
Imperative Programming with Dependent Types
(Extended Abstract)

Hongwei Xi
University of Cincinnati

hwxi@ececs.uc.edu

Abstract

In this paper, we enrich imperative programming with
a form of dependent types. We start with explaining some
motivations for this enrichment and mentioning some ma-
jor obstacles that need to be overcome. We then present the
design of a source level dependently typed imperative pro-
gramming languageXanadu, forming both static and dy-
namic semantics and then establishing the type soundness
theorem. We also present realistic examples, which have
all been verified in a prototype implementation, in support
of the practicality of Xanadu. We claim that the language
design of Xanadu is novel and it serves as an informative
example that demonstrates a means to combine imperative
programming with dependent types.

1 Introduction

In [16, 8], the functional programming language ML is
extended with a restricted form of dependent types. This ex-
tension yields a dependently typed functional programming
language DML, in which the programmer can use depen-
dent types to more accurately capture program properties
and thus detect more program errors at compile-time. It is
also demonstrated that dependent types in DML can facili-
tate array bound check elimination [15], redundant pattern
matching clause removal [9], tag check elimination and un-
tagged representation of datatypes [10]. Evidently, an im-
mediate question is whether we can reap some similar ben-
efits by introducing dependent types into imperative pro-
gramming. We give a positive answer to this question in
this paper.

Intuitively speaking, dependent types are types which
depend on the values of language expressions. For instance,
we can refine the typeint for integers into infinitely many
singleton typesint(a), wherea, ranging over all integers,
is the expression on which this type depends. Also, we
can form a typeint array(a) for integer arrays of size
a, wherea ranges over all natural numbers. We cannot rely
directly on standard systems of dependent types [4] for lan-
guages with computational effects. For instance, it is en-

tirely unclear what it means to sayA has typeint array(a)
for somemutablevariablea: if we update the value ofa,
this changes the type ofA but A itself is unchanged. As
in DML, we introduce a clear separation between ordinary
run-time expressions and a distinguished family of index
expressions, linked by singleton types of formint(a): ev-
ery expression of typeint(a) must evaluate toa (if the
evaluation terminates). This decision is also crucial to ob-
taining a practical type-checking algorithm.

There is yet another obstacle. Suppose we have already
declared that a mutable variablex has typeint(a) for some
a. Usually, the type of a variable is fixed upon declaration
in a programming language. This means that we cannot
even type the assignmentx := x+ 1 sincex andx+ 1 have
different typesint(a) andint(a+1), respectively, making
dependent types largely useless in imperative programming.
In order to typex := x + 1, we must allow the type ofx
to change fromint(a) into int(a+ 1) after evaluating the
assignment.

We propose to allow the type of a variable to change
during evaluation and study some consequences of this pro-
posal in the design of a source level programming language.
Note that a similar approach is already used in Typed As-
sembly Language (TAL) [5], where the type of a registerr
may change during execution so as to reflect the type of the
content ofr at different program points.

We present some introductory examples on imperative
programming with dependent types before going into fur-
ther details, giving the reader some feel as to what depen-
dent types can actually do in practice. These examples en-
able us to identify certain ways of using dependent types
in practical programming, which we also regard as a major
contribution of the paper.

In Figure 1, the Xanadu program implements a binary
search function on an integer array. We useint[0,n] as
a shorthand for[i:int | 0<=i<=n] int(i) . Note
that the concrete syntax[i:int | 0<=i<=n] stands
for a dependent sum constructor, usually written asΣi : γ,
whereγ is the subset sort{a : int | 0 ≤ a ≤ n}, that
is, the sort for all index expressions between0 andn. In
short, int[0,n] is the type for all integersi satisfying
0 ≤ i ≤ n. Similarly, we useint[-1,n) for all integers

{n:nat}
int bsearch(key: int, vec[n]: int) {

var:
low: int[0,n]; high: int[-1,n);
int mid, x;;

low = 0; high = arraysize(vec) - 1;

while (low <= high) {
mid = (low + high) / 2;
x = vec[mid];
if (key == x) { return mid; }
else if (key < x) { high = mid-1; }

else { low = mid+1; }
}
return -1;

}

Figure 1. Binary search in Xanadu

j satisfying−1 ≤ j < n.
The declared typeint[0,n] for variablelow , which

will be called the master type oflow , means that we can
only store an integeri satisfying0 ≤ i ≤ n into variable
low , wheren is the size of the array invec . The declared
type for variablehigh can be interpreted similarly. It can
be proven in the type system of Xanadu that the array sub-
scriptingvec[mid] in the program is always safe at run-
time, that is, the integer inmid is always within the bounds
of the array invec when the subscripting is performed. We
will briefly explain the reason for this in Section 4. There-
fore, it is unnecessary to insert run-time array bound checks
when we compile the program.

In Figure 2, we first declare a polymorphic union type
to represent lists. A union type in Xanadu is the same as a
datatype in ML. In this case, the declaration indicates that
we index the union type with an index of sortnat , which
stands for the length of a list in this case. An index of
sortnat basically means that the index represents a natural
number.

• Nil(0) indicates thatNil is assigned the type
<’a>list(0) , that is,Nil is a list of length 0.

• {n:nat} Cons(n+1) of ’a * <’a>list(n)
means thatCons is given the following type

{n:nat}
’a * <’a>list(n) -> <’a>list(n+1)

that is,Cons yields a list of lengthn + 1 when given
a pair consisting of an element and a list of lengthn.
We write {n:nat} for the dependent function type
constructor, usually written asΠn : nat, which can
also be seen as a universal quantifier.

union <’a>list of nat {
Nil(0);
{n:nat} Cons(n+1) of ’a * <’a>list(n);

}

(’a){m:nat, n:nat}
<’a>list(m+n)
revApp(xs:<’a>list(m),ys:<’a>list(n)) {

var: ’a x;;

invariant:
[m1:nat,n1:nat | m1+n1 = m+n]
(xs:<’a>list(m1), ys:<’a>list(n1))

while (true) {
switch (xs) {

case Nil: return ys;
case Cons(x,xs): ys = Cons(x,ys);

}
}
exit; /* can never be reached */

}

(’a){n:nat}
<’a>list(n) reverse (xs: <’a>list(n)) {

return revApp(xs, Nil);
}

Figure 2. The list reverse function in Xanadu

We then define the functionrevApp , which takes a pair
of lists (xs, ys) and returns a list that is the concatenation
of the reverse ofxs to ys. The header of the function in-
dicates thatrevApp yields a list of lengthm + n when
given a pair of lists of lengthsm andn, respectively. The
syntax following the keywordinvariant denotes astate
type, which can be regarded as a form of loop invariant.
The state type means that the variablesxs and ys must
have types<’a>list(m1) and<’a>list(n1) at the
program point immediately before the loop, wherem1and
n1 are natural numbers satisfyingm1+n1 = m+n. The
switch statement inside the loop corresponds to a case
statement in ML. For instance, suppose the clause:

case Cons(x, xs): ys = Cons(x, ys)
is chosen at run-time; the head and tail ofxs are then as-
signed tox and xs , respectively;Cons(x, ys) is as-
signed toys and the loop repeats. The functionreverse
is defined as a special case ofrevApp and its header indi-
cates that this function returns a list of lengthn when given
one of lengthn.

