Imperative Programming with Dependent Types
(Extended Abstragt

Hongwei Xi
University of Cincinnati
hwxi@ececs.uc.edu

Abstract tirely unclear what it means to sayhas typeint array(a)
for somemutablevariablea: if we update the value of,
In this paper, we enrich imperative programming with this changes the type of but A itself is unchanged. As
a form of dependent types. We start with explaining somein DML, we introduce a clear separation between ordinary
motivations for this enrichment and mentioning some ma- run-time expressions and a distinguished family of index
jor obstacles that need to be overcome. We then present the@xpressions, linked by singleton types of fotit(a): ev-
design of a source level dependently typed imperative pro-ery expression of typent(a) must evaluate ta (if the
gramming languageXanady forming both static and dy- evaluation terminates). This decision is also crucial to ob-
namic semantics and then establishing the type soundnestaining a practical type-checking algorithm.
theorem. We also present realistic examples, which have There is yet another obstacle. Suppose we have already
all been verified in a prototype implementation, in support declared that a mutable variabldas typeint(a) for some
of the practicality of Xanadu. We claim that the language 4. Usually, the type of a variable is fixed upon declaration
design of Xanadu is novel and it serves as an informativein a programming language. This means that we cannot
example that demonstrates a means to combine imperativesven type the assignment= z + 1 sincez andz + 1 have
programming with dependent types. different typesint(a) andint(a+ 1), respectively, making
dependent types largely useless in imperative programming.
In order to typer := = + 1, we must allow the type of
to change fromint(a) into int(a + 1) after evaluating the
assignment.

We propose to allow the type of a variable to change

extended with a restricted form of dependent types. This ex-du”ng. evaluathn and study some consequences of this pro-
posal in the design of a source level programming language.

tension yields a dependently typed functional programming Note that a similar approach Is already used in Typed As-

language DML, in which the programmer can use depen- .
dent types to more accurately capture program propertiesSembly Language (TAL) [5], where the type of a register

and thus detect more program errors at compile-time. It is may change du.rmg execution so as to reflect the type of the
also demonstrated that dependent types in DML can facili- content ofr at dlfferent. program points.])
tate array bound check elimination [15], redundant pattern ~ We present some introductory examples on imperative
matching clause removal [9], tag check elimination and un- Programming with dependent types before going into fur-
tagged representation of datatypes [10]. Evidently, an im- ther details, giving the reader some feel as to what depen-
mediate question is whether we can reap some similar bendent types can actually do in practice. These examples en-
efits by introducing dependent types into imperative pro- @ble us to identify certain ways of using dependent types
gramming. We give a positive answer to this question in in practical programming, which we also regard as a major
this paper. contribution of the paper.

Intuitively speaking, dependent types are types which In Figure 1, the Xanadu program implements a binary
depend on the values of language expressions. For instancesearch function on an integer array. We ug§0,n] as
we can refine the typent for integers into infinitely many a shorthand fofi:int | O<=i<=n] int(i) . Note
singleton typesnt(a), wherea, ranging over all integers, that the concrete syntafint | 0<=i<=n] stands
is the expression on which this type depends. Also, we for a dependent sum constructor, usually writtertas ~,
can form a typeint array(a) for integer arrays of size where~ is the subset sofa : int | 0 < a < n}, that
a, wherea ranges over all natural numbers. We cannot rely is, the sort for all index expressions betwdeandn. In
directly on standard systems of dependent types [4] for lan-short, int[O,n] is the type for all integers satisfying
guages with computational effects. For instance, it is en-0 < i < n. Similarly, we usant[-1,n) for all integers

1 Introduction

In [16, 8], the functional programming language ML is

{n:nat}
int bsearch(key: int, vec[n]: int) {

var:
low: int[O,n]; high: int[-1,n);
int mid, x;;
low = 0; high = arraysize(vec) - 1;

while (low <= high) {
mid = (low + high) / 2;
X = vec[mid];
if (key == x) { return mid; }
else if (key < x) { high = mid-1; }
else { low = mid+1; }
}

return -1;

Figure 1. Binary search in Xanadu

j satisfying—1 < j < n.

The declared typat[0,n] for variablelow , which
will be called the master type ¢bw , means that we can
only store an integei satisfying0 < i < n into variable
low , wheren is the size of the array imec . The declared
type for variablehigh can be interpreted similarly. It can

union <'a>list of nat {
Nil(0);
{n:nat} Cons(n+1) of 'a * <'a>list(n);

}

(a){m:nat, n:nat}

<'a>list(m+n)

revApp(xs:<’a>list(m),ys:<'a>list(n)) {
var: 'a X;;

invariant:
[ml:nat,nl:nat | mi+nl = m+n]
(xs:<’a>list(ml), ys:<’a>list(nl))
while (true) {
switch (xs) {
case Nil: return ys;

case Cons(x,xs): ys = Cons(x,ys);
}
}
exit; /* can never be reached */
}
(a){n:nat}

<'a>list(n) reverse (xs: <'a>list(n)) {
return revApp(xs, Nil);

be proven in the type system of Xanadu that the array sub-

scriptingvec[mid]
time, that is, the integer imid is always within the bounds

of the array irvec when the subscripting is performed. We

in the program is always safe at run-

Figure 2. The list reverse function in Xanadu

will briefly explain the reason for this in Section 4. There- We then define the functiorevApp , which takes a pair
fore, it is unnecessary to insert run-time array bound checksOf lists (s, ys) and returns a list that is the concatenation

when we compile the program.

of the reverse of:s to ys. The header of the function in-

In Figure 2, we first declare a polymorphic union type dicates tharevApp yields a list of lengthin + n when
to represent lists. A union type in Xanadu is the same as adiven a pair of lists of lengths: andn, respectively. The

datatype in ML. In this case, the declaration indicates that Syntax following the keyworéhvariant

we index the union type with an index of sarat , which

denotes atate
type which can be regarded as a form of loop invariant.

stands for the length of a list in this case. An index of The state type means that the variabtesandys must

sortnat basically means that the index represents a naturainave types<’a>list(m1)

number.
e Nil(0) indicates thatNil is assigned the type
<'a>list(0) , that is,Nil is a list of length 0.

e {n:nat} Cons(n+1) of 'a * <a>list(n)
means thaCons is given the following type

{n:nat}
'a * <a>list(n) -> <'a>list(n+1)

that is,Cons yields a list of lengthn + 1 when given
a pair consisting of an element and a list of length
We write {n:nat} for the dependent function type
constructor, usually written adn : nat, which can
also be seen as a universal quantifier.

and<’a>list(nl) at the
program point immediately before the loop, whené and

nl are natural numbers satisfyimgl+nl = m+n The
switch statement inside the loop corresponds to a case
statement in ML. For instance, suppose the clause:

case Cons(x, xs): ys = Cons(x, ys)
is chosen at run-time; the head and tailxsf are then as-
signed tox andxs, respectively;Cons(x, ys) is as-
signed toys and the loop repeats. The functiceverse
is defined as a special casere¥App and its header indi-
cates that this function returns a list of lengtlvhen given
one of lengthn.

