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Research Background

• Datacenter scale systems are of increasing 
importance

• Scale-out applications not just in HPC but 
also in cloud environments

• Increasing complexity

• Heterogeneity

• Failures/Elasticity



High-level Architecture

• Doing away with the kernel-userspace 
boundary

• Software is constructed as libraries on 
top of a thin scalable runtime

• Low level primitives to aide in the 
construction of distributed software

• Allow incremental porting of legacy 
software
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Component Level 
Decomposition

• Managing communication and locality is 
hard

• Inspired by work on Tornado/K42 - no 
communication paradigm is best

• Not only message passing

• Not only shared memory or RDMA

• Encapsulate communication by 
decomposing software as components



Elastic Building Blocks

• Invocation of an 
object goes through 
a translation table

• Potentially different 
representatives of an 
object per processor



Elastic Building Blocks

• Objects respond to events

• EbbCall

• First time accessed on a processor

• Also hardware “events”

• Tree packet arrived

• Timer interrupt fired
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Our Goals

• Explore utility of system level primitives for Key-
Value Stores (KVSs):

• Can they help with faults / elasticity?

• Can they encapsulate HW level optimization?

• Can they help achieve HPC scale KVSs? 
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Status

• “Have” EbbOS runtimes for Linux, x86_64, 
PPC32, PPC64

• Gathering baseline measurements of event 
dispatch costs for a USENIX poster

• Developing an Ebb that implements a hash 
table
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Figure 1: Blue Gene/P components. (a) compute node with a 4-core PowerPC 450 and 2GB RAM, (b) pop-
ulated node card with 32 compute nodes and 2 IO nodes (two 10G Ethernet connectors on the front). 32
node cards form a rack.

4.3 Control and Management Model
Blue Gene’s original control system was constructed for

a very challenging task: booting a single “task” on 64000
nodes within a few minutes. The unit of allocation is a block
which contains from 16 up to all nodes in an installation.

For a general purpose environment the existing control
system has a primary limitation which is that all nodes run
the same software image. While in many cases we may use
the same kernel image, we want to be able to customize the
boot-strap ramdisk image and command line parameters to
the OS kernel. Instead of taking the obvious approach of
extending the control system we took a different route which
enables a very flexible resource allocation and management
scheme.

Blue Gene’s control network provides access to all parts
of the hardware and is therefore inherently insecure. Expos-
ing it out to many clients requires a sophisticated security
infrastructure, scalable management infrastructure, scalable
storage for storing boot images, scalable network connectiv-
ity etc. We try to push as many of these services as possi-
ble into Blue Gene and use Blue Gene resources themselves
for management and accounting. This approach inherently
scales: every time a new rack comes online a fraction of that
rack’s resources is used for management.

Our node allocation still happens in blocks, however, we
allocate them in large quantities into a standby pool. Each
of the nodes is boot-strapped with a small but powerful
firmware (see also Section 4.5) which allows interaction with
the node over the network. From the standby pool nodes are
then allocated and accounted to individual user accounts.
Upon each node allocation we return a list of node addresses
which are available for use. When the user deallocates a
node, the node is reset, the memory gets scrubbed, and
the node placed back into the pool ready to be handed out
again.2

4.4 Reliability and Failure Model
Reliability is a key problem at scale: machines fail. Here,

Blue Gene has a significant advantage over commodity plat-
forms. Blue Gene was designed for a reliability target of 7

2This scheme also fits seamlessly into the primary use of our
Blue Gene installation, namely scientific computing. Allo-
cating nodes out of a pre-allocated pool makes this pool
appear to be running a scientific application to the other
users of the system.

days mean time between failure for a machine with 72 racks,
which is roughly 73,000 nodes and 146TB of memory. Since
the machine is built to run one application, a single node
failure is considered a machine failure. Hence, individual
node reliability is two orders of magnitudes higher than a
commodity server.

Blue Gene’s control network is also used for failure report-
ing back to the control system. The control system primarily
reports the errors into a central database which is then used
to deactivate faulty components and route around errors.

We are extending the existing infrastructure to allow nodes
to actively react to hardware failures. Node failures are
in many cases non-fatal for the application and recovery is
possible. However, node failures which traditionally do not
affect a node need to be handled due to the high level of
integration. For example, when a node fails which acts as
a forwarding node at the physical layer, a network segment
may become unreachable. While we can easily deallocate
the faulty node from the pool, we must ensure that all nec-
essary nodes still provide networking functionality. Here,
the reliability of a single-chip solution is very advantageous.
The failure of nodes are often due to failing memory mod-
ules. However, each processor chip has 8MB of integrated
eDRAM. If more than one RAM chip fails we can usually
bring the node back into a state where it still acts as a router,
even though normal workloads cannot be run.

The key to handle hardware failures gracefully is a de-
terministic failure model. For example an operating system
may recover from certain RAM failures if the necessary re-
covery code is located in memory with error correction and
higher reliability. Furthermore, networking errors can be
compensated via an out-of-band channel through the con-
trol network. We make each node explicitly aware of the
hardware outages so that the nodes, for example, reconfig-
ure the network links and route around outages.

4.5 Boot Loader
As mentioned before, the Blue Gene control system only

allows booting a single image on all nodes of a block. Nodes
are completely stateless; there is no flash or ROM in any of
the nodes. Thus, even the initial firmware which initializes
the hardware is loaded via the control network into each
node of the machine.

We take over the node from the firmware via a generic
boot loader which is placed on all nodes by the existing
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Research Background

• We have been making large scale applications 
by building collections of single node operating 
systems stitched together with middleware

• Applications are single user, multi node
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