We present another example in Figure 3 to demon-
strate some use of dependently typed record. We define a
polymorphic record<’a>sparseArray(m,n) for rep-
resenting two-dimensional sparse arrays of dimensionmby
n in which each element is of type’a . Let r be a record

{m:nat,n:nat}
record <’a>sparseArray(m, n) {

row: int(m); /* number of rows */
col: int(n); /* number of columns */
data[m]: <int[0,n) * ’a>list
/*array of lists representing rows*/

}

Figure 3. A dependent record type

of type <’a>sparseArray(m, n) . Thenr has three
components, namely,row , col and data . Clearly, the
types assigned torow andcol indicate thatr.row and
r.col return the dimensions ofr . The type assigned to
data states thatr.data is an array of sizem. In this ar-
ray, each element, which represents a row in a sparse array,
is a list of pairs and each pair consists of a natural num-
ber less thann and an element of type’a . For instance,
a list consisting of two pairs(6, 2.7183) and (23, 3.1416)
represents a row in a sparse array where the 6th and 23rd
elements are2.7183 and3.1416, respectively, and the rest
are0.0. A Xanadu program implementing the multiplica-
tion between a sparse array and a vector can be found at
[13], in which all array subscripting is proven safe in the
type system of Xanadu.

There is another important motivation behind the design
of Xanadu. In an untrusted computing environment such
as the Internet, a code recipient may not trust the origin of
received mobile code. This makes array bound check elim-
ination significantly more difficult since we need not only
to eliminate array bound checks but also to convince the
code recipient that the elimination is done correctly. The
notion of proof-carrying code [6] can address the difficulty
by attaching to mobile code a proof asserting that the code
can never perform out-of-bounds array subscripting at run-
time. The code recipient can then verify the attached proof
independently and execute the code with no run-time array
bound checking if the proof verification is successful.

However, there remains a challenging question with this
approach:how can we generate such a proof in the first
place? The Touchstone compiler [7], which compiles pro-
grams in a type-safe subset of C into proof-carrying code,
handles this question with loop invariant synthesis in source
programs. This is a fully automatic approach, but it is highly
heuristic and can be too limited in practice. For instance,
the Touchstone compiler seems unable to handle the binary
search example presented in Figure 1. As for the example
of sparse matrix multiplication, it does not even seem clear
how a heuristic approach can actually work in this case.

We have designed a dependently typed assembly lan-
guage DTAL in [14]. The type system of DTAL is capable
of capturing memory safety of code at assembly level, in-
cluding both type safety and safe array subscripting. After
receiving DTAL code, a code recipient uses type-checking
to verify whether the received code is memory safe and exe-

cutes the code with no run-time array bound checking if the
type-checking is successful. We plan to compile Xanadu
programs into DTAL code, using annotations in Xanadu
programs, which are in the form of dependent types, to gen-
erate dependent types in DTAL code. This can be regarded
as an alternative design to that of Touchstone. Some pre-
liminary results, including a prototype compiler, have been
reported in [14]. In general, the type system of Xanadu al-
lows the programmer to use dependent types to capture pro-
gram invariants more accurately, and this, in return, leads to
more effective detection of program errors and more thor-
ough elimination of array bound checks.

The most significant contribution of the paper is the de-
sign of Xanadu, a source level imperative programming
language supporting a form of dependent types. This de-
sign includes forming both static and dynamic semantics for
Xanadu and imposing restrictions to make Xanadu practi-
cal. We also establish the type soundness of Xanadu, which
constitutes the main technical contribution of the paper. We
view the design of Xanadu as an example that illustrates an
approach to enriching imperative programming with depen-
dent types.

The rest of paper is organized as follows. We form a lan-
guage Xanadu0 in Section 2, which allows the type of a vari-
able to change during evaluation but supports no dependent
types. The introduction of Xanadu0 is mainly for setting
up the machinery to reason about the language XanaduΠ,Σ

0 ,
which essentially extends Xanadu0 with a restricted form
of dependent types. We present XanaduΠ,Σ

0 in Section 3,
where we also form both static and dynamic semantics for
XanaduΠ,Σ0 and establish its type soundness. We then dis-
cuss in Section 4 some key issues on the design of an exter-
nal languageXanaduand a type inference algorithm for it.
Section 5 deals with some restrictions and extensions that
make Xanadu more realistic. Lastly, we mention a proto-
type implementation, discuss some related work and con-
clude. We refer the interested reader to [12] for the details
omitted here.

We focus on the technical development of Xanadu in this
abstract, which is considerably involved. A short and intu-
itive introduction on Xanadu can be found in [11], where
various programming examples are presented with explana-
tion. Also, it could be helpful if the reader would briefly
read Section 4 before studying Section 2 and Section 3 so
as to get a feel as to how type inference is performed in
Xanadu.

2 Xanadu0

We start with a simple programming language Xanadu0

and present its syntax in Figure 4. For instance, the follow-
ing program in C:

int fact(int x) {
return ((x > 0)? x * fact (x-1) : 1);

}

types τ ::= bool | int | τ array | unit | top
function types λ ::= (τ1, . . . , τn)→ τ
constants c ::= b | n | 〈〉
expressions e ::= c | x | X | op(e1, . . . , en) | x := e | e1; e2 | if(e, e1, e2) | while(e1, e2) |

alloc(e1, e2) | arraysize (e) | e1[e2] | e[e1] := e2 |
let X = e1 in e2 end | newvar x in e end | call(X; e1, . . . , en)

values v ::= X | c
functions f ::= λ(X1, . . . , Xn).e
declarations D ::= [] | D[X 7→ f : λ]
value variable contexts Γ ::= · | Γ, X : λ | Γ, X : τ
reference variable contexts∆ ::= · | ∆, x : τ
programs P ::= letdef D in e end

Figure 4. The syntax for Xanadu0

is equivalent to extending a declarationD in Xanadu0 with
the following binding:

[X 7→ λ(X1).body : (int)→ int],

wherebody is

newvar x in
x := X1; if(x > 0, x ∗ call(X;x− 1), 1)

end

There are two kinds of variables in Xanadu0. We usex for
reference variables andX for value variables. Basically, a
reference variable is like a variable in imperative program-
ming while a value variable is like one in (call-by-value)
functional programming. We find that value variables are
convenient for certain theoretical purposes but they arenot
indispensable.1

We useop for some primitive operations such as arith-
metic and boolean operations. For a reference variable con-
text ∆, the domaindom(∆) is the set of reference vari-
ables declared in∆. The domaindom(Γ) of a value vari-
able contextΓ is defined similarly. We require that no ref-
erence (value) variables appear more than once in∆ (Γ).
Also, we usecall(X; e1, . . . , en) to indicate a function call
in Xanadu0, whereX is assumed to be bound to a function
takingn arguments.

