
Safe Programming with Pointers
through Stateful Views?

Dengping Zhu and Hongwei Xi

Computer Science Department
Boston University

{zhudp,hwxi}@cs.bu.edu

Abstract. The need for direct memory manipulation through pointers is essential
in many applications. However, it is also commonly understood that the use (or
probably misuse) of pointers is often a rich source of program errors. Therefore,
approaches that can effectively enforce safe use of pointers in programming are
highly sought after. ATS is a programming language with a type system rooted in
a recently developed framework Applied Type System, and a novel and desirable
feature in ATS lies in its support for safe programming with pointers through a
novel notion of stateful views. In particular, even pointer arithmetic is allowed
in ATS and guaranteed to be safe by the type system of ATS. In this paper, we
give an overview of this feature in ATS, presenting some interesting examples
based on a prototype implementation of ATS to demonstrate the practicality of
safe programming with pointer through stateful views.

1 Introduction

The verification of program correctness with respect to specification is a highly signif-
icant problem that is ever present in programming. There have been many approaches
developed to address this fundamental problem (e.g., Floyd-Hoare logic [Hoa69,AO91],
model checking [EGP99]), but they are often too expensive to be put into general soft-
ware practice. For instance, Floyd-Hoare logic is mostly employed to prove the cor-
rectness of some (usually) short but often intricate programs, or to identify some subtle
problems in such programs. Though larger programs can be handled with the help of
automated theorem proving, it is still as challenging as it was to support Floyd-Hoare
logic in a realistic programming languages. On the other hand, the verification of type
correctness of programs, that is, type-checking, in languages such as ML and Java scales
convincingly in practice. However, we must note that the types in ML and Java are of
relatively limited expressive power when compared to Floyd-Hoare logic. Therefore,
we are naturally led to form type systems in which more sophisticated properties can
be captured and then verified through type-checking.

A heavy-weighted approach is to adopt a type system in which highly sophisticated
properties on programs can be captured. For instance, the type system of NuPrl [C+86]
based on Martin-Löf’s constructive type theory is such a case. In such a type system,

? Partially supported by NSF grant no. CCR-0229480

types are exceedingly expressive but type-checking often involves a great deal of theo-
rem proving and becomes intractable to automate. This is essentially an approach that
strongly favors expressiveness over scalability.

We adopt a light-weighted approach, introducing a notion of restricted form of de-
pendent types, where we clearly separate type index expressions from run-time expres-
sions. In functional programming, we have enriched the type system of ML with such
a form of dependent types, leading to the design of a functional programming language
DML (Dependent ML) [Xi98,XP99]. In imperative programming, we have designed a
programming language Xanadu with C-like syntax to support such a form of dependent
types. Along a different but closely related line of research, a new notion of types called
guarded recursive (g.r.) datatypes is recently introduced [XCC03]. Noting the close re-
semblance between the restricted form of dependent types (developed in DML) and
g.r. datatypes, we immediately initiated an effort to design a unified framework for both
forms of types, leading to the formalization of Applied Type System (ATS) [Xi03,Xi04].
We are currently in the process of designing and implementing ATS, a programming
language with its type system rooted in ATS . A prototype of ATS (with minimal doc-
umentation and many examples) is available on-line [Xi03]. Note that we currently use
the name ATS-style dependent types for the dependent types in ATS so as to distin-
guish them from the dependent types in Martin-Löf’s constructive type theory.

fun arrayAssign {a:type, n:nat} (A:array (a,n), B:array (a,n)): unit =
let

fun loop {i:nat | i <= n} (ind: int (i)): unit =
if ind < length A then

(set (B, ind, get (A, ind)); loop (ind + 1))
in

loop (0)
end

Fig. 1. A simple example in ATS

ATS is a comprehensive programming language designed to support a variety of
programming paradigms (e.g., functional programming, object-oriented programming,
imperative programming, modular programming, meta-programming), and the core of
ATS is a call-by-value functional programming language. In this paper, we are to focus
on the issue of programming with pointers in ATS.

As programming with dependent types is currently not a common practice, we use
a concrete example to give the reader some feel as to how dependent types can be used
to capture program invariants. In Figure 1, we implement a function arrayAssign that
assigns the content of one array to another array. The header in the definition of the
function arrayAssign means that arrayAssign is assigned the following type:

∀a : type.∀n : nat.(array(a, n), array(a, n)) → 1

We use 1 for the unit type, which roughly corresponds to the void type in C. Given a
type T and an integer I , we use array(T, I) as the type for arrays of size I in which
each element is assigned the type T . Therefore, the type given to arrayAssign indicates
that arrayAssign can only be applied to two arrays of the same size. The quantifications

∀a : type and ∀n : nat mean that a and n can be instantiated with any given type and
natural number, respectively. The inner function loop is assigned the following type:
∀i : nat.i ≤ n ⊃ (int(i) → 1). Given an integer I , we use int(I) as the singleton type
for I , that is, the only value of type int(I) equals I . The type given to loop means that
loop can only be applied to a natural number whose value is less than or equal to n,
which is the size of the arguments of arrayAssign. In ATS, we call i ≤ n a guard and
i ≤ n ⊃ (int(i) → 1) a guarded type. Also we point out that the function length is
given the following type:

length : ∀a : type.∀n : nat.array(a, n) → int(n)

and the array subscripting function get and the array updating function set are given the
following types:

get : ∀a : type.∀n : nat.∀i : nat.i < n ⊃ ((array(a, n), int(i)) → a)
set : ∀a : type.∀n : nat.∀i : nat.i < n ⊃ ((array(a, n), int(i), a) → 1)

which indicate that the index used to access an array must be within the bounds of the
array.