We present another example in Figure 3 to demon-
strate some use of dependently typed record. We define a
polymorphic recorck’a>sparseArray(m,n) for rep-
resenting two-dimensional sparse arrays of dimensibg
n in which each element is of typa . Letr be a record

{m:nat,n:nat} cutes the code with no run-time array bound checking if the

record <'a>sparseArray(m, n) { type-checking is successful. We plan to compile Xanadu
row: int(m); /* number of rows */ programs into DTAL code, using annotations in Xanadu
col: int(n); /* number of columns */ programs, which are in the form of dependent types, to gen-
data[m]: <int[O,n) * ’a>list erate dependent types in DTAL code. This can be regarded
[*array of lists representing rows*/ as an alternative design to that of Touchstone. Some pre-

} liminary results, including a prototype compiler, have been

reported in [14]. In general, the type system of Xanadu al-
lows the programmer to use dependent types to capture pro-

Figure 3. A dependent record type gram invariants more accurately, and this, in return, leads to
more effective detection of program errors and more thor-
ough elimination of array bound checks.

of type <’a>sparseArray(m, n) . Thenr has three The most significant contribution of the paper is the de-
components, namelyow, col anddata . Clearly, the sign of Xanadu, a source level imperative programming
types assigned toow andcol indicate that.row and language supporting a form of dependent types. This de-
r.col return the dimensions af. The type assigned to signincludes forming both static and dynamic semantics for
data states that.data is an array of sizen. In this ar- Xanadu and imposing restrictions to make Xanadu practi-

ray, each element, which represents a row in a sparse arrayal. We also establish the type soundness of Xanadu, which
is a list of pairs and each pair consists of a natural num- constitutes the main technical contribution of the paper. We
ber less tham and an element of typ& . For instance, view the design of Xanadu as an example that illustrates an

a list consisting of two pair$6, 2.7183) and (23, 3.1416) approach to enriching imperative programming with depen-
represents a row in a sparse array where the 6th and 23rdient types.
elements ar@.7183 and3.1416, respectively, and the rest The rest of paper is organized as follows. We form a lan-

are 0.0. A Xanadu program implementing the multiplica- guage Xanadin Section 2, which allows the type of a vari-

tion between a sparse array and a vector can be found ahble to change during evaluation but supports no dependent

[13], in which all array subscripting is proven safe in the types. The introduction of Xanaglis mainly for setting

type system of Xanadu. o _ ~ up the machinery to reason about the language Xgfi&du
There is another important motivation behind the design which essentially extends Xanagwith a restricted form

of Xanadu. In an untrusted computing environment such of gependent types. We present Xanaduin Section 3,

as the Internet, a code recipient may not trust the origin of \yhere we also form both static and dynamic semantics for

received mobile code. This makes array bound check e"m'Xanadlg"Z and establish its type soundness. We then dis-

|tnat||9n .S|gtn|f|cantlybmorg d'rf;f'c"l'(lt sbln;:e lwe tneed not Onltﬁ cuss in Section 4 some key issues on the design of an exter-
0 eliminate array bound Checks but also 10 ConVINCe e | |54q3gexanaduand a type inference algorithm for it.

cod_e recipient that t_he elimination is done Correct!y._ The Section 5 deals with some restrictions and extensions that
notion of proof-carrying code [6] can address the difficulty make Xanadu more realistic. Lastly, we mention a proto-

by attaching to mobile code a proof asserting that the codetype implementation, discuss some related work and con-

can never perform out-of-bounds array subscripting at run- 1, e -\ refer the interested reader to [12] for the details
time. The code recipient can then verify the attached prOOfomitted here

independently and execute the code with no run-time array We focus on the technical development of Xanadu in this

bound checking if the pr.oof ver|f|cat|or.1 IS succgssful: . abstract, which is considerably involved. A short and intu-
However, there remains a challenging question with this i e introduction on Xanadu can be found in [11], where
approach:how can we generate such a proof in the first |5ious programming examples are presented with explana-
place? The Touchstone compiler [7], which compiles pro- o - Also, it could be helpful if the reader would briefly
grams in a type-safe subset of C into proof-carrying code, a4 Section 4 before studying Section 2 and Section 3 so

handles this question with loop invariant synthesis in source ¢ 14 get a feel as to how type inference is performed in
programs. This s a fully automatic approach, butitis highly yoa-q4,,

heuristic and can be too limited in practice. For instance,

the Touchstone compiler seems unable to handle the binary

search example presented in Figure 1. As for the example2 Xanaduy
of sparse matrix multiplication, it does not even seem clear

We have designed a dependently typed assembly lanand present its syntax in Figure 4. For instance, the follow-
guage DTAL in [14]. The type system of DTAL is capable ing program in C:

of capturing memory safety of code at assembly level, in-

cluding both type safety and safe array subscripting. After int fact(int x) {

receiving DTAL code, a code recipient uses type-checking return ((x > 0)? x * fact (x-1) : 1);
to verify whether the received code is memory safe and exe-}

types T == bool|int |7 array |unit | top

function types A u= (Ti,..,Tn) — T

constants c == blin]|{

expressions e == claz|X|opler,...,en) | x:=¢€]er;es|if(e,e1,e2) | while(eq,es) |
alloc(eq, e2) | arraysize (e) | e1]es] | e[e1] := ez |
let X =e; in e; end | newvar z in e end | call(X;eq,...,e,)

values v o= X|e

functions fou= AMXy,.., Xn)e

declarations D == [|D[Xw— f:)

value variable contexts II' == | X: A |, X:7

reference variable contextsA == - |A,z: 7

programs P := letdef D in e end

Figure 4. The syntax for Xanady

is equivalent to extending a declaratidnin Xanady with 2.1 Static Semantics
the following binding:

[X — A(X1).body : (int) — int], Xanady is a monomorphically typed first-order lan-
wherebody is %\Jﬁgg The only subtyping rules in Xangdare the fol-
newvar r in
z:= Xy;if(z > 0,z x call(X;z — 1),1) Er<r (co-eq) =7 <top (co-top)

end

There are two kinds of variables in XangdWe usez for Given two reference variable contexts andA;, we have
reference variables antl for value variables. Basically, a the following rule(co-context) for coercingA, into A4,
reference variable is like a variable in imperative program- where we assuméom(4,) = dom(A).

ming while a value variable is like one in (call-by-value)

functional programming. We find that value variables are E Ap(x) < Aq(z) forallz € dom(Ag)
convenient for certain theoretical purposes but theynate Ao E A,
indispensable!