The most significant feature of Xanadu0 is its type sys-
tem, in which the type of a reference variable is allowed to
change during evaluation. We emphasize at this point that
Xanadu0 is not intended for demonstrating the advantage of
a language that allows the type of a reference variable to
change during evaluation. Such advantage seems unclear
(if there is any) until the introduction of dependent types.
The design of Xanadu0 is primarily for setting up some ma-
chinery needed to reason about XanaduΠ,Σ

0 , which is to be
introduced in Section 3, allowing for a less involved presen-
tation.

1Another reason for having value variables is that we may also support
various functional programming features in Xanadu in future.

2.1 Static Semantics

Xanadu0 is a monomorphically typed first-order lan-
guage. The only subtyping rules in Xanadu0 are the fol-
lowing.

|= τ ≤ τ
(co-eq)

|= τ ≤ top
(co-top)

Given two reference variable contexts∆0 and∆1, we have
the following rule(co-context) for coercing∆0 into ∆1,
where we assumedom(∆0) = dom(∆1).

|= ∆0(x) ≤ ∆1(x) for all x ∈ dom(∆0)
∆0 |= ∆1

A typing judgment in Xanadu0 is of form ∆0; Γ ` e :
(∆1; τ), which means that the expressione has typeτ under
the context∆0; Γ and the evaluation ofe changes∆0 into
∆1. For instance, we will see that the following is derivable,

x : int; · ` (x := true) : (x : bool; unit),

which clearly indicates that the type ofx changes fromint
into bool after the assignmentx := true.

We present some of the typing rules for Xanadu0 in Fig-
ure 5. Given a functionf = λ(X1, . . . , Xn).e and a func-
tion typeλ = (τ1, . . . , τn) → τ , the rule(type-function)
is for typing a function. We emphasize that only toplevel
functions are allowed in Xanadu0. Notice that the rule
(type-newvar)assigns every uninitialized variable the type
top. This implies that a variable is already initialized if it
has a type other thantop.

In Xanadu0, the type of a reference variable can change
during evaluation. For instance, the following function can
be given the type(int, int) → bool in Xanadu0. Note
that the type ofx changes fromtop into int and then into

∆0; Γ ` e : (∆1; τ)
∆0; Γ ` x := e : (∆1[x 7→ τ]; unit)

(type-assign)

∆0; Γ ` e : (∆1; bool) ∆1; Γ ` e1 : (∆2; unit) ∆2 |= ∆ ∆1; Γ ` e2 : (∆3; unit) ∆3 |= ∆
∆0; Γ ` if(e, e1, e2) : (∆; unit)

(type-if)

∆0 |= ∆ ∆; Γ ` e1 : (∆1; bool) ∆1; Γ ` e2 : (∆2; unit) ∆2 |= ∆
∆0; Γ ` while(e1, e2) : (∆1; unit)

(type-while)

∆0; Γ ` e1 : (∆1; int) ∆1; Γ ` e2 : (∆2; τ)
∆0; Γ ` alloc(e1, e2) : (∆2; τ array)

(type-alloc)

Γ(X) = (τ1, . . . , τn)→ τ ∆0; Γ ` e1 : (∆1; τ1) · · · ∆n−1; Γ ` en : (∆n; τn)
∆0; Γ ` call(X; e1, . . . , en) : (∆n; τ)

(type-call)

∆0, x : top; Γ ` e : (∆1, x : τ1; τ2)
∆0; Γ ` newvar x in e end : (∆1; τ2)

(type-newvar)

·; Γ, X1 : τ1, . . . , Xn : τn ` e : (·; τ)
Γ ` λ(X1, . . . , Xn).e : (τ1, . . . , τn)→ τ

(type-function)

Figure 5. Some typing rules for Xanadu0

bool during evaluation.

λ(X1, X2).
newvar x in
x := X1 −X2; if(x > 0, x := true, x := false);x

end

In the rule(type-assign), we use∆1[x 7→ τ] for a finite map
∆ such that∆(x) = τ and∆(y) = ∆1(y) for all other vari-
ablesy in dom(∆) = dom(∆1). The rule(type-while)
needs some explanation. The reference variable context∆
in the rule can essentially be regarded as a loop invariant on
the types of reference variables in the loop that must hold
at the beginning of the loop. In Xanadu0, the programmer
is responsible for providing such loop invariants. One may
argue that this practice is too burdensome for the program-
mer. However, we feel that this argument is less tenable
because (a) it already suffices to provide invariants only for
those variables whose types may change in a loop and (b) it
seems most likely that there are only few such variables. In
particular, there is no need for such invariants if there are no
variables whose types change during evaluation. The pro-
grammer, who is allowed to change the types of variables
when programming in Xanadu0, can always choose not to
do so and thus provide no loop invariants.

A real serious problem with Xanadu0 is in compilation.
If we can assign to a reference variable a value of any type,
we need a uniform representation for values of all types, that
is, we need to box all values which cannot be represented
in a word on a real machine. This is similar to supporting
polymorphism in a language. Given that the advantage of

Xanadu0 is unclear, we feel that the cost of boxed represen-
tation is simply too high. However, the introduction of a
restricted form of dependent types into Xanadu0 will com-
pletely alter the situation as illustrated in Section 3.

2.2 Dynamic Semantics

We form an abstract machine for assigning dynamic se-
mantics to Xanadu0. A machine stateM is a pair of fi-
nite mappings〈V,H〉. The domaindom(H) of H is a set
of heap addresses, which one may assume are represented
as natural numbers. For everyh ∈ dom(H), H(h) is a
tuple (hc0, . . . , hcn−1), where we usehc for either a con-
stant or a heap address. The domaindom(V) of V is a
set of reference variables andV mapsx to somehc for ev-
eryx ∈ dom(V). A judgment of formM[e] →D M′[e′]
means that expressione under machine stateM evaluates to
e′ underM′, where declarationD binds the function sym-
bols ine to some functions. Notice that heap addresses can
creep into expressions during evaluation.2 We thus ex-
tend the syntax for Xanadu0 to treat heap addresses as con-
stants. This enables us to form expressions involving heap
addresses, which are needed for forming evaluation rules.

We also introduce expressions of the following form
newvar x = hc in e end

and treatnewvar x in e end as
newvar x = 〈〉 in e end.

The typing rule(type-newvar) for
newvar x = hc in e end

2This happens when the rule(eval-alloc) is applied.

