
Guarded Recursive Datatype Constructors

Hongwei Xi∗ Chiyan Chen∗ Gang Chen†

Boston University
{hwxi, chiyan, gangchen}@cs.bu.edu

ABSTRACT
We introduce a notion of guarded recursive (g.r.) datatype
constructors, generalizing the notion of recursive datatypes
in functional programming languages such as ML and Haskell.
We address both theoretical and practical issues resulted
from this generalization. On one hand, we design a type
system to formalize the notion of g.r. datatype construc-
tors and then prove the soundness of the type system. On
the other hand, we present some significant applications
(e.g., implementing objects, implementing staged computa-
tion, etc.) of g.r. datatype constructors, arguing that g.r.
datatype constructors can have far-reaching consequences
in programming. The main contribution of the paper lies
in the recognition and then the formalization of a program-
ming notion that is of both theoretical interest and practical
use.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Applicative Languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Datatypes and
Structures

General Terms
Languages, Theory

Keywords
Guarded Recursive Datatype Constructors

1. INTRODUCTION
Although we have since found a variety of applications

of guarded recursive (g.r.) datatype constructors, we ini-
tially encountered this notion in a study on run-time type-
passing. In parametric polymorphism, there is no facility

∗Partially supported by the NSF Grants No. 0224244 and
No. CCR-0229480
†Partially supported by the NSF Grant No. 9988529.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’03, January 15–17, 2003, New Orleans, Louisiana, USA.
.

for a polymorphic function to inspect its type arguments
and such a function behaves uniformly on all possible type
arguments. As a consequence, there is no need for passing
types at run-time. However, there are numerous occasions
in practice where we would want polymorphic functions to
behave differently on different type arguments. This is often
called ad-hoc polymorphism. For instance, we may want to
implement a function val2string for converting run-time val-
ues into string representations. In order to construct such a
function, we need to analyze the types of values at run-time.
With run-time type analysis, we can also support various
advanced implementation techniques such as flattened data
representation [10], polymorphic marshaling [16], unboxed
function arguments [12], tag-free garbage collection [20], etc.
A (conceptually) simple and direct approach to run-time

type analysis is to pass types or, more precisely, terms repre-
senting types at run-time and then inspect the structure of
such terms. In order to capture the relation between a type
and its term representation, we can declare a g.r. datatype
constructor TY as follows.

typecon (type) TY =
(int) TYint

| {’a,’b}.(’a * ’b) TYtup of ’a TY * ’b TY
| {’a,’b}.(’a -> ’b) TYfun of ’a TY * ’b TY
| {’a}.(’a TY) TYtyp of ’a TY

The syntax typecon (type) TY means that TY is a type
constructor of the kind ∗ → ∗, that is, TY takes one type to
form another type. There are four value constructors TYint,
TYtup, TYfun and TYtyp associated with TY, which are
assigned the following types.

TYint : (int)TY
TYtup : ∀α∀β.(α)TY ∗ (β)TY → (α ∗ β)TY
TYfun : ∀α∀β.(α)TY ∗ (β)TY → (α → β)TY
TYtyp : ∀α∀β.(α)TY → ((α)TY)TY

For instance, the following value,

TYfun(〈TYtup(〈TYint, TYint〉), TYint〉)
which has the type (int ∗ int → int)T Y , represents the
type int ∗ int → int. In general, a value of the type (τ)TY
represents the type τ . Now we can implement the val2string
function as follows.

fun val2string TYint x = int2string x
| val2string (TYtup (pf1, pf2)) (x1, x2) =
"(" ^ val2string pf1 x1

^ "," ^ val2string pf2 x2 ^ ")"
| val2string (TYfun _) _ = "[a function value]"
| val2string (TYtyp _) _ = "[a type value]"

withtype {’a}. ’a TY -> ’a -> string

The withtype clause in the definition is a type annotation,
which assigns the type ∀α.(α)TY → α → string to the
defined function val2string.
The above idea of using terms to represent types can al-

ready be found in [6, 22], where a typed calculus λR is intro-
duced to facilitate type-passing. The type constructor R in
λR corresponds to TY, and its associated value constructors
Rint, R×, R→ and RR correspond to TYint, TYtup, TYfun
and TYtyp, respectively. However, with g.r. datatype con-
structors, we can also form interesting and useful types that
cannot be handled in λR. For instance, we can declare a g.r.
datatype constructors HOAS as follows.

typecon (type) HOAS =
{’a}. (’a)HOASlift of ’a

| {’a,’b}. (’a * ’b)HOAStup of ’a HOAS * ’b HOAS
| {’a.’b}. (’a -> ’b)HOASlam of ’a HOAS -> ’b HOAS
| {’a,’b}. (’b)HOASapp of (’a -> ’b) HOAS * ’a HOAS
| {’a,’b}. (’a)HOASfix of ’a HOAS -> ’a HOAS

This declaration indicates that HOAS is a unary type con-
structor, and the value constructors associated with HOAS
are assigned the types in Figure 1. The type constructor
HOAS, which is intended to construct types for a form of
higher-order abstract syntax trees [4, 18], cannot be induc-
tively defined because of the type of the value constructor
HOASfix. Given a type τ , (τ)HOAS is the type for higher-
order abstract syntax trees representing monomorphically
typed expressions of the type τ . For instance, the following
expression in ML, which has the type (int → int)→ int →
int,

fn (x:int -> int) => fn (y:int) => x(y)

can be represented as follows:

HOASlam(fn (x:(int -> int) HOAS) =>

HOASlam (fn (y:int HOAS) => HOASapp (x, y)))

Note that the type of the above expression is ((int → int)→
int → int)HOAS. Furthermore, we can implement the
following function eval for evaluating higher-order abstract
syntax trees.

fun eval (HOASlift v) = v
| eval (HOAStup (e1, e2)) = (eval e1, eval e2)
| eval (HOASlam f) = fn x => eval (f (HOASlift x))
| eval (HOASapp (e1, e2)) = (eval e1) (eval e2)
| eval (e as HOASfix f) = eval (f e)

withtype {’a}. ’a HOAS -> ’a

Note eval is assigned the type ∀α.(α)HOAS → α, indicat-
ing that the evaluation of higher-order abstract syntax trees
is type-preserving. Later, we will show that the type con-
structor HOAS can play a key rôle in implementing staged
computation [7, 19].
The introduction of g.r. datatype constructors raises a

number of theoretical and practical issues. We briefly out-
line our results and design decisions.
The first and foremost issue that arises is the formalization

of g.r. datatype constructors in type theory. We show how
fixed-point operators over type constructors of higher kinds
can be used to formally define g.r. datatype constructors. In
particular, we show how the standard fold/unfold operations
(for recursive types) and injection operations (for sum types)
can be used to define the value constructors associated with
a declared g.r. datatype constructor.
The second issue is the decidability and practicality of

type-checking in the presence of g.r. datatype constructors.
We address this question in two steps. We first present an

explicitly typed (and overly verbose) internal language λ2,Gµ

in which type-checking can be handled straightforwardly.
We next present an external language ML2,Gµ, a slightly
extended fragment of ML, and then mention an elaboration
process from ML2,Gµ to λ2,Gµ that preserves the standard
operational semantics. When programming in ML2,Gµ, the
programmer may omit writing types at various occasions
(determined by the elaboration process).
The third issue is the usefulness of g.r. datatype construc-

tors in practice. We present various examples to illustrate
some interesting applications of g.r. datatype constructors
in capturing program invariants. In particular, we show that
g.r. datatype constructors can be combined with a restricted
form of dependent types [25, 23] to type programming ob-
jects, overcoming some significant deficiencies in many ex-
isting type systems for object-oriented programming [2].
In summary, we present a generalization of the notion of

recursive datatypes, allowing the programmer to form g.r.
datatype constructors. The most significant contribution of
the paper lies in the recognition of such a simple and nat-
ural generalization that can have far-reaching consequences
in programming. We formalize the notion of g.r. datatype
constructors in a type system and then establish the type
soundness of the type system, which constitutes the main
technical contribution of the paper. We also present various
realistic and interesting examples in support of the intro-
duction of g.r. datatype constructors into a programming
language.
We organize the rest of the paper as follows. In Section 2,

we introduce an internal language λ2,Gµ to formalize the
notion of g.r. datatype constructors, presenting both static
and dynamic semantics for λ2,Gµ and proving its type sound-
ness. We next form an external language ML2,Gµ in Sec-
tion 3 and then mention an elaboration process from ML2,Gµ

to λ2,Gµ to support unobtrusive programming. We use some
interesting examples in Section 4 to illustrate various appli-
cations of g.r. datatype constructors. Lastly, we mention
some future research directions and related works.
There is a full version of the paper on-line [24], where

various omitted details can be found.