We useop for some primitive operations such as arith-
metic and boolean operations. For a reference variable con
text A, the domaindom(A) is the set of reference vari-
ables declared ilh. The domaindom(T") of a value vari-
able context is defined similarly. We require that no ref-
erence (value) variables appear more than onca ift").

A typing judgment in Xanadyis of form Ay;I" F e :
(Aq;7), which means that the expressiohas typer under
the contextAy; I" and the evaluation of changes\, into
A;. Forinstance, we will see that the following is derivable,

Also, we usecall(X;eq,...,e,) to indicate a function call z :int;- F (z := true) : (z : bool;unit),

in Xanady, whereX is assumed to be bound to a function

takingn arguments. which clearly indicates that the type sfchanges fronint
The most significant feature of Xanadis its type sys- into bool after the assignment := true.

tem, in which the type of a reference variable is allowed to \We present some of the typing rules for XangiuFig-

change during evaluation. We emphasize at this point thature 5. Given a functiorf = \(X3, ..., X,,).c and a func-

Xanady is not intended for demonstrating the advantage of tion type A = (7,...,7,) — 7, the rule(type-function)

a language that allows the type of a reference variable tojs for typing a function. We emphasize that only toplevel
change during evaluation. Such advantage seems uncleafunctions are allowed in Xanagu Notice that the rule
(if there is any) until the introduction of dependent types. (type-newvar)assigns every uninitialized variable the type
The design of Xanadyis primarily for setting up some ma- top. This implies that a variable is already initialized if it
chinery needed to reason about Xar}l}r&u which is to be has a type other thatop.

introduced in Section 3, aIIowing for a less involved presen- In Xanady, the type of a reference variable can Change
tation. during evaluation. For instance, the following function can

1Another reason for having value variables is that we may also support D€ given the typgint, int) — bool in Xanady. N(_)te
various functional programming features in Xanadu in future. that the type of: changes frontop into int and then into

Ap;THe: (A7)
Ag;TFx:=e: (Ai[x — 7];unit)
Ap;T'Fe: (Ar;bool) Ap;T'keq: (Ag;unit) AsEA ATk ey: (As;unit) AsEA
Ap; T Fif(e,e1,e2) : (Ajunit)
AgEA A;TEep:(Ar;bool) ApTEes: (Agjunit) Ag
Ag;T'F while(ey, e3) : (Ay;unit)
Ag;TFep: (Ag;int) AT hRes: (Ag;7)
Ag; T+ alloc(ey, e9) : (Ag; T array)
NX)=(r1,....,7n) =7 Ap;T'Fer: (A1) - Ap—;Dhen: (Anym)
Ap; T Fcall(X;eq, ... en): (An;T)
Ag,z:top; ke (A, x: 11570)
Ap;T'Fnewvar z in e end : (Aq1;72)
STV Xy om, o X i be(57)
PTEXXy,..., Xn)e: (71,0, Tn) —

(type-assign)

(type-if)

A .
(type-while)

(type-alloc)

(type-call)

(type-newvar)

(type-function)
-

Figure 5. Some typing rules for Xanady

bool during evaluation. Xanady is unclear, we feel that the cost of boxed represen-
tation is simply too high. However, the introduction of a
A(X7, Xo2). restricted form of dependent types into Xangehill com-
newvar z in pletely alter the situation as illustrated in Section 3.

x:= X1 — Xo;if(x > 0,2 := true, x := false); x
end 2.2 Dynamic Semantics

In the rule(type-assign) we useA, [z — 7] for afinite map We form an abstract machine for assigning dynamic se-
A such thaid(z) = 7 andA(y) = Ai(y) forallothervari- mantics to Xanady A machine stateM is a pair of fi-
ablesy in dom(A) = dom(A;). The rule(type-while) nite mappingsV, H). The domainrdom(H) of H is a set
needs some explanation. The reference variable coftext ¢ heap addresses, which one may assume are represented
in the rule can essentially be regarded as a loop invariant ony 5 natural numbers. For evelyc dom(H), H(h) is a
the types of reference variables in the loop that must h°|dtuple (heo, ..., hea_1), Where we uséc for either a con-
at the beginning of the loop. In Xanaguhe programmer ¢iant or a heap address. The domdbm(V) of V is a
is responsible for providing such loop invariants. One may get of reference variables abtimapsz to somehe for ev-
argue that this practice is too burdensome for the Program-gry ;- ¢ dom(V'). A judgment of formM|e] —p M'[¢]
mer. However, we feel that this argument is less tenable eans that expressierunder machine staté{ evaluates to
because (a) it already suffices to provide invariants only for_ ¢/ underM’, where declaratiom binds the function sym-
those variables whose types may change in a loop and (b) ifyg|s in e to some functions. Notice that heap addresses can
seems most likely that there are only few such variables. 'ncreep into expressions during evaluatioh. We thus ex-
particular, there is no need for such invariants if there are Noand the syntax for Xanaguo treat heap addresses as con-
variables whose types change during evaluation. The pro-siants. This enables us to form expressions involving heap
grammer, who is allowed to change the types of variables 54qresses, which are needed for forming evaluation rules.
when programming in Xanaduc_:an a_lways choose not to We also introduce expressions of the following form
do so and thus provide no loop invariants. newvar r — he in e end

A real serious problem with Xanaglis in compilation. and treahewvar z in ¢ end as
If we can assign to a reference variable a value of any type, newvar z = () in ¢ end.
we need a uniform representation for values of all types, thatpe typing rule(type-newvar) for
is, we need to box all values which cannot be represented
in a word on a real machine. This is similar to supporting
polymorphism in a language. Given that the advantage of 2This happens when the ruleval-alloc)is applied.