〈V,H〉[newvar x = hc1 in hc2 end]→D 〈V,H〉[hc2]
(eval-newvar-2)

M[while(e1, e2)]→DM[if(e1, (e2; while(e1, e2)), 〈〉)]
(eval-while)

n ≥ 0 h 6∈ dom(H)
〈V,H〉[alloc(n, hc)]→D 〈V,H[h 7→ (hc, . . . , hc)]〉[h]

(eval-alloc-3)

H(h) = (hc0, . . . , hck−1) 0 ≤ n < k

〈V,H〉[h[n]]→D 〈V,H〉[hcn]
(eval-array-access-in)

H(h) = (hc0, . . . , hck−1) n < 0 ∨ k ≤ n
〈V,H〉[h[n]]→D subscript

(eval-array-access-out)

H(h) = (hc0, . . . , hck−1) 0 ≤ n < k
H′ = H[h 7→ (hc0, . . . , hcn−1, hc, hcn+1, . . . , hck−1)]

〈V,H〉[h[n] = hc]→D 〈V,H′〉[〈〉]
(eval-array-assign-in)

H(h) = (hc0, . . . , hck−1) n < 0 ∨ k ≤ n
〈V,H〉[h[n] = hc]→D subscript

(eval-array-assign-out)

Figure 6. Some evaluation rules for Xanadu0

is given below, whereH is a finite mapping that maps heap
addresses ine to types. More details on this is to be pre-
sented in Subsection 2.3.

∆0, x : H(hc); Γ `H e : (∆1, x : τ1; τ2)
∆0; Γ `H newvar x = hc in e end : (∆1; τ2)

We list some of the evaluation rules for Xanadu0 in Fig-
ure 6. We useh 6∈ dom(H) in the rule(eval-alloc-3) to
mean thath is a new heap address. Note that an array is
always initialized upon allocation. Also we usesubscript
to indicate that an out-of-bounds array subscripting excep-
tion has occurred during evaluation. The evaluation rules
for propagating exceptionsubscript are all omitted.

We use heap addresses to form expressions when assign-
ing dynamic semantics to Xanadu0. However, it is conceiv-
able that there are other approaches to assigning dynamic
semantics to Xanadu0 that require no use of expressions
containing heap addresses. Therefore, we do not include
heap addresses as a part of Xanadu0.

2.3 Type Soundness

When establishing the soundness for Xanadu0, we need
to type expressions containing heap addresses. For this pur-
pose, we useH for a finite mapping from heap addresses to
array types and change the form of a typing judgment into
∆0; Γ `H e : (∆1; τ), where we assume that all heap ad-
dresses ine are in the domaindom(H) of H. This affects
all the typing rules in Figure 5. Also we use the following

rule for typing a heap address.

∆; Γ `H h : (∆;H(h))
(type-heap-address)

We use judgmentsM |= ∆ andH |= H to mean
M models∆ andH modelsH, respectively. The precise
meaning of these judgments follows from the rules in Fig-
ure 7. Also, we writeM |= H if M = 〈V,H〉 andH |= H
holds.

Assume that∆0; Γ `H , e : (∆1; τ) is derivable. Also as-
sume thatM models∆ andH, that is,M |= ∆ andM |=
H are derivable. In order to establish the type soundness for
Xanadu0, we need to prove that ifM[e] →D M′[e′] then
M′ |= ∆′ andM′ |= H ′ are derivable for some∆′ andH′
such that∆′; Γ ` e′ : (∆1; τ) is derivable.

Unfortunately, it is impossible to establish this. For in-
stance, letM = (V,H) such thatV(x1) = V(x2) = h and
H(h) = (0). Note that we use(0) for a tuple consisting of
exactly one element0. Clearly,M |= ∆ is derivable for
∆ = x1 : int array(1), x2 : top array(1). Also note
that∆; Γ ` x2[0] := true : (∆; unit) is derivable. Sup-
pose that we evaluatex2[0] := true underM. This evalu-
ation leadsM intoM′ = (V,H′), whereH′(h) = (true),
butM′ |= ∆ is no longer derivable sinceV(x1) = h and
H′(h), which is(true), is not an integer tuple.

We introduce the following notion of regularity to ad-
dress the problem.

Definition 2.1 (Regularity) LetD be a derivation ofM |=

H |= 〈〉 : unit
(model-unit)

H |= hc : top
(model-top)

H |= b : bool
(model-bool)

H |= i : int
(model-int)

H |= V(x) : τ
〈V,H〉 |= x : τ

(model-var)
H(h) = (hc0, . . . , hcn−1) H |= hc0 : τ · · · H |= hcn−1 : τ

H |= h : τ array(n)
(model-array)

M |= x : ∆(x) for all x ∈ dom(∆)
M |= ∆

(model-context)
H |= h : H(h) for all h ∈ dom(H)

H |= H
(model-heap)

Figure 7. Modeling Rules for Xanadu0

∆. If the following rule is applied inD,

H(h) = (hc0, . . . , hcn−1)
H |= hc0 : τ · · · H |= hcn−1 : τ

H |= h : τ array(n)
(model-array)

we sayD associatesh with τ . D is a regular derivation if
D associates each heap addressh with at most one type.

We now argue that the aboveM = 〈V,H〉 |= ∆ cannot
have a regular derivations. Note that we must have a deriva-
tion of the following form in order to deriveM |= x1 :
int array(1).

H(h) = (1) H |= 1 : int
H |= h : int array(1)

(model-array)

Similarly, we also must have a derivation of the following
form in order to deriveM |= x2 : top array(1) .

H(h) = (1) H |= 1 : top
H |= h : top array(1)

(model-array)

Therefore,M |= ∆ cannot have a regular derivation since
any derivation ofM |= ∆ must associateh with bothint
andtop.

Lemma 2.2 Assume thatM |= ∆0 has a regular deriva-
tion andM |= H, ∆0; Γ `H e : (∆1; τ) andM[e] →D

M′[e′] are derivable, Then there exist∆′0 andH ′ extending
H such thatM′ |= ∆′0 has a regular derivation and both
M′ |= H ′ and∆′0; Γ `H′ e′ : (∆1; τ) are derivable.

Proof This follows from a structural induction on the
derivationD of ∆0; Γ `H , e : (∆1; τ).

Theorem 2.3 LetP = letdef D in e end be a program
such that̀ P is derivable; ifM[e]→∗DM′[e′], then either
e′ is 〈〉, orM′[e′]→D subscript, orM′[e′]→DM′′[e′′]
for someM′′ and e′′. In other words, the evaluation of a
well-typed program inXanadu0 either terminates normally,
or raises a subscript exception, or runs forever.

Proof Obviously,M |= · has a regular derivation. This
theorem then follows from Lemma 2.2.

We are now ready to incorporate dependent types into im-
perative programming.

index objects i, j ::= a | n | i+ j | i− j |
i ∗ j | i÷ j |

index propositions p ::= i < j | i ≤ j | i = j |
i 6= j | i ≥ j | i > j |
p1 ∧ p2 | p1 ∨ p2

index sorts γ ::= int | {a : γ | p}
index contexts φ ::= · | φ, a : γ | φ, p

constraint Φ ::= p | p ⊃ Φ |
Φ1 ∧ Φ2 | ∀a : γ.Φ

Figure 8. Syntax for some integer constraint
domain

types τ ::= bool(i) | int(i) | unit |
τ array(i) | Σa : γ.τ

function types λ ::= · · · | Πφ.(τ1, . . . , τn)→ τ
expressions e ::=
· · · | 〈i | e〉 | unpack e1 as 〈a | X〉 in e2 end

values v ::= · · · | 〈i | v〉
state types σ ::= ∃φ.∆

Figure 9. Syntax for XanaduΠ,Σ0

3 XanaduΠ,Σ
0

In this section, we extend Xanadu0 into a dependently
typed programming language XanaduΠ,Σ

0 , where the depen-
dent types are of a restricted form as in DML [16, 8].