2. THE LANGUAGE λ2,Gµ
We present a language λ2,Gµ based on the explicitly typed

second-order polymorphic λ-calculus. We present both static
and dynamic semantics for λ2,Gµ and then show that the
type system of λ2,Gµ, which supports g.r. datatype con-
structors, is sound.
The language λ2,Gµ is designed to be an internal language.

Later, we will also present an external language ML2,Gµ

and mention an elaboration process from ML2,Gµ to λ2,Gµ.
When programming in ML2,Gµ, the programmer may omit
writing certain types, which can be reconstructed through
the elaboration process.

2.1 Syntax
We present the syntax for λ2,Gµ in Figure 2, which is

mostly standard. We use α for type variables, 1 for the
unit type and �τ for a (possibly empty) sequence of types
τ1, . . . , τn. We have two kinds of expression variables: x for
lam-variables and f for fix-variables. We use xf for either
a lam-variable or a fix-variable. We can only form a λ-
abstraction over a lam-variable and a fixed-point expression
over a fix-variable. Note that a lam-variable is a value but
a fix-variable is not. We use c for constructors and assume
that every constructor is unary.1 Also, we require that the

1For a constructor taking no argument, we can treat it as a

HOASlift : ∀α.α → (α)HOAS
HOAStup : ∀α∀β.(α)HOAS ∗ (β)HOAS → (α ∗ β)HOAS
HOASlam : ∀α∀β.((α)HOAS → (β)HOAS)→ (α → β)HOAS
HOASapp : ∀α∀β.(α → β)HOAS ∗ (α)HOAS → (β)HOAS
HOASfix : ∀α.((α)HOAS → (α)HOAS)→ (α)HOAS

Figure 1: The value constructors associated with HOAS and their types

types τ ::= α | 1 | τ1 ∗ τ2 | τ1 → τ2 |
(�τ)T | ∀α.τ

patterns p ::= x | 〈〉 | 〈p1, p2〉 | c[�α](p)
clauses ms ::= (p1 ⇒ e1 | · · · | pn ⇒ en)
expressions e ::= x | f | c[�τ](e)

〈〉 | 〈e1, e2〉 | fst(e) | snd(e) |
λx : τ.e | e1(e2) | Λα.v | e[τ] |
fix f : τ.v | case e of ms |
let x = e1 in e2 end

values v ::= x | c[�τ](v) | 〈〉 | 〈v1, v2〉 |
λx : τ.e | Λα.v

exp. var. ctx. Γ ::= · | Γ, x : τ
typ. var. ctx. ∆ ::= · | ∆, α | ∆, τ1 ≡ τ2

Figure 2: Syntax for the internal language λ2,Gµ

body of either Λ or fix be a value. The syntax for patterns
is to be explained in Section 2.3.
We use Θ for substitutions mapping type variables to

types and dom(Θ) for the domain of Θ. Note that Θ[α �→
τ], where we assume α
∈ dom(Θ), extends Θ with a map-
ping from α to τ . Similar notations are also used for sub-
stitutions θ mapping variables xf to expressions. We write
•[Θ] (•[θ]) for the result of applying Θ (θ) to •, where •
can be a type, an expression, a type variable context, an
expression variable context, etc.
We use ∆ for type variable contexts in λ2,Gµ. As usual,

we can declare a type variable α in a type variable context
∆. We use ∆ � τ : ∗ to mean that τ is a well-formed
type in which every type variable is declared in ∆. All type
formation rules are standard and thus omitted. We can also
declare a type equality τ1 ≡ τ2 in ∆. Intuitively, when
deciding type equality under ∆, we assume that the types
τ1 and τ2 are equal if τ1 ≡ τ2 is declared in ∆.
Given two types τ1 and τ2, we write τ1 = τ2 to mean that

τ1 is α-equivalent to τ2. The following rules are for deriving
judgments of the form � Θ : ∆, which roughly means that
Θ matches ∆.

� [] : ·
� Θ : ∆ � τ : ∗
� Θ[α �→ τ] : ∆, α

� Θ : ∆ τ1[Θ] = τ2[Θ]

� Θ : ∆, τ1 ≡ τ2

We use ∆ |= τ1 ≡ τ2 for a type constraint; this constraint
is satisfied if we have � τ1[Θ] ≡ τ2[Θ] for every Θ such that
� Θ : ∆ is derivable. As can be expected, we have the
following proposition.

Proposition 2.1.

• If ∆ � τ : ∗ is derivable, then ∆ |= τ ≡ τ holds.

• If ∆ |= τ1 ≡ τ2 holds, then ∆ |= τ2 ≡ τ1 also holds.

• If ∆ |= τ1 ≡ τ2 and ∆ |= τ2 ≡ τ3 hold, then ∆ |= τ1 ≡
τ3 also holds.

constructor taking the unit 〈〉 as its argument.

Pattern typing rules ∆0 � p ↓ τ ⇒ (∆; Γ)

∆0 � τ : ∗
∆0 � x ↓ τ ⇒ ·;x : τ

(pat-var)

∆0 � 〈〉 ↓ 1 ⇒ ·; · (pat-unit)

∆0 � p1 ↓ τ1 ⇒ ∆1; Γ1 ∆0 � p2 ↓ τ2 ⇒ ∆2; Γ2

∆0 � 〈p1, p2〉 ↓ τ1 ∗ τ2 ⇒ ∆1,∆2; Γ1,Γ2
(pat-tup)

Σ(c) = ∀�α.τ → (�τ1)T
∆0, �α, �τ1 ≡ �τ2 � p ↓ τ ⇒ ∆;Γ

∆0 � c[�α](p) ↓ (�τ2)T ⇒ �α, �τ1 ≡ �τ2,∆;Γ
(pat-cons)

Clause typing rule ∆; Γ � p ⇒ e : τ1 ⇒ τ2

∆ � p ↓ τ1 ⇒ (∆′; Γ′) ∆,∆′; Γ,Γ′ � e : τ2

∆;Γ � p ⇒ e : τ1 ⇒ τ2

Clauses typing rule ∆; Γ � ms : τ1 ⇒ τ2

∆;Γ � pi ⇒ ei : τ1 ⇒ τ2 for i = 1, . . . , n

∆;Γ � (p1 ⇒ e1 | · · · | pn ⇒ en) : τ1 ⇒ τ2

Figure 3: Pattern typing rules

Expression typing rules ∆; Γ � e : τ

∆ |= τ1 ≡ τ2 ∆;Γ � e : τ1

∆;Γ � e : τ2
(ty-eq)

Γ(xf) = τ

∆;Γ � xf : τ
(ty-var)

Σ(c) = ∀�α.τ1 → τ2 ∆ � �τ : �∗
∆;Γ � e : τ1[�α �→ �τ]

∆; Γ � c[�τ](e) : τ2[�α �→ �τ]
(ty-cons)

∆;Γ � 〈〉 : 1 (ty-unit)

∆;Γ � e1 : τ1 ∆; Γ � e2 : τ2

∆;Γ � 〈e1, e2〉 : τ1 ∗ τ2
(ty-tup)

∆;Γ � e : τ1 ∗ τ2

∆;Γ � fst(e) : τ1
(ty-fst)

∆; Γ � e : τ1 ∗ τ2

∆;Γ � snd(e) : τ2
(ty-snd)

∆;Γ, x : τ1 � e : τ2

∆;Γ � λx : τ1.e : τ1 → τ2
(ty-lam)

∆;Γ � e1 : τ1 → τ2 ∆;Γ � e2 : τ1

∆;Γ � e1(e2) : τ2
(ty-app)

∆, α; Γ � e : τ

∆;Γ � Λα.e : ∀α.τ
(ty-tlam)

∆; Γ � e : ∀α.τ ∆ � τ1 : ∗
∆;Γ � e[τ1] : τ [α �→ τ1]

(ty-tapp)

∆;Γ, f : τ � e : τ

∆;Γ � fix f : τ.e : τ
(ty-fix)

∆;Γ � e1 : τ1 ∆;Γ, x : τ1 � e2 : τ2

∆;Γ � let x = e1 in e2 end : τ2
(ty-let)

∆;Γ � e : τ1 ∆;Γ � ms : τ1 ⇒ τ2

∆;Γ � case e of ms : τ2
(ty-case)

Figure 4: Typing rules for expressions

At this moment, there is no need to be concerned with how
type constraints can be solved; we may simply assume the
existence of an oracle for doing this. In Section 3, we will
present a complete procedure for solving type constraints.