newvar x = hc in e end

I- -2
(V,H)[newvar x = hc; in hey end] —p (V, H)[hea] (eval-newvar-2)

M[While(el, 62)] —D ./\/l[if(e17 (62; While(el, 62)), <>)} (eval-Wh”e)

n>0 h¢dom(H)
(V,H)[alloc(n, he)] —p (V, H[h — (he, ..., he)])[h]
H(h) = (hco, ..., hex—1) 0<n <k
(V,H)[h[n]] —p (V, H)[hcn]
H(h) = (hco, ..., heg—1) n<OVk<n
(V, H)[h[n]] — p subscript

H(h‘) = (h’COa"'ath—l) OSTL <k

H' = H[h — (hco, ..., hcn_1,he, hepyr, ... heg—1)]
(V,H)[h[n] = he] —p (V, H')[()]

H(h) = (hco, ..., heg—1) n<0Vk<n
(V, H)|h[n] = hc] —p subscript

(eval-alloc-3)

(eval-array-access-in)

(eval-array-access-out)

(eval-array-assign-in)

(eval-array-assign-out)

Figure 6. Some evaluation rules for Xanady

is given below, wherd{ is a finite mapping that maps heap rule for typing a heap address.
addresses im to types. More details on this is to be pre-

sented in Subsection 2.3. N]
AT Fr e (A () (YPeheap-address)

Ao,z : Hhe);T kg e: (A, z:71;72)

Ag;T' g newvar z = he in e end : (Ay;72) We use judgments\f = A and’® E H to mean
M modelsA and’H modelsH, respectively. The precise
We list some of the evaluation rules for Xangda Fig- meaning of these judgments follows from the rules in Fig-

ure 6. We usé, ¢ dom() in the rule(eval-alloc-3)to ure 7. Also, we writeM = H if M = (V,H) andH = H
mean thath is a new heap address. Note that an array is holds.
always initialized upon allocation. Also we usabscript Assumethaf\y; ' by, e : (Ay;7) is derivable. Also as-
to indicate that an out-of-bounds array subscripting excep-syme thatM modelsA andH, that is, M EAandM =
tion has occurred during evaluation. The evaluation rules g are derivable. In order to establish the type soundness for
for propagating exceptiosubscript are all omitted. Xanad, we need to prove that iM[e] —p M’[¢/] then

We use heap addresses to form expressions when assigmtt’ = A’ and M’ |= H' are derivable for somd’ and’
ing dynamic semantics to XanagdiHowever, itis conceiv- such thatA’;T' - ¢’ : (Ay;7) is derivable.
able that there are other approaches to assigning dynamic - ynfortunately, it is impossible to establish this. For in-
semantics to Xanaduthat require no use of expressions stance, letM = (V, H) such thab/(z1) = V(z2) = h and

containing heap addresses. Therefore, we do not includeH(h) = (0). Note that we us€) for a tuple consisting of
heap addresses as a part of Xanadu exactly one elemeri. Clearly, M = A is derivable for
A = z; : int array(l),zq : top array(l). Also note
2.3 Type Soundness that A; T+ QCQ[O] = true : (A;unit) is derivat?le. Sup-
pose that we evaluatg[0] := true underM. This evalu-

o ation leadsM into M’ = (V, H'), whereH’(h) = (true),

When establishing the soundness for Xanaae need put M’ |= A is no longer derivable sincg(z;) = h and

to type expressions containing heap addresses. For this purk’(h), which is(true), is not an integer tuple.

pose, we usél for a finite mapping from he_ap _addresses_ 0 \we introduce the following notion of regularity to ad-
array types and change the form of a typing judgment into dress the problem.

Ag;T By e : (Ay;7), where we assume that all heap ad-
dresses ire are in the domairlom(H) of H. This affects
all the typing rules in Figure 5. Also we use the following Definition 2.1 (Regularity) LetD be a derivation of\ =

(model unit) (model-top) (model-bool) (model int)

HE():u H = he: top H Eb:bool Hi:int
H}:V(x):T) H(h) = (hco, ..., hen—1) HiEEheg:T -+ H}:hcn,lzT
VHYEz:T (model-var) H E h:T1array(n)

MEz:A(z) forallz € dom(A) HEh:H(h) forallh € dom(H)

MEA HEH

(model-array)

(model-context) (model-heap)

Figure 7. Modeling Rules for Xanady

A. If the following rule is applied irD,

H(h) = (heo hen_1) index objects i,j == a|n|i+j|i—7]
yeeshen— il
HEhey:T -+ HEhe—1:7 . " o ! ‘7‘|Z.‘7.| o
(model-array) index propositions p = i<j|i<jli=7|
H = h: T array(n) iFjlizjli>j]
we sayD associates with 7. D is a regular derivation if _ P1A P2 | p1V p2
D associates each heap addréswith at most one type. ' index sorts v = int|{a:v|p}
We now argue that the abovet = (V,’H) = A cannot index contexts ¢ == - |¢,a:[p
constraint ® = p|pDP|

have a regular derivations. Note that we must have a deriva-
tion of the following form in order to derive\l = z; :
int array(1).

H(h)=(1) HE1:int

<I>1/\Q>2\Va:'y.<l>

Figure 8. Syntax for some integer constraint

(model-array)

H |=h : int array(1) domain
Similarly, we also must have a derivation of the following
form in order to deriveM |= x5 : top array(l) .
M) = (1) HE1:t types 7 = bool(i)|int(i) | unit |
(h) =) = °P (model-array) T array(i |Ea v.T
H = h : top array(1)) y
functiontypes X == - |Ip.(7,...,7) = T

Therefore, M |= A cannot have a regular derivation since gxpressions e =
any derivation ofM = A must associaté with bothint

-| (i |e) | unpack e; as {(a | X) in e; end
andtop. [(i]e) | unp 1as (a| X)ine;

values v ou= | (i v)
Lemma 2.2 Assume thatM = Aq has a regular deriva- state types o == dp.A
tionand M | H, Ag;T g e : (Ar;7) and Mle] —

M'[e'] are derivable, Then there exidf, and H’ extending

H such thatM’ = A has a regular derivation and both Figure 9. Syntax for Xanady™>
M E H andA{;T kg e : (Aq;7) are derivable.