We fix an integer constraint domain in Figure 8 and re-
strict the type index expressions in XanaduΠ,Σ

0 , namely, the
expressions that can be used to index a type, to this domain.
This is a sorted domain and subset sorts can be formed. For
instance, we usenat for the subset sort{a : int | a ≥ 0}.
We emphasize that the sortint should not be confused with
the typeint. We say that a satisfaction relationφ |= Φ is
satisfiable if(φ)Φ holds in the integer constraint domain,

where(φ)Φ is defined as follows.

(·)Φ = Φ (φ, a : int)Φ = (φ)∀a : int.Φ
(φ, {a : γ | p})Φ = (φ, a : γ)(p ⊃ Φ)

(φ, p)Φ = (φ)(p ⊃ Φ)

The additional syntax of XanaduΠ,Σ
0 to that of Xanadu0

is given in Figure 9. For every integeri, int(i) is a sin-
gleton type such that the value of every expression of this
type equalsi. Similarly,bool(1) andbool(0) are singleton
types for expressions with values equal to true and false, re-
spectively. Also we useΣa : γ.τ for a sum type. We omit
the rules for forming legal types, which are standard. For
instance, it is required thatφ |= 0 ≤ i ≤ 1 be satisfiable
in order to formbool(i), where we assume that all index
variables ini are declared inφ.

Also, we define the erasure of a typeτ as follows.

‖unit‖ = unit ‖top‖ = top
‖bool(i)‖ = bool ‖int(i)‖ = int

‖τ array(i)‖ = ‖τ‖ array ‖Σa : γ.τ‖ = ‖τ‖

Note that int is interpreted asΣa : int.int(a) and
τ array asΣa : nat.τ array(a).

The significance of type erasure is that for every well-
typed programP in XanaduΠ,Σ0 , if we replace each type
in P with its erasure thenP becomes a well-type program
in Xanadu0. By this, we say that XanaduΠ,Σ

0 is a conser-
vative extension of Xanadu0. A program that is typable in
XanaduΠ,Σ0 is already typable in Xanadu0, but dependent
types in XanaduΠ,Σ0 can allow the programmer to capture
more program properties and thus lead to the construction
of more robust programs (as more program errors are de-
tected statically).

We use a judgment of formφ ` τ : ∗ to indicate
that τ is a well-formed type under index variable context
φ. The rules for deriving such judgments are standard
and thus omitted. We use judgmentsφ ` ∆[ref ctx] and
φ ` Γ[val ctx] to mean that∆ andΓ are well-formed refer-
ence and value variable contexts, respectively. The rules for
these judgments are also standard and thus omitted.

We omit the details on how substitution is performed,
which is standard. Given a term• such as a type or a con-
text, we use•[θ] for the result from applyingθ to •. We
introduce a judgment of formφ ` θ : φ′ and present the
following rules for deriving such judgments.

φ ` [] : ·
(sub-emp)

φ ` θ : φ′ φ ` i : γ
φ ` θ[a 7→ i] : φ′, a : γ

(sub-var)

φ ` θ : φ′ φ |= p[θ]
φ ` θ : φ′, p

(sub-prop)

Roughly speaking,φ ` θ : φ′ means thatθ has “type”φ′

underφ.

3.1 Static Semantics

A typing judgment in XanaduΠ,Σ0 is of the following
form, which is considerably involved and thus deserves
some detailed explanation.

φ1; ∆1; Γ ` e : (φ2; ∆2; τ)

There are several invariants associated with such as a typing
judgment.

1. All reference variables ine are declared in∆1.

2. All value variables ine are declared inΓ.

3. φ1 ` ∆1[ref ctx] is derivable.

4. φ1 ` Γ[val ctx] is derivable.

5. φ2 is an extension ofφ1, i.e.,φ2 = φ1, φ for someφ.

6. φ2 ` ∆2[ref ctx] is derivable.

7. φ2 ` τ : ∗ is derivable.

Essentially,φ1; ∆1; Γ ` e : (φ2; ∆2; τ) means that for each
substitutionθ1 satisfying· ` θ1 : φ1 there exists a substi-
tution θ2 satisfying· ` θ2 : φ2 such thate[θ1] can be given
type τ [θ2] under∆1[θ1]; Γ[θ1] and the evaluation ofe[θ1]
changes∆1[θ1] into ∆2[θ2].

Some of the typing rules for XanaduΠ,Σ
0 are presented in

Figure 10. In both rules(type-if) and(type-while), the state
type∃φ.∆ is to be either provided or synthesized.

3.2 Dynamic Semantics

The dynamic semantics of XanaduΠ,Σ
0 is formed on

top of that of Xanadu0. We no longer need rules like
(eval-array-access-out)and(eval-array-assign-out)since
the type system of XanaduΠ,Σ

0 is designed to guarantee that
the evaluation of a well-typed program in XanaduΠ,Σ

0 can
never lead to out-of-bounds array subscripting.3 We need
some additional rules in Figure 11 for handling new lan-
guage constructs.

3.3 Type Equality and Coercion

A judgment of formφ; ∆ |= ∃φ′.∆′ basically means that
∆ coerces into∆′[θ], that is,∆′ under the substitutionθ, for
someθ satisfyingφ ` θ : φ′. We present rules for deriving
such judgments in this section. In the presence of dependent
types, it is no longer trivial to determine whether two types
are equivalent. For instance, we have to prove the constraint
1 + 1 = 2 in order to claimint(1 + 1) is equivalent to

3Instead, the programmer is required to insert dynamic array bound
checks in case an array index cannot be proven within the bounds of the
indexed array.

