20 hold. Let e′2 be

E′[e′20], and we are done.

— We have e1 ↪→ev e2 = E[v], where e10 = v for some value v. By Propo-

sition A.2 (2), e′10 is a value. Let v′ be e′10 and e′2 = E′[v′]. Then we

e′1 ↪→ev e′2. By Proposition A.3 (1), we also have e2 ↪→→g e′2.

All other cases can be treated similarly.

Lemma A.6

Assume that e ↪→→g e′ holds for expressions e, e′ in λpat. If e ↪→∗
ev v∗ holds for some

v∗ in EMUV, the union of EMU and the set of observable values, then e′ ↪→∗
ev v∗

also holds.

Proof

70 Hongwei Xi

The proof proceeds by induction on n, the number of steps in e ↪→∗
ev v∗.

• n = 0. This case immediately follows from Proposition A.2.

• n > 0. Then we have e ↪→ev e1 ↪→∗
ev v∗ for some expression e1. By Lemma A.5,

we have an expression e′1 such that both e′ ↪→0/1
ev e′1 and e1 ↪→→g e′1 hold. By

induction hypothesis, e′1 ↪→∗
ev v∗ holds, which implies e′ ↪→∗

ev v∗.

We are now ready to present the proof of Lemma 2.14.

Proof

(of Lemma 2.14) In order to prove e′ ≤dyn e, we need to show that for any context

G, either G[e′] ↪→∗
ev Error, or G[e′] ↪→∗

ev v∗ if and only if G[e] ↪→∗
ev v∗, where v∗

ranges over EMUV, that is, the union of EMU and the set of observable values.

Let G be a context, and we have three possibilities.

• G[e] ↪→∗
ev Error holds.

• G[e] ↪→∗
ev v∗ for some v∗ in EMUV. By Lemma A.6, we have G[e′] ↪→∗

ev v∗

since G[e] ↪→→g G[e′] holds.

• There exists an infinite evaluation reduction sequence from G[e] :

G[e] = e0 ↪→ev e1 ↪→ev e2 ↪→ev . . .

By Lemma A.5, we have the following evaluation reduction sequence:

G[e′] = e′0 ↪→0/1
ev e′1 ↪→0/1

ev e′2 ↪→0/1
ev . . .

where G[e′] = e′0 and ei ↪→→g e′i for i = 0, 1, 2, We now need to show that

there exist infinitely many nonempty steps in the above evaluation sequence.

This can be done by introducing a notion of residuals of g-redexes under ev-

reduction, analogous to the notion of residuals of β-redex under β-reduction

developed in the study of pure λ-calculus (Barendregt, 1984). The situation

here is nearly identical to the one encountered in the proof of Conservation

Theorem (Theorem 11.3.4 (Barendregt, 1984)), and we thus omit further rou-

tine but rather lengthy details.

After inspecting these three possibilities, we clearly see that this lemma holds.

B Proof of Theorem 4.11

Proof

Let D be the typing derivation of ∅; ∅; ∅ ` e1 : τ . The proof proceeds by induction

on the height of D. Assume that the last applied rule in D is (ty-sub). Then D is

of the following form:

D1 :: ∅; ∅; ∅ ` e1 : τ1 ∅; ∅ ` τ1 ≤s
tp τ

∅; ∅; ∅ ` e1 : τ
(ty-sub)

By induction hypothesis on D1, ∅; ∅; ∅ ` e2 : τ1 is derivable. Hence, ∅; ∅; ∅ ` e2 : τ

is also derivable.

Journal of Functional Programming 71

In the rest of the proof, we assume that the last applied rule in D is not (ty-sub).

Let e1 = E[e0] and e2 = E[e′0] for some evaluation context E, where e0 is a redex

and e′0 is the reduct of e′0. We proceed by analyzing the structure of E.

As an example, let us assume that E is let x = E0 in e end for some evaluation

context E0 and expression e. Then e1 is let x = E0[e0] in e end and the typing

derivation D is of the following form:

D1 :: ∅; ∅; ∅ ` E0[e0] : τ1 ∅; ∅; ∅, x : τ1 ` e : τ2

∅; ∅; ∅ ` let x = E0[e0] in e end : τ2
(ty-let)

where τ2 = τ . By induction hypothesis on D1, we can derive ∅; ∅; ∅ ` E0[e
′
0] : τ1.