2.2 G.R. Datatype Constructors
We use ∗ as the kind for types and (∗, . . . , ∗) → ∗ as the

kind for type constructors of arity n, where n the number
of the occurrences of ∗ in (∗, . . . , ∗). We use T for a recur-
sive type constructor of arity n and associate with T a list
of (value) constructors c1, . . . , ck; for each 1 ≤ i ≤ k, the
type of ci is of the form ∀�αi.τi → (�τi)T , where �τi is for a
sequence of types τ i

1, . . . , τ i
ni
, and ∀�αi stands for a (possi-

bly empty) sequence of quantifiers ∀αi
1 . . .∀αi

mi
(assuming

�αi = αi
1, . . . , αi

mi
). In our concrete syntax, T can be de-

clared as follows.

typecon (type, ..., type) T = {�α1}.(�τ1) c1 of τ1

| {�α2}.(�τ2) c2 of τ2

| ...
| {�αk}.(�τn) ck of τk

We write ∃∆.τ for a guarded type, where ∆ is a type variable
context that may contain some type equalities. We use the
name guard for such a type equality. For instance, ∃∆1.τ is
a guarded type, where ∆1 = (α1, α2, α1 ∗ α2 ≡ int ∗ bool)
and τ = α1 ∗ α1; this type is equivalent to int ∗ int since
we must map α1 to int in order to satisfy the type equality
α1 ∗α2 ≡ int∗bool. The type ∃∆2.τ is also a guarded type,
where ∆2 = (α1, α2, α1 ∗ α2 ≡ int); this type is equivalent
to the type void, i.e., the type in which there is no element,
since the type equality α1 ∗ α2 ≡ int cannot be satisfied.
For ∆ = (α1, α2, α1 ∗ α2 ≡ α), we observe that the type
constructor λα∃∆.τ has the following interesting feature:
when applied to a type τ0, the type constructor forms a
type that is equivalent to τ1 ∗ τ1 if τ0 is of the form τ1 ∗ τ2,
or void otherwise.
We show that the type constructor T can be formally

defined as µt.σ, where σ is the following sum of guarded
types. Therefore, we call T a guarded recursive datatype
constructor.

µt.λ�α.(∃{�α1, �τ1 ≡ �α}.τ1 + . . .+ ∃{�αk, �τk ≡ �α}.τk)

Note that for i = 1, . . . , k, �α = α1, . . . , αn and �αi are as-
sumed to share no common type variables, and the T ’s in �τi

and τi have been replaced with t’s.
Given a type variable context ∆, we define |∆| as follows.

| · | = · |∆, α| = |∆|, α |∆, τ1 ≡ τ2| = |∆|
For a type substitution Θ and a sequence of type variables
�α = α1, . . . , αn, we write Θ(�α) for Θ(α1), . . . ,Θ(αn). The
introduction and elimination rules for guarded types can be
formed as follows.

∆1; Γ � e : τ [Θ] ∆1 � Θ : ∆2

∆1; Γ � 〈Θ(|∆2|) | e〉 : ∃∆2.τ
(∃-intro)

∆1; Γ � e1 : ∃∆2.τ1 ∆1,∆2; Γ, x : τ1 � e2 : τ2

∆1; Γ � open e1 as 〈|∆2| | x〉 in e2 : τ2
(∃-elim)

Note that a judgment of the form ∆1 � Θ : ∆ means that
dom(Θ) = dom(∆2) and ∆1 |= τ1[Θ] ≡ τ2[Θ] for each type
equality τ1 ≡ τ2 in ∆2. In the elimination rule, we require
that τ2 contain no type variable in dom(∆2).

Given types τ 1, . . . , τk and 1 ≤ i ≤ k, we use injτ
1+...+τk

i

for the ith injection that injects values of the type τ i into val-
ues of the type τ 1+. . .+τk. In addition, we use unfold((�τ)T)
for the expansion of (�τ)T to σ[t �→ T][�α �→ �τ], where �τ is a

�αi;x : τi � x : τi �αi � [�βi �→ �αi] : �βi, �τi[�αi �→ �βi] ≡ �τi

�αi;x : τi � 〈�αi | x〉 : ∃{�βi, �τi[�αi �→ �βi] ≡ �τi}.τi[�αi �→ �βi]
(∃-intro)

�αi;x : τi � inj
unfold((�τi)T)
i (〈�αi | x〉) : unfold((�τi)T)

(+-intro)

�αi;x : τi � inj
unfold((�τi)T)
i (〈�αi | x〉) : (�τi)T

(fold)

�αi; · � λx : τi.inj
unfold((�τi)T)
i (〈�αi | x〉) : τi → (�τi)T

(→-intro)

·; · � Λ�αi.λx : τi.inj
unfold((�τi)T)
i (〈�αi | x〉) : ∀�αi.τi → (�τi)T

(∀-intro)

Figure 5: Defining value constructors associated with T

sequence of n types. Then we can construct a typing deriva-
tion in Figure 5, where all the applied rules are standard. By
the derivation, we can define ci as follows for i = 1, . . . , k:

Λ�αi.λx : τi.inj
unfold((�τi)T)
i 〈�αi | x〉

Therefore, we have justified the notion of g.r. datatype con-
structors in terms of standard type-theoretical concepts.
We now present some simple examples of g.r. datatype

constructors so as to facilitate the understanding of this con-
cept.

Example 1 The following syntax

typecon TOP = Top of ’a

declares a value constructor Top of the type ∀α.α → TOP;
TOP is defined as µt.∃{α}.α, which is equivalent to ∃α.α.

The type T OP is called an abstract datatype in [11]. In
general, the the notion of abstract datatypes is subsumed
by the notion of g.r. datatype constructors.

Example 2 The following syntax

typecon (type) list =
(’a) nil | (’a) cons of ’a * ’a list

declares two constructors nil and cons of the types ∀α.1 →
(α)list and ∀α.α ∗ (α)list → (α)list , respectively; the type
constructor list is define as follows, which is essentially equiv-
alent to the type constructor µt.λα.1+ α ∗ (α)t.

µt.λα.∃{α1, α1 ≡ α}.1+ ∃{α2, α2 ≡ α}.α2 ∗ (α2)t

Note that the usual list type constructor in ML is defined
as λα.µt.1+ α ∗ t.
In the rest of the paper, we are no longer in need of

guarded types of the form ∃∆.τ directly. The typing rules
(∃-intro) and (∃-elim) are to be absorbed into the typing
rules (ty-cons) and (ty-case), respectively. Similarly, we
we will make no use of expressions of the form 〈�τ | e〉 or the
form open e1 as 〈�α | x〉 in e2 directly.

2.3 Pattern Matching
We use p for patterns. As usual, a type (value) variable

may occur at most once in each pattern. We use a judgment
of the form v ↓ p � (Θ; θ) to mean that matching a value
v against a pattern p yields substitutions Θ and θ for the
type and value variables in p. The rules for deriving such

judgments are listed as follows.

v ↓ x ⇒ ([]; [x �→ v]) 〈〉 ↓ 〈〉 ⇒ ([]; [])

v1 ↓ p1 ⇒ (Θ1; θ1) v2 ↓ p2 ⇒ (Θ2; θ2)

〈v1, v2〉 ↓ 〈p1, p2〉 ⇒ (Θ1 ∪Θ2; θ1 ∪ θ2)

v ↓ p ⇒ (Θ; θ)

c[�τ](v) ↓ c[�α](p)⇒ ([�α �→ �τ] ∪Θ; θ)
Given a type variable context ∆0, a pattern p and a type
τ , we can use the rules in Figure 3 to derive a judgment of
the form ∆0 � p ↓ τ ⇒ (∆; Γ), whose meaning is formally
captured by Lemma 2.3.

2.4 Static and Dynamic Semantics
We present the typing rules for λ2,Gµ in Figure 4. We

assume the existence of a signature Σ in which the types of
constructors are declared.
Most of the typing rules are standard. The rule (ty-eq)

indicates that the type equality in λ2,Gµ is modulo type con-
straint solving. Please notice the great difference between
the rules presented in Figure 3 for typing clauses and the
“standard” ones in [14].
We form the dynamic semantics of λ2,Gµ through the use

of evaluation contexts, which are defined below.