To support safe programming with pointers, a notion called stateful view is intro-
duced in ATS to model memory layout. Given a type T and an address L, we use T@L
for the (stateful) view indicating that a value of type T is stored at address L. This is
the only form of a primitive view and all other views are built on top of such primitive
views. For instance, we can form a view (T@L, T ′@(L + 1)) to mean that a value of
type T and another value of type T ′ are stored at addresses L and L + 1, respectively,
where we use L + 1 for the address immediately following L. A stateful view is similar
to a type, and it can be assigned to certain terms, which we often refer to as proof terms
(or simply proofs) of stateful views. We treat proofs of views as a form of resources,
which can be consumed as well as generated. In particular, the type theory on views is
based on a form of linear logic [Gir87].

Certain functions may require proofs of stateful views when applied and they may
cause stateful views to change when executed. For instance, the functions getVar and
setVar are given the following types:

getVar : ∀a : type.∀l : addr.(a@l | ptr(l)) → (a@l | a)
setVar : ∀a1 : type.∀a2 : type.∀l : addr.(a1@l | a2, ptr(l)) → (a2@l | 1)

where we use ptr(L) as the singleton type for the pointer pointing to a given address L.
The type assigned to getVar means that the function takes a proof of view T@L for

some type T and address L, and a value of type ptr(L), and then returns a proof of view
T@L and a value of type T . In this case, we say that a proof of view T@L is consumed
and another proof of view T@L is generated. We emphasize that proofs are only used
at compile-time for performing type-checking and they are neither needed nor available
at run-time. We use getVar here as the function that reads from a given pointer. Note
that the proof argument of getVar essentially assures that the pointer passed to getVar
cannot be a dangling pointer as the proof argument indicates that a value of certain type
is stored at the address to which the pointer points.

fun swap {t1:type, t2:type, l1:addr, l2:addr}
(pf1: t1 @ l1, pf2: t2 @ l2 | p1: ptr (l1), p2: ptr (l2))

: ’(t1 @ l2, t2 @ l1 | unit) =
let

val ’(pf1 | tmp1) = getVar (pf1 | p1)
val ’(pf2 | tmp2) = getVar (pf2 | p2)
val ’(pf1’ | _) = setVar (pf1 | p1, tmp2)
val ’(pf2’ | _) = setVar (pf2 | p2, tmp1)

in
’(pf2’, pf1’ | ’())

end

Fig. 2. A simple swap function

The type assigned to the function setVar can be understood in a similar manner:
setVar takes a proof of view T1@L for some type T1 and address L and a value of
type T2 for some type T2 and another value of type ptr(L), and then returns a proof of
view T2@L and the unit (of type 1). In this case, we say that a proof of view T1@L is
consumed and another proof of view T2@L is generated. Since we use setVar here as
the function that writes to a given address, this change precisely reflects the situations
before and after the function setVar is called: A value of type T1 is stored at L before
the call and a value of type T2 is stored at L after the call.

The functions allocVar and freeVar, which allocates and deallocates a memory unit,
respectively, are also of interest, and their types are given as follows:

allocVar : () → ∃l : addr.(top@l | ptr(l))
freeVar : ∀a : type.∀l : addr.(a@l | ptr(l)) → 1

We use top for the top type, that is, every type is a subtype of top. So when called,
allocVar returns a proof of view top@L for some address L and a pointer of type ptr(L).
The proof is needed if a write operation through the pointer is to be done. On the other
hand, a call to freeVar makes a pointer no longer accessible.

As an example, a function is implemented in Figure 2 that swaps the contents stored
at two (distinct) addresses. We use ′(. . .) to form tuples, where the quote symbol (′) is
solely for the purpose of parsing. For instance, ′() stands for the unit (i.e., the tuple of
length 0). Also, the bar symbol (|) is used as a separator (like the comma symbol (,)).