φ1; ∆1; Γ ` e : (φ2; ∆2; τ1) φ2 |= τ1 = τ2

φ1; ∆1; Γ ` e : (φ2; ∆2; τ2)
(type-eq)

∆(x) = τ

φ; ∆; Γ ` x : (φ; ∆; τ)
(type-var)

∆(x) = Σa : γ.τ
φ; ∆; Γ ` x : (φ, a : γ; ∆; τ)

(type-open)

φ1; ∆1; Γ ` e : (φ2; ∆2; τ)
φ1; ∆1; Γ ` x := e : (φ2; ∆2[x 7→ τ]; unit)

(type-assign)

Γ(X) = Πφ.(τ1, . . . , τn)→ τ φ1 ` θ : φ
φ1; ∆1; Γ ` e1 : (φ2; ∆2; τ1[θ])

. . .
φn; ∆n; Γ ` en : (φn+1; ∆n+1; τn[θ])

φ1; ∆1; Γ ` call(X; e1, . . . , en) : (φn+1; ∆n+1; τ [θ])
(type-call)

φ1; ∆1; Γ ` e : (φ2; ∆2; bool(i))
φ2, i = 1; ∆2; Γ ` e1 : (φ3; ∆3; τ) φ3; ∆3 |= ∃φ.∆
φ2, i = 0; ∆2; Γ ` e2 : (φ4; ∆4; τ) φ4; ∆4 |= ∃φ.∆

φ1; ∆1; Γ ` if(e, e1, e2) : (φ2, φ; ∆; τ)
(type-if)

φ1; ∆1 |= ∃φ.∆ φ1;φ; ∆; Γ ` e1 : (φ2; ∆2; bool(i))
φ2, i = 1; ∆2; Γ ` e2 : (φ3; ∆3; unit) φ3; ∆3 |= ∃φ.∆

φ1; ∆1; Γ ` while(e1, e2) : (φ2, i = 0; ∆2; unit)
(type-while)

φ1; ∆1; Γ ` e1 : (φ2; ∆2; τ1) φ2; ∆2; Γ, X : τ1 ` e2 : (φ3; ∆3; τ2)
φ1; ∆; Γ ` let X = e1 in e2 end : (φ3; ∆3; τ2)

(type-let)

φ1 ` i : γ φ1; ∆1; Γ ` e : (φ2; ∆2; τ)
φ1; ∆1; Γ ` 〈i | e〉 : (φ2; ∆2; Σa : γ.τ)

(type-pack)

φ1; ∆1; Γ ` e1 : (φ2; ∆2; Σa : γ.τ1)
φ2, a : γ; ∆2; Γ, X : τ1 ` e2 : (φ3; ∆3; τ2)

φ1; ∆; Γ ` unpack e1 as 〈a | X〉 in e2 end : (φ3; ∆3; τ2)
(type-unpack)

Figure 10. Some typing rules for XanaduΠ,Σ0

int(2). In other words, type equality is modulo constraint
satisfaction.

We writeφ |= τ1 = τ2 to mean that typesτ1 andτ2 are
equivalent under the index variable contextφ. Similarly, we
write φ |= τ1 ≤ τ2 to mean that typeτ1 coerces into type
τ2 underφ. The rules for type equality and coercion are
presented in Figure 12.

Notice that the need for deriving judgments of formsφ `
θ : φ′, φ |= τ1 = τ2 andφ; ∆ |= ∃φ′.∆′ involves constraint
satisfaction.

3.4 Type Soundness

We now state the type soundness theorem for XanaduΠ,Σ
0

as follows.

Theorem 3.1 LetP = letdef D in e end be a program

such that̀ P is derivable; ifM[e] →∗D M′[e′], then ei-
ther e′ is 〈〉 orM′[e′] →D M′′[e′′] for someM′′ ande′′.
In other words, the evaluation of a well-type program in
Xanadu0 either terminates normally or runs forever.

The theorem can be proven by following the same approach
as is used in the proof for Theorem 2.3, though it is much
more involved this time. Please find more details in [12].

4 Type Inference

We have so far presented an implicitly typed language
XanaduΠ,Σ0 . The typing rules in XanaduΠ,Σ0 arenotsyntax-
directed, making it difficult to implement a practical type
inference algorithm for programs written in XanaduΠ,Σ

0 .
Therefore, it becomes necessary to provide an external lan-
guage in which the programmer can supply type annotations

M[e]→DM′[e′]
M[〈i | e〉]→DM′[〈i | e′〉]

(eval-pack)

M[e1]→DM′[e′1]
M[unpack e1 as 〈a | X〉 in e2 end]→DM′[unpack e′1 as 〈a | X〉 in e2 end]

(eval-unpack-1)

M[unpack 〈i | hc〉 as 〈a | X〉 in e2 end]→DM[e2{a 7→ i}{X 7→ hc}]
(eval-unpack-2)

Figure 11. Additional evaluation rules for XanaduΠ,Σ0

φ |= x = y

φ |= int(x) = int(y)
(eq-int)

φ |= τ1 = τ2 φ |= x = y

φ |= τ1 array(x) = τ2 array(y)
(eq-array)

φ, a : γ |= τ1 = τ2

φ |= Σa : γ.τ1 = Σa : γ.τ2
(eq-exi-ivar)

φ |= τ1 = τ2

φ |= τ1 ≤ τ2
(co-eq)

φ |= τ ≤ top
(co-top)

φ |= ∆(x) ≤ ∆′(x)
for all x ∈ dom(∆) = dom(∆′)

φ; ∆ |= ∆′
(co-context)

φ ` θ : φ′ φ; ∆ |= ∆′[θ]
φ; ∆ |= ∃φ′.∆′

(co-state-type)

Figure 12. Some type equality and coercion
rules for XanaduΠ,Σ0

to facilitate type inference. We outline some key decisions
we have made in the design of an external languageXanadu.

We omit most details on the design of a type infer-
ence algorithm for Xanadu, which largely follows the bi-
directional approach explained in [16]. However, we ex-
plain a key step in type inference that involves synthesizing
state type invariant for both loops and conditionals.

4.1 Master Types for Variables

In theory, a reference variable in XanaduΠ,Σ
0 is allowed

to store a value of any type. However, we impose some
restriction on this feature in practice. We assign every ref-
erence variablex a typeτ and allow a value to be stored in
x only if the value can be coerced to have typeτ . We callτ
the master type ofx and writeµ(x) for it.

For the implementation of binary search in Figure 1, the
master type oflow is int[0,n] , which indicates that
low can only store an integer whose value is between0
andn. Similarly, the master type ofhigh is int[-1,n) ,
meaning that only an integer whose valuej satisfying−1 ≤
j < n can be stored inhigh . The master types of variables
mid andx are int , that is, these variables can only store
integers. For a variable appearing as an argument in a func-
tion declaration, the master type of the variable is assumed
to be the type erasure of the type of the argument (unless
the programmer declare the master type of the variable ex-
plicitly). For instance, the master types ofkey andvec are
int andint array , respectively.

4.2 No Value Variables

Value variables are not available to the programmer in
our current implementation. The need for value variables
occurs in the elaboration phase where a program is trans-
formed from external representation into internal represen-
tation and then type-checked. We present a simple example
to illustrate this point.

Suppose that the assignmentx2 = fact(x1) + 1
occurs in a program, where functionfact has already been
given the typeτ = (int) → int. This assignment is for-
mally represented asx2 := +(call(Fact;x1), 1), where
Fact is declare to have typeτ . Unfortunately, this assign-
ment does not type check since the type of+ is Π{i :
nat, j : nat}.(int(i), int(j)) → int(i + j) and it is im-
possible to coerceint into int(i) for any indexi. In order
to overcome the problem, we elaboratex2 = fact(x1)
+ 1 into x2 := unpack call(Fact;x1) as 〈a | X〉 in +
(X, 1) end, which can be readily typed.