Evaluation context E ::=
[] | fst(E) | snd(E) | 〈E, e〉 | 〈v, E〉 | E(e) | v(E) |
E[τ] | let x = E in e end | case E of ms

Definition 2.2. A redex is defined as follows.

• fst(〈v1, v2〉) is a redex that reduces to v1.

• snd(〈v1, v2〉) is a redex that reduces to v2.

• (λx : τ.e)(v) is a redex that reduces to e[x �→ v].

• (Λα.v)[τ] is a redex that reduces to v[α �→ τ].

• let x = v in e end is a redex that reduces to e[x �→ v].

• fixf : τ.v is a redex that reduces to v[f �→ fixf : τ.v].

• case v of ms is a redex if v ↓ p ⇒ (Θ; θ) is derivable
for some clause p ⇒ e in ms, and the redex reduces
to e[Θ][θ]. Note that there may be certain amount of
nondeterminism in the reduction of case v of ms as v
may match the patterns in several clauses in ms.

Given a redex e1, we write e1 ↪→ e2 if e1 reduces to e2. If
e′i = E[ei] for i = 1, 2 and e1 is a redex reducing to e2, then
we write e′1 ↪→ e′2 and say that e′1 reduces to e′2 in one step.

Let ↪→∗ be the reflexive and transitive closure of ↪→. We say
that e1 reduces to e2 (in many steps) if e1 ↪→∗ e2 holds.
Given a closed well-typed expression e in λ2,Gµ, we use

|e| for the type erasure of e, that is, the expression obtained
from erasing all types in e. We can then evaluate |e| in a un-
typed λ-calculus extended with pattern matching. Clearly,
e ↪→∗ e′ holds if and only if |e| evaluates to |e′|. In other
words, λ2,Gµ supports type-erasure semantics.

2.5 Type Soundness
Given an expression variable context Γ such that Γ(x) is

a closed type for each x ∈ dom(Γ), we write θ : Γ if ·; · �
θ(x) : Γ(x) is derivable for each x ∈ dom(θ) = dom(Γ).
In general, we write (Θ; θ) : (∆; Γ) to mean that � Θ :
∆ is derivable and θ : Γ[Θ] holds. The following lemma
essentially verifies that the rules for deriving judgments of
the form p ↓ τ ⇒ (∆; Γ) are properly formed.

Lemma 2.3. Assume that ∆0 � p ↓ τ ⇒ (∆; Γ) is deriv-
able and Θ0 : ∆0 holds. If v is a closed value of the type
τ [Θ0], that is, ·; · � v : τ [Θ0] is derivable, and we have v ↓
p ⇒ (Θ, θ) for some Θ and θ, then (Θ; θ) : (∆[Θ0]; Γ[Θ0])
holds.

Proof By structural induction on a derivation of ∆0 � p ↓
τ ⇒ (∆; Γ)

As usual, we need the following substitution lemma to es-
tablish the subject reduction theorem for λ2,Gµ.

Lemma 2.4. Assume that ∆;Γ � e : τ is derivable. If
� (Θ; θ) : (∆; Γ) holds, then ·; · � e[Θ][θ] : τ [Θ] is derivable.

Proof By structural induction on a derivation of ∆; Γ � e :
τ .

Theorem 2.5. (Subject Reduction) Assume that ·; · � e :
τ is derivable. If e ↪→ e′ holds, then ·; · � e′ : τ is also
derivable.

Proof Assume that e = E[e1] and e′ = E[e2] for some redex
e1 that reduces to e2. The proof follows from structural in-
duction on E. In the case where E = [], the proof proceeds
by induction on the height of a derivation of ·; · � e : τ , han-
dling various cases through the use of Lemma 2.4. For han-
dling the typing rule (ty-case), Lemma 2.3 is also needed.

However, we cannot prove that if e is a well-typed non-
value expression then e must reduce to another well-typed
expression. In the case where e = E[e1] for some e1 =
case v of ms that is not a redex (because v does not match
any pattern in ms), the evaluation of e becomes stuck. This
is so far the only reason for the evaluation of an expression
to become stuck. As is the case for the usual datatypes
in ML, it can also be checked whether pattern matching is
exhaustive with respect to types of the form (�τ)T for g.r.
datatype constructors T .

3. ELABORATION
We have presented an explicitly typed language λ2,Gµ.

Since a programmer may be quickly overwhelmed with the
need for writing types in such a setting, it becomes appar-
ent that we need to provide an external language ML2,Gµ

together with an elaboration process from ML2,Gµ to λ2,Gµ

that preserves dynamic semantics.
Some of the syntax for ML2,Gµ is presented in Figure 6 and

it should be straightforward to relate the concrete syntax

patterns p ::= x | 〈〉 | 〈p1, p2〉 | c(p)
clauses ms ::= (p1 ⇒ e1 | · · · | pn ⇒ en)
expressions e ::= x | f | c |

〈〉 | 〈e1, e2〉 | fst(e) | snd(e) |
λx.e | λx : τ.e | e1(e2) |
fix f.v | fix f : τ.v |
case e of ms |
let x = e1 in e2 end | (e : τ)

values v ::= x | c | 〈〉 | 〈v1, v2〉 |
λx.e | λx : τ.e

Figure 6: Syntax for the external language ML2,Gµ

�α � τ : ∗
�α � τ ≡ τ

T is not T ′

�α, (�τ1)T ≡ (�τ2)T
′,∆ � τ1 ≡ τ2

�α,∆ � τ1 ≡ τ2

�α, α ≡ α,∆ � τ1 ≡ τ2

τ contains a free occurrence of α but is not α
�α, α ≡ τ,∆ � τ1 ≡ τ2

τ contains a free occurrence of α but is not α
�α, τ ≡ α,∆ � τ1 ≡ τ2

�α,∆[α �→ τ] � τ1[α �→ τ] ≡ τ2[α �→ τ]
α has no free occurrences in τ

�α, α ≡ τ,∆ � τ1 ≡ τ2

�α,∆[α �→ τ] � τ1[α �→ τ] ≡ τ2[α �→ τ]
α has no free occurrences in τ

�α, τ ≡ α,∆ � τ1 ≡ τ2

�α, �τ1 ≡ �τ2 � τ1 ≡ τ2

�α, (�τ1)T ≡ (�τ2)T,∆ � τ1 ≡ τ2

�α, τ ′
1[α1 �→ (�α)A] ≡ τ ′

2[α2 �→ (�α)A] � τ1 ≡ τ2

A is a fresh skolemized constant

�α,∀α1.τ ′
1 ≡ ∀α2.τ ′

2 � τ1 ≡ τ2

Figure 7: The rules for solving type constraints

in the examples we present to that of ML2,Gµ. The types
in ML2,Gµ are the same as in λ2,Gµ. The syntax for type
ascription is (e : τ), which basically means the expression e
is required to be of the type τ . Also, the types for bound
variables in ML2,Gµ may be omitted. Note that the language
ML2,Gµ is not a conservative extension of ML as there are
strictly more programs that are typable in ML2,Gµ than in
ML.
During the elaboration of a program, type constraints of

the form ∆ � τ1 ≡ τ2 are generated. We present a set of
rules for solving such type constraints in Figure 7, where
we use T to range over all type constructors, either built-
ins (∗ and →), user-defined g.r. datatype constructors, or
skolemized constants (introduced by applying the last rule
in Figure 7)

Definition 3.1. Given a type τ , the size [τ] of τ is de-
fined as follows.

[α] = 1 [(τ1, . . . , τn)T] = 1 + [τ1] + . . .+ [τn]

Furthermore, given a type equality τ1 ≡ τ2, its size is defined
as [τ1] + [τ2]; given a type variable context ∆, its size is the

sum of the sizes of the type equalities in ∆.

Note that for each rule in Figure 7 of the following form:

∆ � τ1 ≡ τ2

∆′ � τ ′
1 ≡ τ ′

2 ,

we have [∆] < [∆′]. This observation is needed to justify
the soundness and the completeness of the rules for solving
type constraints.

Theorem 3.2. ∆ |= τ1 ≡ τ2 holds if and only if ∆ � τ1 ≡
τ2 is derivable.