Note that proofs are manipulated explicitly in the above implementation, and this
could be burdensome to a programmer. In ATS we also allow certain proofs be con-
sumed and generated implicitly. For instance, the function in Figure 2 may also be
implemented as follows in ATS:

fun swap {t1:type, t2:type, l1:addr, l2:addr}
(pf1: t1 @ l1, pf2: t2 @ l2 | p1: ptr (l1), p2: ptr (l2))

: ’(t1 @ l2, t2 @ l1 | unit) =
let val tmp := !p1 in p1 := !p2; p2 := tmp end

where we use ! for getVar and := for setVar and deal with proofs in an implicit manner.
The primary goal of the paper is to make ATS accessible to a wider audience who

may or may not have adequate formal training in type theory. We are thus intentionally
to avoid presenting the (intimidating) theoretical details on ATS as much as possible,

striving for a clean and intuitive introduction to the use of stateful views in support
of safe programming with pointers. For the reader who is interested in the technical
development of ATS, please refer to [Xi03] for further details. Also, there is a prototype
implementation of ATS as well as many interesting examples available on-line [Xi03].

We organize the rest of the paper as follows. In Section 2, we give brief explana-
tion on some (uncommon) forms of types in ATS. We then present some examples in
Section 3, showing how programming with pointers is made safe in ATS. We mention
some related work in Section 4 and conclude in Section 5.

2 ATS/SV in a Nutshell

In this section, we present a brief overview of ATS/SV, the type system that supports
imperative programming (with pointers) in ATS. As an applied type system, there are
two components in ATS/SV: static component (statics) and dynamic component (dy-
namics). Intuitively, the statics and dynamics are each for handling types and programs,
respectively, and we are to focus on the statics of ATS/SV.

sorts σ ::= addr | bool | int | type
static contexts Σ ::= ∅ | Σ,a : σ
static addr. L ::= a | l | L + I
static int. I ::= a | i | cI(s1, . . . , sn)
static prop. P ::= a | b | cP (s1, . . . , sn) | ¬P | P1 ∧ P2 | P1 ∨ P2 | P1 ⊃ P2

types T ::= a | δ(~s) | (V | T) → CT | P ⊃ T | ∀a : σ.T | P ∧ T | ∃a : σ.T

computation types CT ::= ∃Σ,P .(V | T)

stateful views V ::= > | T@L | δ(~s) | V1−◦ V2 | V1 ⊗ V2

Fig. 3. The syntax for the statics of ATS/SV

The syntax for the statics of ATS/SV is given in Figure 3. The statics itself is a
simply typed language and a type in it is called a sort. We assume the existence of the
following basic sorts in ATS/SV : addr, bool, int and type; addr is the sort for addresses,
and bool is the sort for boolean constants, and int is the sort for integers, and type is the
sort for types (which are to be assigned to dynamic terms, i.e., programs). We use a for
static variables, l for address constants l0, l1, . . ., b for boolean values tt and ff, and i for
integers 0,−1, 1, A term s in the statics is called a static term, and we use Σ ` s : σ
to mean that s can be assigned the sort σ under Σ. The rules for assigning sorts to
static terms are all omitted as they are completely standard. We may also use L, P, I, T
for static terms of sorts addr, bool, int, type, respectively. We assume some primitive
functions cI when forming static terms of sort int; for instance, we can form terms such
as I1 + I2, I1 − I2, I1 ∗ I2 and I1/I2. Also we assume certain primitive functions cP

when forming static terms of sort bool; for instance, we can form propositions such as
I1 ≤ I2 and I1 ≥ I2, and for each sort σ we can form a proposition s1 =σ s2 if s1

and s2 are static terms of sort σ; we may omit the subscript σ in =σ if it can be readily
inferred from the context. In addition, given L and I , we can form an address L + I ,
which equals ln+i if L = ln and I = i and n + i ≥ 0.

We use ~s for a sequence of static terms, and P , T and V for sequences of proposi-
tions, types and views, respectively, and ∅ for the empty sequence.

We use ST for a state, which is a finite mapping from addresses to values, and
dom(ST) for the domain of ST. We say that a value v is stored at l in ST if ST(l) = v.
Note that we assume that every value takes one memory unit to store, and this, for
instance, can be achieved through proper boxing. Given two states ST1 and ST2, we
write ST1 ⊗ ST2 for the union of ST1 and ST2 if dom(ST1) ∩ dom(ST2) = ∅. We write
ST : V to mean that the state ST meets the view V. We now present some intuitive
explanation on certain forms of views and types.

– We use > for the empty view, which is met by the empty state, that is, the state
whose domain is empty.

– We use δ for a view constructor and write ` δ(σ1, . . . , σn) to mean that apply-
ing δ to static terms s1, . . . , sn of sorts σ1, . . . , σn, respectively, generates a view
δ(s1, . . . , sn). There are certain view proof constructors c associated with each δ,
which are assigned views of the form ∀Σ, P .(V)−◦ δ(~s). For example, the (recur-
sively defined) view constructor arrayView in Figure 6 (in Section 3) forms a view
arrayView(T, I, L) when applied to a type T , an integer I and an address L; the
two proof constructors associated with arrayView are ArrayNone and ArraySome.

– Given L and T , we can form a primitive view T@L, which is met by the state that
maps L to a value of type T .

– Given V1 and V2, a state ST meets V1−◦ V2 if ST1 ⊗ ST meets V2 for any state
ST1 : V1 such that dom(ST1) ∩ dom(ST) = ∅.