Hence, we can also derive ∅; ∅; ∅ ` let x = E0[e
′
0] in e end : τ2. Note that e2 is

let x = E0[e
′
0] in e end, and we are done.

We skip all other cases except the most interesting one where E = [], that is,

e1 is a redex and e2 is the reduct of e1. In this case, we proceed by inspecting the

structure of D.

• e1 = fst(〈v1, v2〉) and e2 = v1. Then D is of the following form:

D1 :: ∅; ∅; ∅ ` 〈v1, v2〉 : τ1 ∗ τ2

∅; ∅; ∅ ` fst(〈v1, v2〉) : τ1
(ty-fst)

where τ = τ1. By Lemma 4.6, we may assume that the last rule applied in D1

is not (ty-sub). Hence, D1 is of the following form:

∅; ∅; ∅ ` v1 : τ1 ∅; ∅; ∅ ` v2 : τ2

∅; ∅; ∅ ` 〈v1, v2〉 : τ1 ∗ τ2
(ty-prod)

and therefore ∅; ∅; ∅ ` e2 : τ1 is derivable as e2 = v1.

• e1 = snd(〈v1, v2〉) and e2 = v2. This case is symmetric to the previous one.

• e1 = (lamx. e)(v) and e2 = e[x 7→ v]. Then D is of the following form:

D1 :: ∅; ∅; ∅ ` lamx. e : τ1 → τ2 ∅; ∅; ∅ ` v : τ1

∅; ∅; ∅ ` (lamx. e)(v) : τ2
(ty-app)

where τ = τ2. By Lemma 4.6, we may assume that the last rule applied in D1

is not (ty-sub). Hence, D1 is of the following form

∅; ∅; ∅, x : τ1 ` e : τ2

∅; ∅; ∅ ` lamx. e : τ1 → τ2
(ty-lam)

By Lemma 4.7 (3), we know that the typing judgment ∅; ∅; ∅ ` e[x 7→ v] : τ2

is derivable.

• e1 = case v of ms and e2 = e[θ] for some clause p ⇒ e in ms such that

match(v, p) ⇒ θ is derivable. Let D1,D2,D3 be derivations of ∅; ∅; ∅ ` v : τ1,

p ↓ τ1 ⇒ (φ0; ~P0; Γ0), and φ0; ~P0; Γ0 ` e : τ2, respectively, where τ = τ2.

By Lemma 4.10, we have a substitution Θ satisfying ∅ ` Θ : φ0 such that

both ∅ |= ~P0[Θ] and ∅ ` θ : Γ0[Θ] hold. By Lemma 4.7 (1), we know that

∅; ~P0[Θ]; Γ0[Θ] ` e : τ2 is derivable as τ2 contains no free occurrences of the

index variables declared in φ0. By Lemma 4.7 (2), we know that ∅; ∅; Γ0[Θ] `

72 Hongwei Xi

e : τ2 is derivable. By Lemma 4.7 (3), we know that ∅; ∅; ∅ ` e[θ] : τ2 is

derivable.

• e1 =⊃−(⊃+(v)) for some value v. Then D is of the following form:

D1 :: ∅; ∅; ∅ `⊃+(v) : P ⊃ τ ∅ |= P

∅; ∅; ∅ `⊃−(⊃+(v)) : τ
(ty-⊃-elim)

By Lemma 4.6, we may assume that the last rule applied in D1 is not

(ty-sub). Hence, D1 is of the following form:

D2 :: ∅; P ; ∅ ` v : τ

∅; ∅; ∅ `⊃+(v) : P ⊃ τ
(ty-⊃-intro)

By Lemma 4.7 (2), the typing judgment ∅; ∅; ∅ ` v : τ is derivable. Note that

e2 = v, and we are done.