Proof Assume that ∆ = �α,∆′ for some ∆′ that does not
begin with a type variable. The proof follows from induction
on the lexicographic ordering (n1, n2, n3), where n1 is the
number of free type variables in ∆′, n2 is the number of
occurrences of ∀ in ∆′ and n3 is the size of ∆

′.

Therefore, the rules in Figure 7 for solving type constraints
are both sound and complete.
The elaboration process for ML2,Gµ is similar to the one

for DML [25, 23], following essentially the same strategy.
Given ∆,Γ and e, a synthesizing judgment ∆; Γ � e ↑ τ ⇒ e∗

means that e can be elaborated into e∗ with type τ such
that ∆; Γ � e∗ : τ is derivable and |e| and |e∗| are opera-
tionally equivalent, where |e| and |e∗| are the erasures of e
and e∗, respectively. Given ∆,Γ, e and τ , a checking judg-
ment ∆; Γ � e ↓ τ ⇒ e∗ means that e can be elaborated
into e∗ such that ∆; Γ � e∗ : τ is derivable and |e| and |e∗|
are operationally equivalent. We have formulated a list of
rules for deriving both synthesizing and checking judgments.
Please refer to [24] for these rules plus other details on the
issue of elaboration in ML2,Gµ.

4. APPLICATIONS
In this section, we show how g.r. datatype constructors

can be used to handle some realistic and interesting exam-
ples that involve a variety of programming features. We have
finished a prototype implementation that supports most of
the main features in the core of ML (e.g., pattern matching,
polymorphism, effects, etc.) plus g.r. datatype constructors.
The implementation, written in Objective Caml, is available
at [24], where we have also presented many other examples
in addition to the following ones, including an implementa-
tion of queue in message-passing style, an implementation
of polymorphic marshaling as is described in [16], etc.

4.1 Polymorphic Generic Functions
The notion of polymorphic generic functions is introduced

in [8], which allows the programmer to define polymorphic
functions that may behave differently on different type ar-
guments. We use an example to show that generic functions
can be readily handled through the use of g.r. datatype
constructors.
In the C programming language, sprintf is a function that

takes a format string and a list of arguments, and then re-
turns a string representation of the arguments according to
the format string. Let us declare the type FORMAT as
follows.

typecon (type) FORMAT =
(int -> ’a) I of ’a FORMAT

| (char -> ’a) C of ’a FORMAT
| (’a) S_ of string * ’a FORMAT
| (string) S0 of string

fun sprintf fmt = let

fun aux pre (I fmt) =

(fn i => aux (pre ^ int2string i) fmt)

| aux pre (C fmt) =

(fn c => aux (pre ^ char2string c) fmt)

| aux pre (S_ (s, fmt)) = aux (pre ^ s) fmt

| aux pre (S0 s) = pre ^ s

withtype string -> ’a FORMAT -> ’a

in aux "" fmt end

withtype ’a FORMAT -> ’a

Figure 8: An implementation of the sprintf function

When applied to a format of the type (τ1 → . . . → τn →
string)FORMAT, the sprintf function expects that the n
arguments following the format have the types τ1, . . . , τn,
respectively. We give an implementation of sprintf in Fig-
ure 8. We can make a format expression more readable by
defining an infix operator $ for application and currying S
into S.

infixr $
fun f $ x = f (x)
fun S s fmt = S_ (s, fmt)

For instance, the following expression binds fmt with a for-
mat of the type (int → char → string)FORMAT.

val fmt = S "int i = " $ I $
S " and char c = " $ C $ S0 ""

As can be expected, sprintf(fmt) returns a function of the
type int → char → string, which yields the following
string

"int i = 1 and char c = a"

when applied to the integer 1 and the character a.
Certainly, a functions like sprintf can also be implemented

through the use of type classes (or their variants). The above
implementation of sprintf is actually adopted from [15]. In
this case, the format argument of the sprintf function is
most likely to be provided by the user instead of being
automatically synthesized and the very issue of overload-
ing addressed by type classes does not really seem to exist
here. Therefore, we feel the above implementation of sprintf
through g.r. datatype constructors is more natural and di-
rect.

4.2 Implementing Staged Computation
We outline an implementation of staged computation [7,

19] through the use of higher-order abstract syntax. We
first associate a few more value constructors with the g.r.
datatype constructor HOAS defined in Section 1.

typecon (type) HOAS =
... ...

| {’a}. (’a) HOASvar of string
| {’a}. (’a) HOASif of

bool HOAS * ’a HOAS * ’a HOAS

Obviously, HOASif is introduced for forming h.o.a.s trees to
represent conditional expressions. In general, many more
language constructs can be readily handled by properly as-
sociating some value constructors with HOAS. The only (ad
hoc and ugly) use of HOASvar is shown in Figure 9, where
a translation from higher-order abstract syntax (h.o.a.s.) to

typecon FOAS =

FOASvar of string

| {’a}. FOASlift of ’a

| FOAStup of FOAS * FOAS

| FOASlam of string * FOAS

| FOASapp of FOAS * FOAS

| FOASfix of string * FOAS

| FOASif of FOAS * FOAS * FOAS

(* ’new_name()’ produces a fresh name *)

val new_name: unit -> string

fun h2f (HOASvar name) = FOASvar name

| h2f (HOASlift v) = FOASlift v

| h2f (HOAStup (e1,e2)) = FOAStup(h2f e1,h2f e2)

| h2f (HOASlam f) = let

val name = new_name ()

in

FOASlam (name, h2f (f (HOASvar name)))

end

| h2f (HOASapp (e1,e2)) = FOASapp(h2f e1,h2f e2)

| h2f (HOASfix f) = let

val name = new_name ()

in

FOASfix (name, h2f (f (HOASvar name)))

end

| h2f (HOASif (e1, e2, e3)) =

FOASif (h2f e1, h2f e2, h2f e3)

withtype {’a}. ’a HOAS -> FOAS

Figure 9: A translation from h.o.a.s to f.o.a.s

first-order abstract syntax (f.o.a.s.) is given. For instance,
the translation of HOASlam(fn x ⇒ x)) is simply

FOASlam(“x”, FOASvar(“x”))

(assuming “x” is the freshly generated name for the bound
variable x).
Also, we assume a built-in function compile of the type

∀α.(α)HOAS → α that compiles h.o.a.s. trees. For instance,
compile can be implemented in such a manner: Given a
h.o.a.s tree e, we translate e into a f.o.a.s tree h2f(e) and then
compile the f.o.a.s. tree with a standard approach (as is done
in Scheme). Note that the function compile corresponds to
the function run in MetaML [19].
As an example, we stage the usual power function as fol-

lows, where the bloated syntax is soon to be replaced with
some syntactic sugar.

fun power1 n =
if n = 0 then HOASlam (fn x => HOASlift 1)
else HOASlam (fn (x: int HOAS) =>

HOASapp (HOASlift *,
HOAStup (x, HOASapp (power1 (n-1), x))))

withtype int -> (int -> int) HOAS

Then we can define the square function as follows.

val square1: int -> int = compile (power1 2)

It can be readily verified that the f.o.a.s. tree translated
from (power1 2) represents the following program:

(fn x2 => x2 * (fn x1 => x1 * (fn x0 => 1) x1) x2)

Now suppose we stage the power function as follows.