4.3 State Type Invariant Synthesis

It is readily seen that we need a state type∃φ.∆ in
order to type either a conditionalif(e, e1, e2) or a loop
while(e1, e2). Clearly, such a state type, which is essen-
tially an invariant about the types of some reference vari-
ables at a program point, must be supplied by the program-
mer or automatically synthesized. This is to be a crucial is-
sue in the design of a type inference algorithm for Xanadu.

A state type invariant for a loop is of form∃φ.∆. It
would obviously be too obtrusive if the programmer had
to write a loop invariant for each loop. Therefore, it is im-
portant in practice to effectively synthesize loop invariants
for common cases. We are less enthusiastic about sophis-
ticated approaches to loop invariant synthesis since such
approaches are usually highly heuristic and often make it
exceedingly difficult for the programmer to figure out the
cause of type errors in case they occur.

We use the example in Figure 1 to illustrate the simple
approach we have adopted for loop invariant synthesis in
our current implementation of Xanadu.

Let (φ,∆0) be the invariant hint provided by the pro-
grammer at the beginning of a loop. If there is no hint pro-
vided, we assume(φ,∆0) = (·, ·), that is, bothφ and∆0

are empty. Also, letτ(x) be the type of the reference vari-
ablex immediately before loop entrance.

• We first list all the variablesx1, . . . , xn in the loop
whose values may potentially be modified during the
execution of the loop at run-time. For the loop in Fig-
ure 1, the variablesx, mid, low, high belong
to such a list, but the variableskey, vec do not.

• Let ∆1 be a reference variable context whose domain
consists of all declared reference variables and

∆1(x) =

 ∆0(x) if x ∈ dom(∆0);
µ(x) if x = xi 6∈ ∆0 andτ(x) 6= top;
τ(x) otherwise.

For the loop in Figure 1,∆1 mapsx, mid, low,
high to the following types, respectively:top , top ,
int[0,n] , andint[-1,n) . In addition,∆1 maps
key andvec to int and int array(n) , respec-
tively.

• We use∃φ.∆1 for the loop invariant. For the loop in
Figure 1, it can be verified that∃φ.∆1 is indeed a loop
invariant and this invariant suffices to guarantee that
the array subscriptingvec[mid] in the loop is safe,
that is,mid is within the bounds ofvec .

The state type invariant synthesis for a conditional is done
similarly.

4.4 The External Language Xanadu

The syntax for Xanadu is given in Figure 13. The
expressionλφ.(∆,while(e1, e2)) conveys that(φ,∆) is
the hint mentioned in Section 4.3 that facilitates state
type invariant synthesis for the loopwhile(e1, e2). Note
that λφ is used to indicate that this expression is poly-
morphic onφ, that is, what is executed at run-time is
while(e1[θ], e2[θ]) for some substitutionθ with “type”
φ. The expressionλφ.(∆, if(e, e1, e2)) is interpreted simi-
larly. In newvar x : τ in e end, τ is the master type of
the newly declared variablex.

expressions e ::=
c | x | op(e1, . . . , en) | x := e | e1; e2 |
λφ.(∆, if(e, e1, e2)) | λφ.(∆,while(e1, e2)) |
alloc(e1, e2) | arraysize (e) |
e1[e2] | e[e1] := e2 |
newvar x : τ in e end | call(X; e1, . . . , en)

Figure 13. The syntax for external language

It should be clear how the presented examples in con-
crete syntax such as the one in Figure 1 can be mapped
into the corresponding expressions in the formal syntax for
Xanadu.

4.5 An Example

We briefly explain how the array subscripting
vec[mid] in Figure 1 is proven safe in the type
system of Xanadu.

The presented type invariant synthesis approach yields
the state type∃φ.∆ for the loop in Figure 1, whereφ is
empty and∆ declares that the variableslow , high and
mid andx have typesint[0,n] , int[-1,n) , top and
top . We apply the rule(type-open) to low and high .
Thenlow has typeint(i) for index variablei of sort{a :
int | 0 ≤ a ≤ n}, where index variablen is declared of sort
nat. Similarly, high has typeint(j) for index variablej
of sort {a : int | −1 ≤ a < n}. After the assignment
mid = (low + high) / 2 , mid has typeint((i +
j)/2). We now need to prove0 ≤ (i+ j)/2 < n under the
assumption thatn is a natural number,0 ≤ i ≤ n, −1 ≤
j < n andi ≤ j. This can be readily verified. Note that
i ≤ j is in the assumption because the loop condition must
hold when the assignment isx = vec[mid] executed.

5 Extensions

We now describe some programming features that can
be incorporated into Xanadu to make it a more realistic lan-
guage. Note thatall these features are already supported in
a prototype implementation of Xanadu.

5.1 Tuples and Polymorphism

Tuples, which are not present in XanaduΠ,Σ
0 for the sake

of a less involved presentation, can be readily added into
Xanadu.

The interaction between the dependent type system of
XanaduΠ,Σ0 and polymorphism is minor. As demonstrated
in Figure 2, polymorphism is already included in Xanadu.
As a matter of fact, even polymorphic recursion is available
in Xanadu. The type of every declared function in Xanadu is

provided by the programmer and therefore it adds virtually
no cost to support polymorphic recursion.

5.2 Higher-order Functions

Currently, we allow a function to accept functions as its
arguments but forbid a function call to return a function.
The type system of Xanadu could be readily extended to
support curried functions but such an extension would make
it greatly more complicated to compile Xanadu programs.
It should be further studied whether it is worth the effort to
fully support higher-order functions in Xanadu.

5.3 Exceptions

The exception mechanism similar to the one in Java can
be readily incorporated into Xanadu. We currently support
exceptions likebreak andcontinue in a loop to allow for al-
tering the control-flow. Also we allow the use ofreturn(e)
to immediately return the evaluation result ofe to the caller
of a function and the use ofexit to abnormally stop the eval-
uation of a program.

5.4 Union Types and Record Types

A mechanism for declaring dependent union types,
which directly corresponds to dependent datatypes in DML
[16, 8] is added into Xanadu and pattern matching is pro-
vided for decomposing the values of a union type. A con-
crete example of this feature is given in Figure 2.

An example of dependent record type is given in Fig-
ure 3, where the type<’a>sparseArray(m,n) is de-
clared for sparse arrays of dimensionmby n in which all
elements are of type’a .

5.5 Global Variables

It is also allowed to declare global variables in Xanadu.
The inclusion of global variables leads to some difficulty.
In the following example, a global variablecount is de-
clared and initialized with0. It is required that every global
variable be initialized upon declaration. The master type of
count is [i:nat] int(i) , meaning that only a natural
number can be stored incount .

global count: [i:nat] int(i) = 0

Some implications from adding global variables are ex-
plained in [12] and approaches to addressing these impli-
cations are also given there.