Proof This follows from a structural induction on the 3 Xanady, ™
derivationD of Ag;T' by, e: (Aq;7). [

Theorem 2.3 Let P = letdef D in e end be a program In this section, we extend Xanaglinto a dependently

such that- P is derivable; itM(e] —7, M’[¢/], then either typed programming language Xan%’dﬁ where the depen-

e'is (), or M'[¢/] —p subscript, or M'[¢/] —p M"[e"] dent types are of a restricted form as in DML [16, 8].

for someM” ande”. In other words, the evaluation of a We fix an integer constraint domain in Figure 8 and re-

well-typed program irKanady either terminates normally, trict the t ind . in X Sd% . th

or raises a subscript exception, or runs forever. strict the ype Index expressions in Aan namely, the
expressions that can be used to index a type, to this domain.

This is a sorted domain and subset sorts can be formed. For

instance, we usaeat for the subset sofa : int | a > 0}.

We emphasize that the saértt should not be confused with

We are now ready to incorporate dependent types into im-the typeint. We say that a satisfaction relatign= @ is

perative programming. satisfiable if(¢)® holds in the integer constraint domain,

Proof Obviously, M = - has a regular derivation. This
theorem then follows from Lemma 2.2. [

where(¢)® is defined as follows.

()2=0 (¢,a:int)® = (p)Va: int.®
(¢, {a:v[pH)®=(g,a:7)(p>?)
(0,p)® = (¢)(p D P)

The additional syntax of Xanafu” to that of Xanady
is given in Figure 9. For every integér int(¢) is a sin-

3.1 Static Semantics

A typing judgment in XanacﬁffZ is of the following

form, which is considerably involved and thus deserves
some detailed explanation.

¢1; 81T F e (d2;Ag;7)

gleton type such that the value of every expression of this There are several invariants associated with such as a typing

type equals. Similarly, bool(1) andbool(0) are singleton
types for expressions with values equal to true and false, re-
spectively. Also we us&a : v.7 for a sum type. We omit
the rules for forming legal types, which are standard. For
instance, it is required that = 0 < i < 1 be satisfiable

in order to formbool(i), where we assume that all index
variables in; are declared .

Also, we define the erasure of a types follows.
|lunit| = unit |top| = top
|[bool(i)|| = bool ||int(é)|| = int
|7 array(i)| = 7|l array [|Sa:y.r] = ||

Note thatint is interpreted asta
T array asXa : nat.T array(a).
The significance of type erasure is that for every well-
typed programP in Xanady">, if we replace each type
in P with its erasure the® becomes a well-type program
in Xanady. By this, we say that Xanafu” is a conser-
vative extension of Xanagu A program that is typable in
Xanady"™ is already typable in Xanagubut dependent

types in Xanadl”™ can allow the programmer to capture
more program properties and thus lead to the construction
of more robust programs (as more program errors are de
tected statically).

We use a judgment of fornp - 7 : * to indicate
that 7 is a well-formed type under index variable context
¢. The rules for deriving such judgments are standard
and thus omitted. We use judgments— Alref ctx and
¢ b T'[val ctX] to mean that\ andT" are well-formed refer-

int.int(a) and

judgment.

1. All reference variables inare declared in\;.

2. Allvalue variables ire are declared if'.
3. ¢1 F Aq[ref ctq is derivable.
4. ¢, - T'[val ctX is derivable.
5. ¢9 is an extension oy, i.e.,¢2 = @1, ¢ for somegp.
6. ¢2 | Ag[ref cty is derivable.
7. ¢o b 7 : xis derivable.

Essentiallyg1; A1;T F e : (¢2; Ag; 7) means that for each

substitutiond; satisfying- - 6, : ¢; there exists a substi-
tution 0, satisfying- - 65 : ¢ such thak[6,] can be given
type 7[02] underA,[0,];T'[61] and the evaluation of[6;]

changes\;[#;] into Az [6s].

Some of the typing rules for Xanaﬁl? are presented in
Figure 10. In both rule@ype-if) and(type-while), the state
typed¢.A is to be either provided or synthesized.

3.2 Dynamic Semantics

The dynamic semantics of Xangfiti is formed on
top of that of Xanady. We no longer need rules like
(eval-array-access-outand(eval-array-assign-out)since

the type system of Xanaé[uE is designed to guarantee that

ence and value variable contexts, respectively. The rules forthe evaluation of a well-typed program in Xangd% can

these judgments are also standard and thus omitted.

We omit the details on how substitution is performed,
which is standard. Given a tersnsuch as a type or a con-
text, we uses[d] for the result from applying to . We
introduce a judgment of formp = 6 : ¢’ and present the
following rules for deriving such judgments.

———— (sub-emp)

¢
bHO:¢ Phi:in
pFOla—il: ¢, a:
prH0:9¢" ¢ = plb]
pE0:¢p

(sub-var)

(sub-prop)

Roughly speakingg - 6 : ¢’ means that has “type” ¢’
underq.

never lead to out-of-bounds array subscripfingve need
some additional rules in Figure 11 for handling new lan-
guage constructs.

3.3 Type Equality and Coercion

A judgment of formg; A |= 3¢’.A’ basically means that
A coerces intd\'[6], that is,A’ under the substitutiof, for
somef satisfyinge - 6 : ¢’. We present rules for deriving
such judgments in this section. In the presence of dependent
types, it is no longer trivial to determine whether two types
are equivalent. For instance, we have to prove the constraint
1+ 1 = 2 in order to claimint(1 + 1) is equivalent to

SInstead, the programmer is required to insert dynamic array bound
checks in case an array index cannot be proven within the bounds of the
indexed array.

d1; AT Fe: (23 Ag;)

¢2 |:T1:7'2

Alz) =T

o1 AT et (P23 Ag; 1)

(type-eq)

Az)=%a:~y.T

ST (A7) YPevan

O AT HEx: (a7, A7)
d1; AT e (25 A0;7)

(type-open)

0(X) = Oo.(r, ..
d1; A1 ey

¢1;A1;TF x:=e: (¢2; Ag[z — 7];unit

S Tn) — T

D (¢2; Ag; Ti[0])

¢n§ An§r Fep: (¢n+1;An+l§Tn[9])

] (type-assign)

p1FH0:0

d)l;Al;F F call(X;el,...