‘(xf) = HOASlift(xf)
‘(c) = HOASlift(c)
‘(〈〉) = HOASlift(〈〉)

‘(〈e1, e2〉) = HOAStup(‘(e1), ‘(e2))
‘(if(e1, e2, e2)) = HOASif(‘(e1), ‘(e2), ‘(e3))

‘(λx.e) = HOASlam(λx.‘(e[x �→ ˆ(x)]))
‘(λx : τ.e) = HOASlam(λx : 〈τ 〉.‘(e[x �→ ˆ(x)]))
‘(e1(e2)) = HOASapp(‘(e1), ‘(e2))
‘(fix f.v) = HOASfix(λf.‘(v[f �→ ˆ(f)]))

‘(fix f : τ.v) = HOASfix(λf : 〈τ 〉.‘(v[f �→ ˆ(f)]))
‘(e : τ) = (‘(e) : 〈τ 〉)
‘(ˆ(e)) = e

Figure 10: Syntactic sugar for staged computation
.

fun power2 n x =
if n = 0 then (HOASlift 1)
else HOASapp (

HOASlift *, HOAStup (x, power2 (n-1) x))
withtype int -> (int) HOAS -> (int) HOAS

Then the square function can be define as:

val square2: int -> int =
compile(HOASlam(fn (x: int HOAS) => power2 2 x))

This time, the f.o.a.s. tree translated from the following
h.o.a.s tree

HOASlam (fn (x: int HOAS) => power2 2 x)

is (fn x => x * (x * 1)).
In Figure 10, we introduce some syntactic sugar to facil-

itate staged computation. Note that we now write 〈τ 〉 for
(τ)HOAS. Essentially, ‘(e) corresponds to 〈e〉 in the syn-
tax of MetaML, and ˆ(e) corresponds to ˜(e). For instance,
in our concrete syntax, the code ‘(fn (x: int) => x * x)
expands into the following code, which has the type 〈int →
int〉.
HOASlam (fn (x: <int>) =>

HOASapp (HOASlift *, HOAStup (x, x)))

We reject code in which some syntactic sugar cannot be
removed. For instance, ^x + 1 is ill-formed since the symbol
^ can not be translated away. However, ‘(^x+1) is well-
formed, which translates into:

HOASapp(HOASlift +, HOAStup(x, HOASlift 1))

Therefore, ill-formedness is context-sensitive.
The above functions power1, square1, power2 and square2

can now be written as follows.

fun power1 n =
if n = 0 then ‘(fn x => 1)
else ‘(fn x => x * ^(power1 (n-1)) x)

withtype int -> <int -> int>

val square1 = compile ‘(fn x => ^(power1 2) x)

fun power2 n x =
if n = 0 then ‘1 else ‘(^x * ^(power2 (n-1) x))

val square2 = compile ‘(fn x => ^(power2 2 ‘x))

Generally speaking, we expect the following. Assume that
e is an expression of type τ in MetaML. Let e∗ be the ex-
pression obtained from replacing each 〈·〉 in e with ‘(·) and

each ˜ with ˆ and then translating away the syntactic sugar.
Then e∗ should have the same type τ (if we identify the type
constructor 〈·〉 in MetaML with HOAS).
Unfortunately, the outlined implementation of staged com-

putation contains an annoying problem, which is often called
open code extrusion. For instance, the following program:

‘(fn x: int HOAS => ^(compile ‘(x)))

translates into the following h.o.a.s. tree t:

HOASlam (fn x: (int HOAS) HOAS => compile (x))

Suppose we want to compile t; then we need to turn t into
a f.o.a.s tree by applying the function h2f to t; clearly, eval-
uating h2f(t) leads to a call of compile on HOASvar(”x”)
(assuming ”x” is the freshly generated name for the bound
variable x); but this call leads to a run-time error as there
is no way to compile a variable.
It is of great difficulty to properly address the problem

with open code extrusion. For an approach to implement-
ing staged computation that can prevent open code extru-
sion, please refer to [3], where a g.r. datatype constructor is
formed for representing typed code via deBruijn indices.

In [7], a language Mini-MLe with a type system based
on the modal logic S4 is presented for studying staged com-
putation. There, the type constructor is intended to
capture the closedness of code. Since h.o.a.s. trees (with no
use of HOASvar) can only represent closed expressions, we
naturally expect a relation between and HOAS. This is
to be studied in future.

4.3 Implementing Programming Objects
We briefly outline an approach to implementing objects

through the use of g.r. datatype constructors. When com-
pared with various existing approaches in the literature,
this approach addresses many difficult issues in objected-
oriented programming (e.g., parametric polymorphism, bi-
nary methods, the self type, etc.) in a purely type-theoretical
manner, which we feel is both natural and satisfactory. In
the following presentation, we take a view of objects in the
spirit of Smalltalk [9, 13], suggesting to conceptualize an ob-
ject as a little intelligent being that is capable of performing
actions according to the messages it receives.
We assume the existence of a guarded recursive datatype

constructor MSG that takes a type τ and forms a message
type (τ)MSG.2 Also, we require that MSG be extensible
(like the exception type in ML). After receiving a message
of type (τ)MSG, an object is expected to return a value of
type τ . Therefore, we assign an object the following type
OBJ :

OBJ = ∀α.(α)MSG → α

Suppose that we have declared through some syntax that
MSGgetfst ,MSGgetsnd ,MSGsetfst andMSGsetsnd are mes-
sage constructors of the following types, where 1 stands for
the unit type.

MSGgetfst : (int)MSG
MSGgetsnd : (int)MSG
MSGsetfst : int → (1)MSG

MSGsetsnd : int → (1)MSG

In Figure 11, we implement integer pairs in a message-
passing style, where the withtype clause is a type annota-
tion that assigns the type int → int → OBJ to the defined

2In the following presentation, when the arguments of a con-
structor are types, we always write the arguments in front
of the constructor.

fun newIntPair x y = let

val xref = ref x and yref = ref y

fun dispatch MSGgetfst = !xref

| dispatch MSGgetsnd = !yref

| dispatch (MSGsetfst x’) = (xref := x’)

| dispatch (MSGsetsnd y’) = (yref := y’)

| dispatch msg = raise UnknownMessage

in dispatch end

withtype int -> int -> OBJ

Figure 11: An implementation of integer pairs

function newIntPair . We point out it is solely for illustra-
tion purpose that we use the prefix MSG in the name of
each message constructor. Given integers x and y, we can
form an integer pair anIntPair by calling newIntPair(x)(y);
we can then send the message MSGgetfst to the pair to
obtain its first component: anIntPair(MSGgetfst); we can
also reset its first component to x′ by sending the message
MSGsetfst(x′) to the pair: anIntPair(MSGsetfst(x′)); oper-
ations on the second component of the pair can be performed
similarly. Note that an exception is raised at run-time if
anIntPair cannot interpret a message sent to it.

Classes Obviously, there exist some serious problems with
the above approach to implementing objects. Since every
object is currently assigned the type OBJ, we cannot use
types to differentiate objects. For instance, suppose that
MSGfoo is another declared message constructor of the type
(1)MSG; then anIntPair(MSGfoo) is well-typed, but its ex-
ecution leads to an uncaught exception UnknownMessage at
run-time. This is clearly undesirable: anIntPair(MSGfoo)
should be rejected at compile-time as an ill-typed expression.
We address this problem by providing the type constructor
MSG with another parameter. Given a type τ and a class C,
(τ)MSG(C) is a type; the intuition is that a message of the
type (τ)MSG(C) should only be sent to objects in the class
C, to which we assign the type OBJ(C) defined as follows:

OBJ(C) = ∀α.(α)MSG(C)→ α

First and foremost, we emphasize that a class is not a type;
it is really a tag used to differentiate messages. For instance,
we may declare a class IntPairClass and associate with it the
following message constructors of the corresponding types:

MSGgetfst : (int)MSG(IntPairClass)
MSGgetsnd : (int)MSG(IntPairClass)
MSGsetfst : int → (1)MSG(IntPairClass)

MSGsetsnd : int → (1)MSG(IntPairClass)

The function newIntPair can now be given the type int →
int → OBJ(IntPairClass); since anIntPair has the type
OBJ(IntPairClass), anIntPair(MSGfoo) becomes ill-typed
if MSGfoo has a type (1)MSG(C) for some class C that is
not IntPairClass. Following Dependent ML [25, 23], we use
class as the sort for classes.

Parameterized Classes There is an immediate need for
class tags parameterizing over types. Suppose we are to gen-
eralize the monomorphic function newIntPair into a poly-
morphic function newPair , which can take arguments x and
y of any types and then return an object representing the
pair whose first and second components are x and y, respec-
tively. We need a class constructor PairClass that takes
two given types τ1 and τ2, to form a class (τ1, τ2)PairClass.
We may use some syntax to declare such a class construc-

fun newPair x y = let

val xref = ref x and yref = ref y

fun dispatch MSGgetfst = !xref

| dispatch MSGgetsnd = !yref

| dispatch (MSGsetfst x’) = (xref := x’)

| dispatch (MSGsetsnd y’) = (yref := y’)

| dispatch msg = raise UnknownMessage

in dispatch end

withtype {’a,’b}. ’a -> ’b -> OBJ((’a,’b)PairClass)

fun newColoredPair c x y = let

val cref = ref c

and xref = ref x and yref = ref y

fun dispatch MSGgetcolor = !cref

| dispatch (MSGsetcolor c’) = (cref := c’)

| dispatch MSGgetfst = !xref

| dispatch MSGgetsnd = !yref

| dispatch (MSGsetfst x’) = (xref := x’)

| dispatch (MSGsetsnd y’) = (yref := y’)

| dispatch msg = raise UnknownMessage

in dispatch end

withtype {’a,’b} color ->

’a -> ’b -> OBJ ((’a,’b)ColoredPairClass)

Figure 12: Functions for constructing objects in the
classes PairClass and ColoredPairClass

tor and associate with it the following polymorphic message
constructors:

MSGgetfst : ∀α.∀β.(α)MSG((α, β)PairClass)
MSGgetsnd : ∀α.∀β.(β)MSG((α, β)PairClass)
MSGsetfst : ∀α.∀β.α → (1)MSG((α, β)PairClass)

MSGsetsnd : ∀α.∀β.β → (1)MSG((α, β)PairClass)

The function newPair for constructing pair objects is im-
plemented in Figure 12.