– Given V1 and V2, a state ST meets V1 ⊗ V2 if ST = ST1 ⊗ ST2 for some ST1 : V1

and ST2 : V2.
– In general, we use δ(~s) for primitive types in ATS/SV. For instance, top is the top

type, that is, every type is a subtype of top; 1 is the unit type; ptr(L) is a singleton
type containing the only address equal to L, and we may also refer to a value of
type ptr(L) as a pointer (pointing to L); bool(P) is a singleton type containing the
only boolean value equal to P ; int(I) is a singleton type containing the only integer
equal to I .

– (V | T) → CT is a type for (dynamic) functions that can be applied to values of
type T only if the current state (when the application occurs) meets the views V ,
and such an application yields a dynamic term that can be assigned the computation
type CT of the form ∃Σ ′, P

′

.(V
′

| T ′), which intuitively means that the dynamic
term is expected to evaluate to value v at certain state ST such that for some static
substitution Θ, each proposition in P

′

[Θ] is true, v is of type T ′[Θ] and ST meets
V′[Θ]. In the following presentation, we use T1 → T2 as a shorthand for (∅ | T1) →
∃∅, ∅.(∅ | T2) and call it a stateless function type.

– P ⊃ T is called a guarded type and P∧T is called an asserting type. As an example,
the following type is for a function from natural numbers to negative integers:

∀a : int.a ≥ 0 ⊃ (int(a) → ∃a′ : int.(a′ < 0) ∧ int(a′))

The guard a ≥ 0 indicates that the function can only be applied to an integer that is
greater than or equal to 0; the assertion a′ < 0 means that each integer returned by
the function is negative.

Σ;P |= T ≤tp top Σ;P |= T ≤tp T

Σ;P |= T1 ≤tp T2 Σ;P |= T2 ≤tp T3

Σ;P |= T1 ≤tp T3

` δ(σ1 , . . . , σn) Σ;P |= si ≡σi
s′

i
for 1 ≤ i ≤ n

Σ;P |= δ(s1 , . . . , sn) ≤tp δ(s′

1
, . . . , s′

n)

Σ;P ;V
′

|= ⊗(V) Σ;P |= T ′ ≤tp T Σ;P |= CT ≤ct CT′

Σ;P |= (V | T) → CT ≤tp (V
′

| T ′) → CT′

Σ;P ` (V | T) → CT ≤tp (V , V | T) → CT[V]
(ext)

Σ;P, P ′ |= P Σ;P ,P ′ |= T ≤tp T ′

Σ;P |= P ⊃ T ≤tp P ′ ⊃ T ′

Σ,a : σ; P |= T ≤tp T ′

Σ;P |= ∀a : σ.T ≤tp ∀a : σ.T ′

Σ;P ,P |= P ′ Σ;P,P |= T ≤tp T ′

Σ;P |= P ∧ T ≤tp P ′ ∧ T ′

Σ,a : σ; P |= T ≤tp T ′

Σ;P |= ∃a : σ.T ≤tp ∃a : σ.T ′

Σ,Σ0;P ,P 0 |= P
′

0 Σ,Σ0;P ,P 0;V |= ⊗(V
′

) Σ,Σ0;P, P 0 |= T ≤tp T ′

Σ;P |= ∃Σ0, P 0.(V | T) ≤ct ∃Σ0, P
′

0.(V
′

| T ′)

Fig. 4. The subtype rules

There are two forms of constraints in ATS/SV : Σ; P |= P (persistent) and Σ; P ;V |= V
(ephemeral), which are needed to define type equality. Generally speaking, we use in-
tuitionistic logic and intuitionistic linear logic to reason about persistent and ephemeral
constraints, respectively. We may write Σ; P |= P 0 to mean that Σ; P |= P holds for
every P in P 0. Most of the rules for proving persistent constraints are standard and thus
omitted. For instance, the following rules are available:

Σ;P, P |= P

Σ;P ,¬P |= ff

Σ;P |= P

Σ;P, P1 |= P2

Σ;P |= P1 ⊃ P2

Σ;P |= P1 ⊃ P2 Σ;P |= P1

Σ;P |= P2

We introduce a subtype relation T1 ≤tp T2 on static terms of sort type and define
the type equality T1 =type T2 to be T1 ≤tp T2 ∧ T2 ≤tp T1. A subtype judgment is of
the form Σ; P |= T1 ≤tp T2, and the rules for deriving such a judgment are given in
Figure 4, where the obvious side conditions associated with certain rules are omitted.
Note that ⊗(V) is defined to be > if V is empty or V1 ⊗ . . . ⊗ Vn if V = V1, . . . , Vn

for some n ≥ 1. In the rule (ext), we write CT[V] for ∃Σ, P .(V , V | T), where CT
is ∃Σ, P .(V | T) and no free variables in V occur in Σ. For those who are familiar
with separation logic [Rey02], we point out that this rule essentially corresponds to the
frame rule there. The rule (ext) is essential: For instance, suppose the type of a function
is (V | T) → CT and the current state meets the view ⊗(V 0) such that V 0 = V 1, V
and ∅; ∅;V 1 |= ⊗(V) is derivable. In order to apply the function at the current state,
we need to assign the type (V , V | T) → CT[V] to the function so that the view V can
be “carried over”. This can be achieved by an application of the rule (ext).