$2,i=1A9 T F ey

s en) : (¢n+1§ AV 7[9])
$1; A1;T F e : (¢2; Az; ool (i)

: (¢33 A3 7)
D2,1=0;Ag; T eg: (dpg; Ag;T)

(type-call)

$3; Az = 3p.A
ba; A4 = FP.A

o1 AT Hif(e, er,e2) 1 (g2, 03 A7)

d1;A1 EJ0.A d1;0; AT Fey
¢2,i = 1;A0; T ez ¢ (¢35 Az;unit)

(type-if)

(¢2; Aa;bool(i))
¢33 Az | J9.A

b1 AT Fep: (d2; Aoy 1)

¢1; A1;T F while(eq, es) : (¢2,i = 0; Ag;unit)
¢2: Dg; I, Xt 1y - eg : (¢3: As; 72)

(type-while)

d1; ;T Flet X = e in es end : (¢3; Ag; 7o)
o1 iy ;AT e (¢o;Ag;T)

(type-let)

¢1; AT = (i | e):
d1;A1;F ey

(p2; Ag; Xa : y.7)

D (@23 A0 8a : y.11)
G2 a7 Aoy T, X 11y b ea : (h35 Ag; T2)

(type-pack)

¢1; A;T - unpack e; as (a | X) in es end : (¢3; As; 2)

(type-unpack)

Figure 10. Some typing rules for

int(2). In other words, type equality is modulo constraint
satisfaction.

We write ¢ = 7 = 7, to mean that types, andr, are
equivalent under the index variable contexiSimilarly, we
write ¢ = 71 < 75 to mean that type; coerces into type
75 under¢. The rules for type equality and coercion are
presented in Figure 12.

Notice that the need for deriving judgments of forgns
0:¢',¢ = =mande; A E I¢'.A’ involves constraint
satisfaction.

3.4 Type Soundness

We now state the type soundness theorem for Xagiadu
as follows.

Theorem 3.1 Let P = letdef D in e end be a program

Xanady">

such that- P is derivable; if M[e] —% M'[¢/], then ei-
there’ is () or M’[e/] —p M"[e"] for someM” ande”.

In other words, the evaluation of a well-type program in
Xanady either terminates normally or runs forever.

The theorem can be proven by following the same approach
as is used in the proof for Theorem 2.3, though it is much
more involved this time. Please find more details in [12].

4 Type Inference

We have so far presented an implicitly typed language
Xanady">. The typing rules in Xanagdli™ arenotsyntax-
directed, making it difficult to implement a practical type
inference algorithm for programs written in Xan%’dﬁ
Therefore, it becomes necessary to provide an external lan-
guage in which the programmer can supply type annotations

Mle] —p M'[¢]]
M((i| e)] —=p M'[(i] €]
Mler] —p M'[eq]
MJunpack e; as (a | X) in e3 end] —p M’[unpack ¢} as (a | X) in e2 end]

(eval-pack)

(eval-unpack-1)

M{unpack (i | he) as {a | X) in e3 end] —p Mea{a — i}{X — hc}] (eval-unpack-2)

Figure 11. Additional evaluation rules for ~ Xanady'>

For the implementation of binary search in Figure 1, the
pET=y i master type oflow is int[O,n] , Which indicates that
= int(z) — int(y) (eg-int) low can only store an integer whose value is betw8en
andn. Similarly, the master type dfigh isint[-1,n) ,
¢ET=T dFT=y meaning that only an integer whose vajugatisfying—1 <

(eg-array) ! Hr L
¢ = 71 array(z) = 72 array(y) j < n can be stored ihigh . The master types of variables
ba:yET =T mid andx areint , that is, these variables can only store
27 . — (eg-exi-ivar) integers. For a variable appearing as an argument in a func-
¢FEXaryn =Ya:ym tion declaration, the master type of the variable is assumed
PETI=T to be the type erasure of the type of the argument (unless
=< (co-eq) the programmer declare the master type of the variable ex-
N (co-top) plicitly). For instance, the master typeskafy andvec are
¢ =71 < top P int andint array , respectively.
Alz) < A’ .
¢ = Alz) < Allz) 4.2 No Value Variables

forall z € dom(A) = dom(A’)

(co-context)

¢ A | A Value variables are not available to the programmer in
pE0:¢ ;A A0 our current implementation. The need for value variables
PN =N (co-state-type) occurs in the elaboration phase where a program is trans-

formed from external representation into internal represen-
tation and then type-checked. We present a simple example
to illustrate this point.
Figure 12. Some type equality and coercion Suppose that the assignmet®t = fact(x1) + 1
rules for Xanady"” occurs in a program, where functiéact has already been
given the typer = (int) — int. This assignment is for-
mally represented as, := +(call(Fact;z;),1), where
B)) o Fact is declare to have type. Unfortunately, this assign-
to facilitate type inference. We outline some key decisions ment does not type check since the type-ofis TI{i
we have made in the design of an external languéayeadu nat,j : nat}.(int(i), int(j)) — int(i + j) and it is im-
We omit most details on the design of a type infer- possiple to coercent into int(4) for any indexi. In order
ence algorithm for Xanadu, which largely follows the bi- {5 gvercome the problem, we elaborag = fact(x1)
directional approach explained in [16]. However, we ex- 4+ 1 into z, := unpack call(Fact; z1) as (a | X) in +

plain a key step in type inference that involves synthesizing (x| 1) end, which can be readily typed.
state type invariant for both loops and conditionals.

) 4.3 State Type Invariant Synthesis
4.1 Master Types for Variables

It is readily seen that we need a state type A in
In theory, a reference variable in Xan%ﬂa is allowed order to type either a conditionaf (e, e, e2) or a loop
to store a value of any type. However, we impose some while(eq, e2). Clearly, such a state type, which is essen-
restriction on this feature in practice. We assign every ref- tially an invariant about the types of some reference vari-
erence variable a typer and allow a value to be stored in ables at a program point, must be supplied by the program-
x only if the value can be coerced to have typaNe callr mer or automatically synthesized. This is to be a crucial is-
the master type of and writep(z) for it. sue in the design of a type inference algorithm for Xanadu.

A state type invariant for a loop is of forg.A. It

would obviously be too obtrusive if the programmer had expressions e =

to write a loop invariant for each loop. Therefore, it is im- claz|opler,....,en) | x:=eler;es]
portant in practice to effectively synthesize loop invariants Ap.(A,if (e, e1,e2)) | Ap.(A, while(eq, e3)) |
for common cases. We are less enthusiastic about sophis- alloc(eq, e3) | arraysize (e) |

ticated approaches to loop invariant synthesis since such e1lea] | ele1] == e |

approaches are usually highly heuristic and often make it newvar z : 7 in e end | call(X;ey, ..., e,)

exceedingly difficult for the programmer to figure out the
cause of type errors in case they occur.
We use the example in Figure 1 to illustrate the simple Figure 13. The syntax for external language
approach we have adopted for loop invariant synthesis in
our current implementation of Xanadu.