Subclasses Inheritance is a major issue in object-oriented
programming as it can significantly facilitate code organiza-
tion and reuse. We approach the issue of inheritance by
introducing a predicate ≤ on the sort class; given two
classes C1 and C2, we write C1 ≤ C2 to mean that C1

is a subclass of C2. The type of a message constructor
mc is now of the general form ∀�α.Πa ✁ C.(τ)MSG(a) or
∀�α.Πa ✁ C.τ1 → (τ2)MSG(a), where a ✁ C means that a
is of the subset sort {a : class | a ≤ C}, i.e., the sort
for all subclasses of the class C; for a sequence of types
�τ that is of the same length as �α, mc[�τ] becomes a mes-
sage constructor that is polymorphic on all subclasses of
C0 = C[�α �→ �τ]; therefore, mc can be used to construct a
message for any object tagged by a subclass of C0. For in-
stance, the types of the message constructors associated with
PairClass are now listed in Figure 13. Suppose we introduce
another class constructor ColoredPairClass , which takes two
types to form a class, and assume the following holds, i.e.,
(τ1, τ2)ColoredPairClass is a subclass of (τ1, τ2)P airClass
for any types τ1 and τ2:

∀α∀β.(α, β)ColoredPairClass ≤ (α, β)PairClass

We then associate with ColoredPairClass the message con-
structors MSGgetcolor and MSGsetcolor , whose types are
given in Figure 13. Note that color is just some already
defined type for colors.
We can then implement the function newColoredPair in

Figure 12 for constructing colored pairs. Clearly, the im-
plementation of newColoredPair shares a lot of common
code with that of newPair . We plan to provide some syn-
tactic support for the programmer to effectively reuse the
code in the implementation of newPair when implementing
newColoredPair .

Binary Methods Our approach to typed object-oriented
programming offers a clean solution to handling binary meth-
ods. For instance, we can declare a class EqClass and asso-
ciate with it two message constructors MSGeq and MSGneq
which are assigned the following types:

MSGeq : Πa ✁ EqClass .OBJ(a)→ (bool)MSG(a)
MSGneq : Πa ✁ EqClass .OBJ(a)→ (bool)MSG(a)

Suppose self is an object of type OBJ(C) for some C ≤ Eq.
If we pass a message MSGeq(other) to self , other is required
to have the type OBJ(C) in order for self (MSGeq(other))
to be well-typed. Therefore, self and other must be two
objects belonging to the same class.

The Self Type Our approach also offers a clean solution
to handling the notion of self type, namely, the type for
the receiver of a message. Suppose we want to support a
message MSGcopy that can be sent to any object to obtain a
copy of the object.3 We may assume MSGcopy is a message
constructor associated with some class ObjClass and C ≤
ObjClass holds for any class C. We can assign MSGcopy
the following type to indicate that the returned object is in
the same class as the object to which the message is sent,
since self (MSGcopy) has the type OBJ(C) whenever self is
an object of type OBJ(C) for some class C.

MSGcopy : Πa ✁ ObjClass.(OBJ(a))MSG(a)

If this is done in Java, all we can state in the type system
of Java is that an object is to return another object after
receiving the message MSGcopy. This is imprecise and is a
rich source for the use of type downcasting.

Inheritance Inheritance is handled in a Smalltalk-like
manner, but there is some significant difference. For those
who are familiar with exceptions in Standard ML, we point
out that the way that method lookup is implemented re-
sembles how exceptions are handled by exception handlers.
We now use a concrete example to illustrate how inheritance
can be implemented. This is also a proper place for us to
introduce some syntax that is designed to facilitate OOP.
We use the following syntax:

class ObjClass { MSGcopy: selfType => self; }

to declare a class tag ObjClass and a message constructor
MSGcopy of the type:

Πa ✁ ObjClass.(OBJ(a))MSG(a)

Note selfType is merely syntactic sugar here. In addition,
the syntax also automatically induces the definition of a
function superObj, which is written as follows in ML-like
syntax.

(* self is just an ordinary variable *)
fun superObj self = let

fun dispatch MSGcopy = self
| dispatch msg = raise UnknownMessage

in dispatch end
withtype {a <: ObjClass} OBJ(a) -> OBJ(a)

3It is up to the actual implementation as to how such a copy
can be constructed.

MSGgetfst : ∀α.∀β.Πa ✁ (α, β)P airClass.(α)MSG(a)
MSGgetsnd : ∀α.∀β.Πa ✁ (α, β)P airClass.(β)MSG(a)
MSGsetfst : ∀α.∀β.Πa ✁ (α, β)P airClass.α → (1)MSG(a)

MSGsetsnd : ∀α.∀β.Πa ✁ (α, β)P airClass.β → (1)MSG(a)
MSGgetcolor : ∀α∀β.Πa ✁ (α, β)ColoredPairClass .(color)MSGgetcolor (a)
MSGsetcolor : ∀α∀β.Πa ✁ (α, β)ColoredPairClass .color → (1)MSGsetcolor (a)

Figure 13: Some message constructors and their types

The function superObj we present here is solely for explain-
ing how inheritance can be implemented; such a function is
not to occur in a source program. The type of the func-
tion Πa ✁ ObjClass .OBJ(a) → OBJ(a) indicates this is a
function that takes an object tagged by a subclass C of
ObjClass and returns an object tagged by the same class.
In general, for each class C, a “super” function of the type
Πa ✁ C.OBJ(a) → OBJ(a) is associated with C. It should
soon be clear that such a function holds the key to imple-
menting inheritance. Now we use the following syntax to
declare classes Int1Class and ColoredInt1Class as well as
some message constructors associated with them.

class Int1Class inherits ObjClass {
MSGget_x: int;
MSGset_x (int): unit;
MSGdouble: unit =>
self(MSGset_x(2 * self(MSGget_x));

}

class ColoredInt1Class inherits Int1Class {
(* color is just some already defined type *)
MSGget_c: color;
MSGset_c (color): unit;

}

The “super” functions associated with the classes Int1Class
and ColoredInt1Class are automatically induced as follows.

fun superInt1 self = let
fun dispatch MSGdouble =

self(MSGset_x(2 * self(MSGget_x)))
| dispatch msg = superObj self msg

in dispatch end
withtype {a <: Int1Class} OBJ(a) -> OBJ(a)

fun superColoredInt1 self = let
fun dispatch msg = superInt1 self msg

in dispatch end
withtype {a <: ColoredInt1Class} OBJ(a) -> OBJ(a)

The functions for constructing objects in the classes Int1Class
and ColoredInt1Class are implemented in Figure 14. There
is something really interesting here. Suppose we use newInt1
and newColoredInt1 to construct objects o1 and o2 that are
tagged with Int1Class and ColoredInt1Class , respectively.
If we send the message MSGcopy to o1, then a copy of o1

(not o1 itself) is returned. If we send MSGdouble to o2,
then the integer value of o2 is doubled as it inherits the
corresponding method from the class Int1Class . What is
remarkable is that the object o2 itself is returned if we send
the message MSGcopy to o2. The reason is that no copying
method is defined for o2; searching for a copying method,
o2 eventually finds the one defined in the class ObjClass
(as there is no such a method defined in either the class
ColoredInt1Class or the class Int1Class). This is a desir-
able consequence: if o2 were treated as an object in the
class Int1Class , the returned object would be in the class

fun newInt1 (x0: int) = let

val x = ref x0

fun dispatch MSGget_x = !x

| dispatch (MSGset_x x’) = (x := x’)

| dispatch MSGcopy = newInt1 (!x)

| dispatch msg = superInt1 dispatch msg

in dispatch end

withtype int -> OBJ(Int1Class)

fun newColoredInt1 (c0: color, x0: int) = let

val c = ref c0 and x = ref x0

fun dispatch MSGget_c = !c

| dispatch (MSGset_c c’) = (c := c’)

| dispatch MSGget_x = !x

| dispatch (MSGset_x x’) = (x := x’)

| dispatch msg = superColoredInt1 dispatch msg

in dispatch end

withtype int -> OBJ(ColoredInt1Class)

Figure 14: Functions for constructing objects in
Int1Class and ColoredInt1Class

Int1Class , not in the class ColoredInt1Class , as it would
be generated by newInt1 (o2(MSGget x)), making the type
system unsound. We are currently not aware of any other
approach to correctly typing this simple example. Note that
the function newInt becomes ill-typed if we employ the no-
tion MyType here.