Σ;P |= T ≤tp T ′

Σ;P ; T@L |= T ′@L Σ;P ; ∅ |= >

Σ;P ;V |= V

Σ;P ;V ,> |= V

Σ;P ;V 1 |= V1 Σ;P ;V 2 |= V2

Σ;P ;V 1, V 2 |= V1 ⊗ V2

Σ;P ;V , V1, V2 |= V

Σ;P ;V , V1 ⊗ V2 |= V

Σ;P ;V , V1 |= V2

Σ;P ;V |= V1−◦ V2

Σ;P ;V 1 |= V1−◦ V2 Σ;P ;V 2 |= V1

Σ;P ;V 1, V 2 |= V2

` δ(σ1 , . . . , σn) Σ;P |= si ≡σi
s′

i
for 1 ≤ i ≤ n

Σ;P ; δ(s1, . . . , sn) |= δ(s′

1
, . . . , s′

n)

Σ;P [a 7→ i];V [a 7→ i] ` V[a 7→ i] for every integer i

Σ, a : int; P ;V ` V

Fig. 5. Some rules for ephemeral constraints

dataview arrayView (type, int, addr) =
| {a:type, l:addr} ArrayNone (a, 0, l)
| {a:type, n:nat, l:addr}

ArraySome (a, n+1, 1) of (a @ l, arrayView (a, n, l+1)

Fig. 6. An dataview for arrays

Some of the rules for proving ephemeral constraints are given in Figure 5, and the
rest are associated with primitive view constructors. Given primitive view constructor δ
with proof constructors c1, . . . , cn, we introduce the following rule for each ci,

Σ ` Θ : Σ0 Σ |= P 0[Θ] Σ;P ;V |= ⊗(V i[Θ])

Σ;P ;V |= δ(~si[Θ])

where we assume that ci is assigned the following view: ∀Σi, P i.(V i)−◦ δ(~si); in ad-
dition, we introduce the following rule:

Σ,Σi;P ,P i, ~s = ~si;V ,V i |= V for 1 ≤ i ≤ n

Σ;P ;V , δ(~s) |= V

The key point we stress here is that both the persistent and ephemeral constraint rela-
tions can be formally defined.

3 Examples

3.1 Arrays

Array is probably the most commonly used data structure in programming. We declare
in Figure 6 a dataview for representing arrays. Given a type T , an integer I and an
address L, arrayView(T, I, L) is a view for an array pictured as follows,

eltI−1elt1elt0

L L+I−1L+1 L+2 . . .

. . .

such that (1) each element of the array is of type T , (2) the length of the array is I and
(3) the array starts at address L and ends at address L+ I − 1.There are two view proof
constructors ArrayNone and ArraySome associated with the view arrayView, which are
assigned the following functional views:

ArrayNone : ∀a : type.∀l : addr.()−◦ arrayView(a, 0, l)
ArraySome : ∀a : type.∀l : addr.∀n : nat.(a@l, arrayView(a, n, l + 1))−◦ arrayView(a, n + 1, l)

For instance, the view assigned to ArraySome means that an array of size I +1 contain-
ing elements of type T is stored at address L if an value of type T is stored at L and an
array of size I containing values of type T is stored at L + 1.

fun getFirst {a:type, n:int, l:addr | n > 0}
(pf: arrayView (a,n,l) | p: ptr(l)): ’(arrayView (a,n,l) | a) =

let
prval ArraySome (pf1, pf2) = pf
// pf1: a@l and pf2: arrayView (a,n-1,l+1)
val ’(pf1’ | x) = getVar (pf1 | p)
// pf1’: a@l

in
’(ArraySome (pf1’, pf2) | x)

end

Fig. 7. A simple function on arrays

We now implement a simple function getFirst in Figure 7 that takes the first element
in a nonempty array. The header of the function getFirst indicates that the following type
is assigned to it:

∀a : type.∀n : int.∀l : addr.n > 0 ⊃ ((arrayView(a, n, l) | ptr(l)) → (arrayView(a, n, l) | a))

The (unfamiliar) syntax in the body of getFirst needs some explanation: pf is a proof of
the view arrayView(a, n, l), and it must be of the form ArraySome(pf1, pf2), where pf1
and pf2 are proofs of views a@l and arrayView(a, n− 1, l + 1), respectively; recall that
the function getVar is assumed to be of the following type:

∀a : type.∀l : addr.(a@l | ptr(l)) → (a@l | a)

which simply means that applying getVar to a pointer of type ptr(L) requires a proof
of T@L for some type T and the application returns a value of type T as well as a
proof of T@L; thus pf ′

1 is also a proof of a@l and ArraySome(pf ′

1, pf2) is a proof of
arrayView(a, n, l). In the definition of getFirst, we have both code for dynamic compu-
tation and code for static manipulation of proofs of views, and the latter is to be erased
before dynamic computation starts.