Let (¢, Ap) be the invariant hint provided by the pro- It should be clear how the presented examples in con-
grammer at the beginning of a loop. If there is no hint pro- crete syntax such as the one in Figure 1 can be mapped
vided, we assumép, Ag) = (-,-), that is, bothy and A into the corresponding expressions in the formal syntax for

are empty. Also, let(z) be the type of the reference vari- Xanadu.
ablex immediately before loop entrance.

4.5 An Example

e We first list all the variables:q, ..., z, in the loop
whose values may potentially be modified during the) i o
execution of the loop at run-time. For the loop in Fig- ~ We briefly explain how the array subscripting
ure 1, the variableg, mid, low, high belong vec[mid] in Figure 1 is proven safe in the type
to such a list, but the variablé®y, vec do not. system of Xanadu.

The presented type invariant synthesis approach yields
e Let A; be a reference variable context whose domain the state typelg.A for the loop in Figure 1, where is

consists of all declared reference variables and empty andA declares that the variablésw , high and
. mid andx have typesnt[0,n] , int[-1,n) ,top and
Ao(z) if 2 € dom(Ay); top . We apply the rulgtype-open)to low andhigh .
Ay(r) =4 p(x) ifz=u=z; ¢ Ajandr(z) # top; Thenlow has typeint(i) for index variablei of sort{a :
7(x) otherwise. int | 0 < a < n}, where index variable is declared of sort
nat. Similarly, high has typeint(j) for index variablej
For the loop in Figure 1A; mapsx, mid, low, of sort{a : int | —1 < a < n}. After the assignment
high to the following types, respectivelyop , top , mid = (low + high) / 2 , mid has typeint((i +
intf0,n] , andint[-1,n) . In addition,A; maps ;)/2). We now need to prove < (i + j)/2 < n under the
key andvec toint andint array(n) , respec- assumption that is a natural numbef) < i < n, —1 <
tively. j < nandi < j. This can be readily verified. Note that

1 < jis in the assumption because the loop condition must

e We used¢.A; for the loop invariant. For the loop in 014 when the assignmentis= vec[mid] executed.

Figure 1, it can be verified thaip.A; is indeed a loop
invariant and this invariant suffices to guarantee that _
the array subscriptingec[mid] in the loop is safe, 5 EXxtensions
that is,mid is within the bounds ofec .

We now describe some programming features that can
be incorporated into Xanadu to make it a more realistic lan-
guage. Note thatll these features are already supported in
a prototype implementation of Xanadu.

The state type invariant synthesis for a conditional is done
similarly.

4.4 The External Language Xanadu

The syntax for Xanadu is given in Figure 13. The 51 Tuples and Polymorphism

expression\¢.(A, while(ey, e2)) conveys that(¢, A) is

the hint mentioned in Section 4.3 that facilitates state Tuples, which are not present in Xangdt for the sake
type invariant synthesis for the loophile(e;, e;). Note of a less involved presentation, can be readily added into
that A¢ is used to indicate that this expression is poly- Xanadu.

morphic on ¢, that is, what is executed at run-time is The interaction between the dependent type system of
while(e; [0], e2[f]) for some substitutiord with “type” Xanady"> and polymorphism is minor. As demonstrated
¢. The expressiong.(A, if (e, e1, e2)) is interpreted simi- in Figure 2, polymorphism is already included in Xanadu.
larly. In newvar = : 7 in e end, 7 is the master type of As a matter of fact, even polymorphic recursion is available
the newly declared variable in Xanadu. The type of every declared function in Xanadu is

provided by the programmer and therefore it adds virtually form that is then interpreted. The implementation is written

no cost to support polymorphic recursion. in Objective Caml and its current version is available on-
line at [13], where one can also find many running program
5.2 Higher-order Functions examples in Xanadu, including implementations of binary

search, fast Fourier transform, heapsort, Gaussian elimina-
Currently, we allow a function to accept functions as its tion, red-black trees, random-access lists, various list func-
arguments but forbid a function call to return a function. tions, etc. The type-checker consist of two phases in which
The type system of Xanadu could be readily extended tothe first one checks whether the eraSwsea Xanadu pro-
support curried functions but such an extension would make3ram 1S well-typed and the second one performs dependent
it greatly more complicated to compile Xanadu programs. type-checking. The first phase is straight forward and the

It should be further studied whether it is worth the effort to Second phase involves solving linear constraints on integers.
fully support higher-order functions in Xanadu. The method used in the implementation for solving linear

constraints is based on Fourier-Motzkin elimination [1] and

5.3 Exceptions some information on this is already mentioned in [15].

The exception mechanism similar to the one in Java can7 Related Work
be readily incorporated into Xanadu. We currently support
exceptions likdreak andcontinuein a loop to allow for al-] o
tering the control-flow. Also we allow the use wfturn(e) ~ Generally speaking, there are two directions for extend-
to immediately return the evaluation resultaab the caller ~ ing @ Hindely-Milner style of type system. One direction is
of a function and the use ekit to abnormally stop the eval- t0 extend it so as to accept more programs as type-correct

uation of a program. and the other is to extend it so as to assign more accurate
types to programs. Our work follows the second direction.
5.4 Union Types and Record Types A pioneering study in this direction is the work on refine-

ment types [3], which aims at expressing and checking more
properties of programs that are already well-typed in ML,
rather than admitting more programs as type-correct, which
is the goal of most other research on extending type sys-
tems. The mechanism of refinement types incorporates the
notion of intersection types and can thus ascribe multiple
types to terms in a uniform way.

DML is a functional programming language that en-
riches ML with a restricted form of dependent types [16],
allowing the programmer to capture more program invari-
ants through types and thus detect more program errors
at compile-time. In particular, the programmer can refine
datatypes with type index expressions in DML, capturing
) .) more invariants in various data structures. For instance,

It is also allowed to declare global variables in Xanadu. gne can form a datatype in DML that is precisely for all
The inclusion of global variables leads to some difficulty. \eq/plack trees and do practical programming with such a

In the following example, a global variab®unt is de- type The type system of DML is also studied for array
clared and initialized with). It is required that every global j5,nd check elimination [15].

variable be initialized upon declaration. The master type of
count is[i:nat] int(i) , meaning that only a natural
number can be stored gount .