• e1 = Π−(Π+(v)) for some value v. Then D is of the following form:

D1 :: ∅; ∅; ∅ ` Π+(v) : Πa:s. τ0 ∅ ` I : s

∅; ∅; ∅ ` Π−(Π+(v)) : τ0[a 7→ I]
(ty-Π-elim)

where τ = τ0[a 7→ I]. By Lemma 4.6, we may assume that the last rule applied

in D1 is not (ty-sub). Hence, D1 is of the following form:

D2 :: ∅, a : s; ∅; ∅ ` v : τ0

∅; ∅; ∅ ` Π+(v) : Πa:s. τ0

(ty-Π-intro)

By Lemma 4.7 (1), the typing judgment ∅; ∅; ∅ ` v : τ0[a 7→ I] is derivable.

Note that e2 = v, and we are done.

• e1 = let ∧ (x) = ∧(v) in e end for some value v and expression e. Then D is

of the following form:

D1 :: ∅; ∅; ∅ ` ∧(v) : P ∧ τ1 D2 :: ∅; P ; ∅, x : τ1 ` e : τ2

∅; ∅; ∅ ` let ∧ (x) = v in e end : τ2
(ty-∧-elim)

where τ = τ2. By Lemma 4.6, we may assume that the last rule applied in D1

is not (ty-sub). Hence, D1 is of the following form:

D3 :: ∅; ∅; ∅ ` v : τ1 ∅ |= P

∅; ∅; ∅ ` ∧(v) : P ∧ τ1
(ty-∧-intro)

By Lemma 4.7 (2), ∅; ∅; ∅, x : τ1 ` e : τ2 is derivable, and by Lemma 4.7 (3),

∅; ∅; ∅ ` e[x 7→ v] : τ2 is also derivable. Note that e2 = e[x 7→ v], and we are

done.

• e1 = let Σ(x) = Σ(v) in e end for some value v and expression e. Then D is

of the following form:

D1 :: ∅; ∅; ∅ ` Σ(v) : Σa:s. τ1 D2 :: ∅, a : s; ∅; ∅, x : τ1 ` e : τ2

∅; ∅; ∅ ` let Σ(x) = v in e end : τ2
(ty-Σ-elim)

where τ = τ2. By Lemma 4.6, we may assume that the last rule applied in D1

Journal of Functional Programming 73

is not (ty-sub). Hence, D1 is of the following form:

D3 :: ∅; ∅; ∅ ` v :: τ1[a 7→ I] ∅ ` I : s

∅; ∅; ∅ ` Σ(v) : Σa:s. τ1
(ty-Σ-intro)

By Lemma 4.7 (1), ∅; ∅; ∅, x : τ1[a 7→ I] ` e : τ2 is derivable as τ2 contains no

free occurrence of a. Then by Lemma 4.7 (3), ∅; ∅; ∅ ` e[x 7→ v] : τ2 is also

derivable. Note that e2 = e[x 7→ v], and we are done.

We thus conclude the proof of Theorem 4.11.

C Proof Sketch of Theorem 6.8

We outline in this section a proof of Theorem 6.8. Though we see no fundamental

difficulty in handling exceptions, we will not attempt to do it here as this would

significantly complicate the presentation of the proof.

We first state some basic properties about typing derivations in λΠ,Σ
pat extended

with references.

Proposition C.1

Assume that D :: φ; ~P ; Γ `µ e : σ is derivable and there is no free occurrence of α

in either Γ or µ. Then there is derivation of D′ of φ; ~P ; Γ `µ e : σ[α 7→ τ] such that

height(D) = height(D′) holds.

Proof

(Sketch) By induction on the height of D.

Proposition C.2

Assume that D1 : φ; ~P ; Γ `µ1
e : σ is derivable and µ2 extends µ1. Then there is a

derivation D2 of φ; ~P ; Γ `µ2
e : σ such that height(D1) = height(D2) holds.