dataview slseg (type, int, addr, addr) =
| {a:type, l:addr} SlsegNone (a, 0, l, l)
| {a:type, n:nat, first, next, last | first <> null}
SlsegSome (a, n+1, first, last) of

((a, ptr (next)) @ first, slseg (a, n, next, last))

viewdef sllist (a, n, l) = slseg (a, n, l, null)

Fig. 8. A dataview for singly-linked list segments

3.2 Singly-Linked Lists

We can declare a dataview for representing singly-linked list segments in Figure 8. Note
that we write (T0, · · · , Tn)@L for a sequence of views: T0@(L + 0), · · · , Tn@(L + n).
Given a type T , an integer I and two addresses L1 and L2, slseg(T, I, L1, L2) is a view
for a singly-linked list segment pictured as follows:

2 L

1 L
. . .

nelt2elt1elt

where (1) each element in the segment is of type T , (2) the length of the segment is n and
(3) the segment starts at L1 and ends at L2. A singly-linked list is simply a special kind
of singly-linked list segment that ends with a null pointer, and this is clearly reflected
in the definition of the view constructor sllist presented in Figure 8.

We now present an interesting example in Figure 9. The function array2sllist in
the upper part of the figure turns an array into a singly-linked list. To facilitate under-
standing, we also present in the lower part of the figure a corresponding function im-
plemented in C. If we erase the types and proofs in the implementation of array2sllist
in ATS, then the implementation is tail recursive and tightly corresponds to the loop in
the implementation in C. What is remarkable here is that the type system of ATS can
guarantee the memory safety of array2sllist (even in the presence of pointer arithmetic).

3.3 A Buffer Implementation

We present an implementation of buffers based on linked lists in this section. We first
define a view constructor bufferView as follows:

viewdef bufferView (a:type, m:int, n:int, first: addr, last: addr) =
’(slseg (a, m, first, last), slseg (top, n-m, last, first))

where m and n represent the number of elements stored in a buffer and the maximal
buffer size, respectively. For instance, such a buffer can be pictured as follows:

fun array2sllist {l:addr, n:nat | n >= 1, l <> null}
(pf: arrayView (top, n+n, l) | p: ptr(l), s: int(n))
: ’(sllist (top, n, l) | unit) =
if s ieq 1 then
let

prval ArraySome (pf0, ArraySome (pf1, ArrayNone)) = pf
val ’(pf1 | _) = setVar (pf1 | p + 1, null)

in
’(SlsegSome (’(pf0, pf1), SlsegNone) | ’())

end
else
let

prval ArraySome (pf0, ArraySome (pf1, pf)) = pf
val ’(pf1 | _) = setVar (pf1 | p + 1, p + 2)
val ’(rest | _) = array2sllist (pf | p + 2, s - 1)

in
’(SlsegSome (’(pf0, pf1), rest) | ’())

end

///

/* The following program in C corresponds the above one in ATS */

typedef struct slseg { int val; struct slseg * next; } slseg;

void array2sllist (int* p, int size) {
int s;

for (s = size; s > 1; s = s - 1) { *(p+1) = p+2; p = p+2; }

(p+1) = 0; / assign the null pointer */
}

Fig. 9. Converting an array into a singly-linked list

.
first

last

elt 1 elt 2 elt m �������
�

���
�

���
�

where we use • for uninitialized or discarded content. In the above picture, we see that
a buffer of maximal size n consists of two list segments: one with length m, which
contains the values that are currently placed in the buffer, starts at address first and
ends at last, and we call it the occupied segment; the other with length (n − m), which
contains all free cells in this buffer, starts at last and ends at first, and we call it free
segment. The address first is often viewed as the head of a buffer.

In Figure 10, we present a function addIn that inserts an element into a buffer and
another function takeOut that removes an element from a buffer. The header of the
function addIn indicates that the following type is assigned to it,

∀a : type.∀m : nat.∀n : nat.∀l1 : addr.∀l2 : addr.m < n ⊃
(bufferView(a, m, n, l1, l2) | a, ptr(l2)) → ∃l3 : addr.(bufferView(a, m + 1, n, l1, l3) | ptr(l3))

fun addIn {a:type, m: nat, n:nat, first:addr, last:addr | m < n}
(pf: bufferView (a, m, n, first, last) | x: a, t: ptr(last))

: [last’:addr]
’(bufferView (a, m+1, n, first, last’) | ptr (last’)) =

let
prval ’(pf0, pf1) = pf
prval SlsegSome (’(pf100, pf101), pf11) = pf1
val ’(pf100 | _) = setVar (pf100 | t, x)
val ’(pf101 | p) = getVar (pf101 | t + 1)
prval pf0 =

slsegAppend (pf0, SlsegSome (’(pf100, pf101), SlsegNone))
in
’(’(pf0, pf11) | p)

end

fun takeOut {a:type, m:nat, n:nat, first:addr, last:addr | m>0, n>=m}
(pf: bufferView (a, m, n, first, last) | h: ptr(first))