Subtypes There is not an explicit subtyping relation in
our approach. Instead, we can use existentially quantified
dependent types to simulate subtyping. For instance, given
a class tag C, the type OBJECT(C) = Σa ✁ C.OBJ(a) is
the sum of all types OBJ(a) satisfying a ≤ C. Hence, for
each C1 ≤ C, OBJ(C1) can be regarded as a subtype of
OBJECT(C) as each value of the type OBJ(C1) can be co-
erced into a value of the type OBJECT(C). As an example,
the type

OBJ((OBJECT(Int1Class), OBJECT(Int1Class))PairClass)

is for pair objects whose both components are objects in
some subclasses of Int1Class .

5. RELATED WORK AND CONCLUSION
Our work is related to both intentional polymorphism and

type classes.
There have already been a rich body of studies in the

literature on passing types at run-time in a type-safe man-
ner [6, 5, 21]. Many of such studies follow the framework
in [10], which essentially provides a construct typecase at
term level to perform type analysis and a primitive recursor
Typerec over type names at type level to define new type

constructors. However, in the presence of Typerec, it be-
comes rather difficult to define a proper equality on types.
For instance, the type equality defined in [10] is not closed
under substitution.
The language λML

i in [10] is subsequently extended to
λR in [6] to support type-erasure semantics. The type con-
structor R in λR can be seen as a special g.r. datatype
constructor.
The system of type classes in Haskell provides a pro-

gramming methodology that is of great use in practice. A
common approach to implementing type classes is through
dictionary-passing, where a dictionary is essentially a record
of the member functions for a particular instance of a type
class [1]. We encountered the notion of g.r. datatype con-
structors when seeking an alternative implementation of type
classes through intensional polymorphism. An approach to
implementing type classes through the use of g.r. datatype
constructors can be found at [24].
The dependent datatypes in DML [25, 23] also shed some

light on g.r. datatype constructors. For instance, we can
have the following dependent datatype declaration in DML.

datatype ’a list with nat =
nil(0) | {n:nat} cons(n+1) of ’a * ’a list(n)

The syntax introduces a type constructor list that takes a
type and a type index of sort nat to form a list type. The
constructors nil and cons are assigned the following types.

nil : ∀α.(α)list(0)
cons : ∀α.α ∗ (α)list(n)→ (α)list(n+ 1)

Given a type τ and natural number n, the type (τ)list(n) is
for lists with length n in which each element has the type τ .
Formally, the type constructor list can be defined as follows:

λα.µt.λa : nat.∃{0 = a}.1+ ∃{a′ : nat, a′ + 1 = a}.α ∗ t(a′)

Clearly, this is also a form of guarded datatype constructor,
where the guards are constraints on type index expressions
(rather than on types).
Although we initially met the notion of g.r. datatype

constructors during a study on run-time type-passing, we
have since found a variety applications of this notion be-
yond type-passing (e.g., implementing staged computation
and implementing programming objects). Currently, we are
particularly interested in implementing a CLOS-like object
system on the top of DML extended with g.r. datatype con-
structors, facilitating object-oriented programming styles in
a typed functional programming setting.

6. REFERENCES
[1] L. Augustsson. Implementing Haskell overloading. In

Functional Programming Languages and Computer
Architecture, 93.

[2] K. B. Bruce. Foundations of Object-Oriented Languages.
The MIT Press, Cambridge, MA, 2002.

[3] C. Chen and H. Xi. Implementing typed
meta-programming. Available at
http://www.cs.bu.edu/~hwxi/academic/papers/TMP.ps,
November 2002.

[4] A. Church. A formulation of the simple type theory of
types. Journal of Symbolic Logic, 5:56–68, 1940.

[5] K. Crary and S. Weirich. Flexible Type Analysis. In
Proceedings of International Conference on Functional
Programming (ICFP ’99), Paris, France, 1999.

[6] K. Crary, S. Weirich, and G. Morrisett. Intensional
polymorphism in type-erasure semantics. In Proceedings of
the International Conference on Functional Programming
(ICFP ’98), pages 301–312, Baltimore, MD, September
1998.

[7] R. Davies and F. Pfenning. A Modal Analysis of Staged
Computation. Journal of ACM, 2002.

[8] C. Dubois, F. Rouaix, and P. Weis. Generic Polymorphism.
In Proceeding of the 22th ACM Symposium on Principles
of Programming Languages (POPL ’95), pages 118–129,
London, UK, January 1995.

[9] A. Goldenberg and D. Robson. Smalltalk-80: The
Language and Its Implementation. Addison Wesley, 1983.

[10] R. W. Harper and G. Morrisett. Compiling polymorphism
using intensional type analysis. In Conference Record of
POPL ’95: 22nd ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 130–141, San
Francisco, 1995.

[11] K. Läufer and M. Odersky. Ploymorphic Type Inference
and Abstract Data Types. ACM Transactions of
Programming Languages and Systems (TOPLAS),
16(5):1411–1430, September 1994.

[12] X. Leroy. Unboxed objects and polymorphic typing. In
Conference Record of the Nineteenth Annual ACM
SIGPLAN Symposium on Principles of Programming
Languages, pages 177–188, Albuquerque, New Mexico,
January 1992.

[13] C. Liu. Smalltalk, Objects, and Design. Manning
Publications Co., Greenwich, CT 06830, 1996.

[14] R. Milner, M. Tofte, R. W. Harper, and D. MacQueen. The
Definition of Standard ML (Revised). MIT Press,
Cambridge, Massachusetts, 1997.

[15] M. Neubauer, P. Thiemann, M. Gasbichler, and
M. Sperber. A Functional Notation for Functional
Dependencies. In Proceedings of 2001 Haskell Workshop,
pages 101–120, Florence, Italy, September 2001.

[16] A. Ohori and K. Kato. Semantics for communication
primitives in a polymorphic language. In Conference
Record of the Twentieth Annual ACM SIGPLAN
Symposium on Principles of Programming Languages,
pages 99–112, Charleston, SC, January 1993.

[17] S. Peyton Jones et al. Haskell 98 – A non-strict, purely
functional language. Available at
http://www.haskell.org/onlinereport/, Feb. 1999.

[18] F. Pfenning. Computation and Deduction. Cambridge
University Press, 2002.

[19] W. Taha and T. Sheard. MetaML and multi-stage
programming with explicit annotations. Theoretical
Computer Science, 248(1-2):211–242, 2000.

[20] A. Tolmach. Tag-free garbage collection using explicit type
parameters. In Proceedings of ACM Conference on LISP
and Functional Programming, pages 1–11, Orlando, FL,
June 1994.

[21] V. Trifonov, B. Saha, and Z. Shao. Fully Reflexive
Intensional Type Analysis. In Proceedings of the
International Conference on Functional Programming,
September 1999.

[22] S. Weirich. Encoding intensional type analysis. In D. Sands,
editor, Programming Languages and Systems: 10th
European Symposium on Programming, ESOP 2001 Held
as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2001 Genova, Italy, April
2-6, 2001, volume 2028 of Lecture Notes in Computer
Science, pages 92–106. Springer, 2001.

[23] H. Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998. pp. viii+189.
Available as
http://www.cs.cmu.edu/~hwxi/DML/thesis.ps.

[24] H. Xi, C. Chen, and G. Chen. Guarded Recursive Datatype
Constructors, 2002. Available at
http://www.cs.bu.edu/~hwxi/GRecTypecon/.

[25] H. Xi and F. Pfenning. Dependent types in practical
programming. In Proceedings of ACM SIGPLAN
Symposium on Principles of Programming Languages,
pages 214–227, San Antonio, Texas, January 1999.