Proof

(Sketch) The proof proceeds by induction on the height of D1. We present the only

interesting case in this proof, where σ = ∀~α. τ for some type τ and D1 is of the

following form:

D10 :: φ; ~P ; Γ `µ1
e : τ ~α # Γ ~α # µ1 e is value-equivalent

φ; ~P ; Γ `µ1
e : ∀~α. τ

(ty-poly)

Let us choose ~α′ such that there is no α in ~α′ that has any free occurrences in Γ, τ

or µ2. Applying Proposition C.1 (repeatedly if needed), we can obtain a derivation

D′
10 of φ; ~P ; Γ `µ1

e : τ [~α 7→ ~α′] such that height(D10) = height(D′
10). By induc-

tion hypothesis, we have a derivation D′
20 of φ; ~P ; Γ `µ2

e : τ [~α 7→ ~α′] such that

height(D′
1) = height(D′

2). Let D2 be the following derivation:

D′
20 :: φ; ~P ; Γ `µ2

e : τ [~α 7→ ~α′] ~α′ # Γ ~α′ # µ2 e is value-equivalent

φ; ~P ; Γ `µ2
e : ∀~α′. τ [~α 7→ ~α′]

(ty-poly)

Note that σ = ∀~α′. τ [~α 7→ ~α′], and we are done.

74 Hongwei Xi

The following lemma states that evaluation not involving references is type-

preserving.

Lemma C.3

Assume that φ; ~P ; ∅ `µ e1 : σ is derivable. If e1 ↪→ev e2 holds, then φ; ~P ; ∅ `µ e2 : σ

is also derivable.

Proof

(Sketch) This proof can be handled in precisely the same manner as the proof of

Theorem 4.11 in Appendix B.

Lemma C.3 can actually be strengthened to state that evaluation not involving

reference creation is type-preserving.

We are now ready to prove Theorem 6.8.

Proof

(of Theorem 6.8) (Sketch) We have the following four possibilities according to the

definition of ↪→ev/st .

• e1 ↪→ev e2. This case follows from Lemma C.3 immediately.

• e1 = E[ref(v)] for some evaluation context E and value v. This case is handled

by analyzing the structure of E. Obviously, e1 is not value-equivalent since

e1 ↪→∗
ev v does not hold for any value. This means that E cannot be of either

the form ⊃+(E1) or the form Π+(E1). We encourage the reader to figure out

what would happen if these two forms of evaluation contexts were not ruled

out. Among the rest of the cases, the only interesting one is where E is [],

that is, e1 = ref(v). In this case, we know that σ cannot be a type scheme

(since e1 is not value-equivalent). Hence, σ is of the form (τ)ref for some type

τ and ∅; ∅; ∅ `µ1
v : τ is derivable. Also, we have M2 = M1[l 7→ v] for some

reference constant l not in the domain of M1 and e2 = l. Let µ2 be µ1[l 7→ τ],

and we have M2 : µ2. Clearly, ∅; ∅; ∅ `µ2
e2 : (τ)ref is derivable.

• e1 = E[!l] for some evaluation context E and reference constant l. This case

can be handled like the previous one.

• e1 = E[l := v] for some evaluation context E, reference constant l and value

v. This case can handled like the previous one.

In order to fully appreciate the notion of value restriction, it is probably helpful to

see what can happen if there is no value restriction. Assume that the constructor nil

is given the c-type ∀α. 1 ⇒ (α)list. Clearly, we have a derivation D of the following

judgment:

∅; ∅; ∅ `[] ref(nil) : ((α)list)ref

where α is some type variable. With no value restriction, the following derivation

can be constructed

D :: ∅; ∅; ∅ `[] ref(nil) : ((α)list)ref

∅; ∅; ∅ `[] ref(nil) : ∀α.((α)list)ref

Journal of Functional Programming 75

Certainly, we have ([], ref(nil)) ↪→ev/st ([l 7→ nil], l) for any reference constant l.

However, there is simply no store type µ such that [l 7→ nil] : µ holds and ∅; ∅; ∅ `µ

l : ∀α. ((α)list)ref is also derivable. For instance, let us choose µ to be [l 7→ (α)list].

Then we can derive ∅; ∅; ∅ `µ l : ((α)list)ref, but this does not lead to a derivation

of ∅; ∅; ∅ `µ l : ∀α. ((α)list)ref as α # µ does not hold, that is, α does have a free

occurrence in µ. Hence, without value restriction, the theorem of subject reduction

can no longer be established.