: [first’:addr]
’(bufferView (a, m-1, n, first’, last) | ’(a, ptr(first’))) =

let
prval ’(pf0, pf1) = pf
prval SlsegSome (’(pf000, pf001), pf01) = pf0
val ’(pf000 | x) = getVar (pf000 | h)
val ’(pf001 | p) = getVar (pf001 | h + 1)
prval pf1 =

slsegAppend (pf1, SlsegSome (’(pf000, pf001), SlsegNone))
in
’(’(pf01, pf1) | ’(x, p))

end

Fig. 10. Two functions on cyclic buffers

which simply means that inserting into a buffer requires that the buffer is not full and, if
it succeeds, the application increases the length of occupied segment by one and returns
a new ending address for occupied segment (a.k.a. the new starting address for free
segment). Similarly, the following type is assigned to the function takeOut,

∀a : type.∀m : nat.∀n : nat.∀l1 : addr.∀l2 : addr.m ≤ n ∧ m > 0 ⊃
(bufferView(a, m, n, l1, l2) | ptr(l1)) → ∃l3 : addr.(bufferView(a, m − 1, n, l3, l2) | a, ptr(l3))

which means that removing an element out of a buffer requires that the buffer is not
empty and, if it succeeds, the application decreases the length of occupied segment by
one and returns the element and a new starting address for occupied segment (a.k.a the
new ending address for free segment). In addition, from the type of function takeOut,
we can see that there is no need to fix the position of the buffer head and, in fact, the
head of a buffer moves along the circular list if we keep taking elements out of that
buffer.

The function slsegAppend is involved in the implementation of addIn and takeOut.
This is a proof function that combines two list segment views into one list segment
view, and it is assigned the following functional view:

∀a : type.∀n1 : nat.∀n2 : nat.∀l1 : addr.∀l2 : addr.∀l3 : addr.
(slseg(a, n1, l1, l2), slseg(a, n2, l2, l3))−◦ slseg(a, n1 + n2, l1, l3)

Note that this function is only used for type-checking at compile-time and is neither
needed nor available at run-time.

3.4 Other Examples

In addition to arrays and singly-linked lists, we have also handled a variety of other
data structures such as doubly-linked lists and doubly-linked binary trees that make
(sophisticated) use of pointers. Some of the examples involving such data structures
(e.g., a splay tree implementation based on doubly-linked binary trees) can be found
on-line [Xi03].

4 Related Work

A fundamental problem in programming is to find approaches that can effectively facil-
itate the construction of safe and reliable software. In an attempt to address this prob-
lem, studies on program verification, that is, verifying whether a given program meets
its specification, have been conducted extensively.

Some well-known existing approaches to program verification include model check-
ing (which is the algorithmic exploration of the state spaces of finite state models of sys-
tems), program logics (e.g., Floyd-Hoare logic), type theory, etc. However, both model
checking and Floyd-Hoare logic are often too expensive to be put into software practice.
For instance, although model checking has been used with great success in hardware
verification for more than twenty years, its application in software is much less com-
mon and the focus is often on verifying programs such as device drivers that are closely
related to hardware control. In particular, model checking suffers from problems such
as state space explosion and highly non-trivial abstraction and is thus difficult to scale
in practice. There are also many cases reported in the literature that make successful use
of program logics in program verification. As (a large amount of) theorem proving is
often involved, such program verification is often too demanding for general practice.

On the other hand, the use of types in program error detection is ubiquitous. How-
ever, the types in programming languages such as ML and Java are often too limited
for capturing interesting program invariants. Our work falls naturally in between full
program verification, either in type theory or systems such as PVS, and traditional type
systems for programming languages. When compared to verification, our system is less
expressive but much more automatic. Our work can be viewed as providing a systematic
and uniform language interface for a verifier intended to be used as a type system dur-
ing the program development cycle. Our primary motivation is to all the programmer to
express more program properties through types and thus catch more program errors at
compile-time.

In Dependent ML (DML), a restricted form of dependent types is proposed that
completely separates programs from types. This design makes it rather straightforward
to support realistic programming features such as general recursion and effects in the
presence of dependent types. Subsequently, this restricted form of dependent types is
employed in designing Xanadu [Xi00] and DTAL [XH01] in attempts to reap simi-
lar benefits from dependent types in imperative programming. In hindsight, it can be

readily noticed that the type systems of Xanadu and DTAL bear a close relation to
Floyd-Hoare logic.

Along another line of research, a new notion of types called guarded recursive (g.r.)
datatypes is recently introduced [XCC03]. Noting the close resemblance between the
restricted form of dependent types (developed in DML) and g.r. datatypes, we imme-
diately initiate an effort to design a unified framework for both forms of types, lead-
ing to the design and formalization of the framework Applied Type System. To sup-
port safe programming with pointers, the framework is further extended with stateful
views [Xi03].