A mechanism for declaring dependent union types,
which directly corresponds to dependent datatypes in DML
[16, 8] is added into Xanadu and pattern matching is pro-
vided for decomposing the values of a union type. A con-
crete example of this feature is given in Figure 2.

An example of dependent record type is given in Fig-
ure 3, where the typg’a>sparseArray(m,n) is de-
clared for sparse arrays of dimensiorby n in which all
elements are of typa .

5.5 Global Variables

Most closely related to DML is the system ipfdexed
typesdeveloped independently by Zenger in his Ph.D. The-
sis [18] (an earlier version of which is described in [17]).
global count: [i:nat] int()) = 0 He works in the context of lazy functional programming. In

general, his approach seems to require more changes to a
Some implications from adding global variables are ex- given Haskell program to make it amenable to checking in-
plained in [12] and approaches to addressing these impli-dexed types than is the case for DML and ML. This is par-
cations are also given there. ticularly apparent in the case of existential dependent types,
which are tied to data constructors. This has the advantage
of a simpler algorithm for elaboration and type-checking
than ours, but the program (and not just the type) has to be

more explicit.
We have prototyped a type-checker for Xanadu that han-

dles all the fefitures mentip_ned in this paper and a rudi- 4y erasure we basically mean ignoring all syntax related to type index
mentary compiler for compiling a Xanadu program into a expressions.

6 Implementation

Typed Assembly Language (TAL) is introduced in [5], [2] D. Detlefs. An overview of the extended static checking sys-
in which a significant feature is that the type of a register tem. InWorkshop on Formal Methods in Software Practice
is allowed to change during execution. This sheds some 1996.
light on the design of Xanadu. However, a language like [3] T. Freeman and F. Pfenning. Refinement types for ML. In

Xanaduy, which essentially adopts the notion of TAL at the ACM SIGPLAN Conference on Programming Language De-
source level seems of limited interest. sign and Implementatiqpages 268-277, Toronto, Ontario,

A dependently typed assembly language (DTAL) is de- 1991. o o
signed on top of TAL with a dependent type system to over- [4] P. Martin-L6f. Intuitionistic Type Theory Bibliopolis,
come some limitations inherent in TAL [14]. The type sys- Naples, Italy, 1984.

[5] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to Typed Assembly LanguaglCM Transactions on
Programming Languages and SysteR1§3):527-568, May
1999.

G. Necula. Proof-carrying code. i@onference Record of
24th Annual ACM Symposium on Principles of Program-

tem of DTAL is capable of capturing memory safety, which
includes both type safety and safe array subscripting. The
notion of dependent types in DTAL is adopted from DML.
The design of Xanadu is partly prompted by the need for 6
generating DTAL code. Also, the techniques employed in [6]
Zzi)a:tltlasah;pc?mtqii]ype soundness for Xari%(viuare largely ming Languagegages 106-119, Paris, France, 1997. ACM
' . . press.
The work on extended static checking (ESC) [2] also (7] G, Necula and P. Lee. The design and implementation of a

emphasizes the use of formal annotations in capturing the certifying compiler. INACM SIGPLAN 98 Conference on
program invariants. These invariants can then be verified Programming Language Design and Implementatjsages

through (light-weight) theorem proving. ESC is developed 333-344. ACM press, June 1998.

on top of the imperative programming language Modular- [g] H. xi. Dependent Types in Practical Programmin@hD
3, taking an approach based on first-order logic assertions. thesis, Carnegie Mellon University, 1998. pp. viii+189.

It provides a specification language for the programmer to Available as

specify properties including a list of variables that a pro- http:/iwww.cs.cmu.edu/-hwxi/DML/thesis.ps }
cedure may modify, a precondition which must be satisfied [9] H. Xi. Dead code elimination through dependent types. In
before a function call, a postcondition that must hold when The First International Workshop on Practical Aspects of

a function terminates, and so forth. Further study is needed Declarative LanguagesSan Antonio, January 1999.

to determine whether ESC can readily handle higher-order[10] H. Xi. Some Practical Aspects of Dependent Datatypes,

functions. November 1999. Available as
http://www.cs.bu.edu/"hwxi/academic/papers/PADD.ps

[11] H. Xi. Facilitating Program Verification with Dependent
Types, March 2000. Available as

. . http://www.cs.bu.edu/"hwxi/academic/papers/FPVDT.ps
We have presented in the design of Xanadu a novel ap'[12] H. Xi. Imperative Programming with Dependent Types. In

proach to enriching imperative programming with a form Proceedings of 15th IEEE Symposium on Logic in Computer
of dependent types. This includes forming both static and Sciencepages 375-387, Santo Barbara, June 2000.

dynamic semantics for Xanadu and then establishing itS [13] H. xi. Xanadu: Imperative Programming with Dependent
type soundness. We have also prototyped a type-checker ~ Types, 2001. Available at

8 Conclusion

for Xanadu and a rudimentary compiler for compiling a http://www.cs.bu.edu/hwxi/Xanadu/)

Xanadu program into a form that is then interpreted, demon- [14] H. Xi and R. Harper. A Dependently Typed Assembly

strating a proof of concept. Language. Technical Report CSE-99-008, Oregon Graduate
In future work, we plan to continue the development of Institute, July 1999. Also available as

Xanadu, extending the language with features such as inner http://www.cs.bu.edu/"hwxi/academic/papers/DTAL.ps
functions and modules. Also we intend to study the use [15] H. Xi and F. Pfenning. Eliminating array bound checking
of dependent types in compilation, compiling Xanadu into through dependent types. Rroceedings of ACM SIGPLAN
DTAL. Conference on Programming Language Design and Imple-
mentation pages 249-257, Moréal, Canada, June 1998.
[16] H. Xi and F. Pfenning. Dependent types in practical pro-
gramming. InProceedings of ACM SIGPLAN Symposium
on Principles of Programming Languaggsages 214-227,
San Antonio, Texas, January 1999.
C. Zenger. Indexed typesTheoretical Computer Science
187:147-165, 1997.
References [18] C. Zenger.Indizierte Typen PhD thesis, Fakuit fur Infor-
matik, Universiat Karlsruhe, 1998.

9 Acknowledgment

| thank Jerry Paul for reading a draft and providing me
with his comments. [17]

[1] G. Dantzig and B. Eaves. Fourier-Motzkin elimination and
its dual. Journal of Combinatorial Theory (A14:288-297,
1973.