6 Implementation

We have prototyped a type-checker for Xanadu that han-
dles all the features mentioned in this paper and a rudi-
mentary compiler for compiling a Xanadu program into a

form that is then interpreted. The implementation is written
in Objective Caml and its current version is available on-
line at [13], where one can also find many running program
examples in Xanadu, including implementations of binary
search, fast Fourier transform, heapsort, Gaussian elimina-
tion, red-black trees, random-access lists, various list func-
tions, etc. The type-checker consist of two phases in which
the first one checks whether the erasure4 of a Xanadu pro-
gram is well-typed and the second one performs dependent
type-checking. The first phase is straight forward and the
second phase involves solving linear constraints on integers.
The method used in the implementation for solving linear
constraints is based on Fourier-Motzkin elimination [1] and
some information on this is already mentioned in [15].

7 Related Work

Generally speaking, there are two directions for extend-
ing a Hindely-Milner style of type system. One direction is
to extend it so as to accept more programs as type-correct
and the other is to extend it so as to assign more accurate
types to programs. Our work follows the second direction.
A pioneering study in this direction is the work on refine-
ment types [3], which aims at expressing and checking more
properties of programs that are already well-typed in ML,
rather than admitting more programs as type-correct, which
is the goal of most other research on extending type sys-
tems. The mechanism of refinement types incorporates the
notion of intersection types and can thus ascribe multiple
types to terms in a uniform way.

DML is a functional programming language that en-
riches ML with a restricted form of dependent types [16],
allowing the programmer to capture more program invari-
ants through types and thus detect more program errors
at compile-time. In particular, the programmer can refine
datatypes with type index expressions in DML, capturing
more invariants in various data structures. For instance,
one can form a datatype in DML that is precisely for all
red/black trees and do practical programming with such a
type. The type system of DML is also studied for array
bound check elimination [15].

Most closely related to DML is the system ofindexed
typesdeveloped independently by Zenger in his Ph.D. The-
sis [18] (an earlier version of which is described in [17]).
He works in the context of lazy functional programming. In
general, his approach seems to require more changes to a
given Haskell program to make it amenable to checking in-
dexed types than is the case for DML and ML. This is par-
ticularly apparent in the case of existential dependent types,
which are tied to data constructors. This has the advantage
of a simpler algorithm for elaboration and type-checking
than ours, but the program (and not just the type) has to be
more explicit.

4By erasure we basically mean ignoring all syntax related to type index
expressions.

Typed Assembly Language (TAL) is introduced in [5],
in which a significant feature is that the type of a register
is allowed to change during execution. This sheds some
light on the design of Xanadu. However, a language like
Xanadu0, which essentially adopts the notion of TAL at the
source level seems of limited interest.

A dependently typed assembly language (DTAL) is de-
signed on top of TAL with a dependent type system to over-
come some limitations inherent in TAL [14]. The type sys-
tem of DTAL is capable of capturing memory safety, which
includes both type safety and safe array subscripting. The
notion of dependent types in DTAL is adopted from DML.
The design of Xanadu is partly prompted by the need for
generating DTAL code. Also, the techniques employed in
establishing the type soundness for XanaduΠ,Σ

0 are largely
adopted from [14].

The work on extended static checking (ESC) [2] also
emphasizes the use of formal annotations in capturing the
program invariants. These invariants can then be verified
through (light-weight) theorem proving. ESC is developed
on top of the imperative programming language Modular-
3, taking an approach based on first-order logic assertions.
It provides a specification language for the programmer to
specify properties including a list of variables that a pro-
cedure may modify, a precondition which must be satisfied
before a function call, a postcondition that must hold when
a function terminates, and so forth. Further study is needed
to determine whether ESC can readily handle higher-order
functions.

8 Conclusion

We have presented in the design of Xanadu a novel ap-
proach to enriching imperative programming with a form
of dependent types. This includes forming both static and
dynamic semantics for Xanadu and then establishing its
type soundness. We have also prototyped a type-checker
for Xanadu and a rudimentary compiler for compiling a
Xanadu program into a form that is then interpreted, demon-
strating a proof of concept.

In future work, we plan to continue the development of
Xanadu, extending the language with features such as inner
functions and modules. Also we intend to study the use
of dependent types in compilation, compiling Xanadu into
DTAL.

9 Acknowledgment

I thank Jerry Paul for reading a draft and providing me
with his comments.

References

[1] G. Dantzig and B. Eaves. Fourier-Motzkin elimination and
its dual.Journal of Combinatorial Theory (A), 14:288–297,
1973.

[2] D. Detlefs. An overview of the extended static checking sys-
tem. InWorkshop on Formal Methods in Software Practice,
1996.

[3] T. Freeman and F. Pfenning. Refinement types for ML. In
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 268–277, Toronto, Ontario,
1991.

[4] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis,
Naples, Italy, 1984.

[5] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to Typed Assembly Language.ACM Transactions on
Programming Languages and Systems, 21(3):527–568, May
1999.

[6] G. Necula. Proof-carrying code. InConference Record of
24th Annual ACM Symposium on Principles of Program-
ming Languages, pages 106–119, Paris, France, 1997. ACM
press.

[7] G. Necula and P. Lee. The design and implementation of a
certifying compiler. InACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation, pages
333–344. ACM press, June 1998.

[8] H. Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998. pp. viii+189.
Available as
http://www.cs.cmu.edu/˜hwxi/DML/thesis.ps .

[9] H. Xi. Dead code elimination through dependent types. In
The First International Workshop on Practical Aspects of
Declarative Languages, San Antonio, January 1999.

[10] H. Xi. Some Practical Aspects of Dependent Datatypes,
November 1999. Available as
http://www.cs.bu.edu/˜hwxi/academic/papers/PADD.ps .

[11] H. Xi. Facilitating Program Verification with Dependent
Types, March 2000. Available as
http://www.cs.bu.edu/˜hwxi/academic/papers/FPVDT.ps .

[12] H. Xi. Imperative Programming with Dependent Types. In
Proceedings of 15th IEEE Symposium on Logic in Computer
Science, pages 375–387, Santo Barbara, June 2000.

[13] H. Xi. Xanadu: Imperative Programming with Dependent
Types, 2001. Available at
http://www.cs.bu.edu/˜hwxi/Xanadu/ .

[14] H. Xi and R. Harper. A Dependently Typed Assembly
Language. Technical Report CSE-99-008, Oregon Graduate
Institute, July 1999. Also available as
http://www.cs.bu.edu/˜hwxi/academic/papers/DTAL.ps .

[15] H. Xi and F. Pfenning. Eliminating array bound checking
through dependent types. InProceedings of ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, pages 249–257, Montréal, Canada, June 1998.

[16] H. Xi and F. Pfenning. Dependent types in practical pro-
gramming. InProceedings of ACM SIGPLAN Symposium
on Principles of Programming Languages, pages 214–227,
San Antonio, Texas, January 1999.

[17] C. Zenger. Indexed types.Theoretical Computer Science,
187:147–165, 1997.

[18] C. Zenger.Indizierte Typen. PhD thesis, Fakultät für Infor-
matik, Universiẗat Karlsruhe, 1998.