Also, the work in [OSSY02] is casually related to this paper as it shares the same
goal of ruling out unsafe memory accesses. However, the underlying methodology
adopted there is fundamentally different. In contrast to the static approach we take, it
essentially relies on run-time checks to prevent dangling pointers from being accessed
as well as to detect stray array subscripting.

There have been a great number of research activities on verifying program safety
properties by tracking state changes. For instance, Cyclone [JMG+01] allows the pro-
grammer to specify safe stack and region memory allocation; both CQual [FTA02] and
Vault [FD02] support some form of resource usage protocol verification; ESC [Det96]
enables the programmer to state various sorts of program invariants and then employs
theorem proving to prove them; CCured [NMW02] uses program analysis to show the
safety of mostly unannotated C programs. In [MWH03], we also see an attempt to de-
velop a general theory of type refinements for reasoning about program states.

5 Conclusion

Despite a great deal of research, it is still largely an elusive goal to verify the correctness
of programs. Therefore, it is important to identify the properties that can be practically
verified for realistic programs. We have shown with concrete examples the use of a re-
stricted form of dependent types combined with stateful views in facilitating program
verification in the presence of pointer arithmetic. A large number of automated program
verification approaches often focus on verifying sophisticated properties of some par-
ticularly chosen programs. We feel that it is at least equally important to study scalable
approaches to verifying elementary properties of programs in general programming as
we have advocated in this paper.

In general, we are interested in promoting the use of light-weighted formal methods
in practical programming, facilitating the construction of safe and reliable software. We
have presented some examples in this paper in support of such a promotion, demon-
strating a novel approach to safe programming with pointers.

References

[AO91] Krzysztof R. Apt and Olderog, E.-R. Verification of Sequential and Concurrent Pro-
grams. Springer-Verlag, New York, 1991. ISBN 0-387-97532-2 (New York) 3-540-
97532-2 (Berlin). xvi+441 pp.

[C+86] Robert L. Constable et al. Implementing Mathematics with the NuPrl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986. ISBN 0-13-451832-
2. x+299 pp.

[Det96] David Detlefs. An overview of the extended static checking system. In Workshop on
Formal Methods in Software Practice, 1996.

[EGP99] E.M.Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[FD02] M. Fahndrich and R. Deline. Adoption and Focus: Practical Linear Types for Imper-

ative Programming. In Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation, pages 13–24. Berlin, June 2002.

[FTA02] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive Type Qualifiers. In ACM Con-
ference on Programming Language Design and Implementation, pages 1–12. Berlin,
June 2002.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576–580 and 583, October 1969.
[JMG+01] Trevor Jim, Greg Morrisett, Dan Grossman, Mike Hicks, Mathieu Baudet, Matthew

Harris, and Yanling Wang. Cyclone, a Safe Dialect of C, 2001. URL http://www.
cs.cornell.edu/Projects/cyclone/. Available at
http://www.cs.cornell.edu/Projects/cyclone/.

[MWH03] Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory of type
refinements. In Proceedings of the Eighth ACM SIGPLAN International Conference
on Functional Programming, pages 213–226. Uppsala, Sweden, September 2003.

[NMW02] George C. Necula, Scott McPeak, and Westley Weimer. CCured: Type-Safe
Retrofitting of Legacy Code. In Proceedings of the 29th ACM Symposium on Princi-
ples of Programming Languages, pages 128–139. London, January 2002.

[OSSY02] Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori Yonezawa. Fail-safe
ansi-c compiler: An approach to making c programs secure (progress report). In Inter-
national Symposium on Software Security, volume 2609 of Lecture Notes in Computer
Science. Springer-Verlag, November 2002.

[Rey02] John Reynolds. Separation Logic: a logic for shared mutable data structures. In Pro-
ceedings of 17th IEEE Symposium on Logic in Computer Science (LICS ’02), 2002.
URL citeseer.nj.nec.com/reynolds02separation.html.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded Recursive Datatype Construc-
tors. In Proceedings of the 30th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 224–235. New Orleans, LA, January 2003.

[XH01] Hongwei Xi and Robert Harper. A Dependently Typed Assembly Language. In Pro-
ceedings of International Conference on Functional Programming, pages 169–180,
September 2001.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie
Mellon University, 1998. viii+181 pp. pp. viii+189. Available at
http://www.cs.cmu.edu/˜hwxi/DML/thesis.ps.

[Xi00] Hongwei Xi. Imperative Programming with Dependent Types. In Proceedings of 15th
IEEE Symposium on Logic in Computer Science, pages 375–387. Santo Barbara, CA,
June 2000.

[Xi03] Hongwei Xi. Applied Type System, July 2003. Available at:
http://www.cs.bu.edu/˜hwxi/ATS.

[Xi04] Hongwei Xi. Applied Type System (extended abstract). In post-workshop Proceed-
ings of TYPES 2003, pages 394–408. Springer-Verlag LNCS 3085, 2004.

[XP99] Hongwei Xi and Frank Pfenning. Dependent Types in Practical Programming. In
Proceedings of 26th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 214–227. San Antonio, Texas, January 1999.

