
Studying System
Support for a Key Value

Store

Boston University SESA Group
Dan Schatzberg

Outline

System Support for
Key-Value Stores

Reusable Component
Runtime for

Constructing Scalable
Elastic Services

Exploring new System
Software Models for
future Data Center

Scale Systems

0. Context
1. High-level architecture
2. Software decomposition
3. Key-value store support

Research Background

• Datacenter scale systems are of increasing
importance

• Scale-out applications not just in HPC but
also in cloud environments

• Increasing complexity

• Heterogeneity

• Failures/Elasticity

High-level Architecture

• Doing away with the kernel-userspace
boundary

• Software is constructed as libraries on
top of a thin scalable runtime

• Low level primitives to aide in the
construction of distributed software

• Allow incremental porting of legacy
software

High-level Architecture

Scalable
Runtime

Scalable
Runtime

Scalable
Runtime

Scalable
Runtime

Legacy
OS

Application

Libraries
Scalable
Runtime

Component Level
Decomposition

• Managing communication and locality is
hard

• Inspired by work on Tornado/K42 - no
communication paradigm is best

• Not only message passing

• Not only shared memory or RDMA

• Encapsulate communication by
decomposing software as components

Elastic Building Blocks

• Invocation of an
object goes through
a translation table

• Potentially different
representatives of an
object per processor

Elastic Building Blocks

• Objects respond to events

• EbbCall

• First time accessed on a processor

• Also hardware “events”

• Tree packet arrived

• Timer interrupt fired

Component Level
Decomposition

Our Goals

• Explore utility of system level primitives for Key-
Value Stores (KVSs):

• Can they help with faults / elasticity?

• Can they encapsulate HW level optimization?

• Can they help achieve HPC scale KVSs?

libFOX
...

...

......

...

...

...

memcached

mcphoton

TCP/IP
EtherNet

Linux
glibc

libmemcached
libFOX

mcphoton

EbbLibFOX

mcphoton

Linux
glibc

EbbLibFOX
mcphoton

EbbOS-bare
Ebb-DHT

...

...Ebb-DHT

Status

• “Have” EbbOS runtimes for Linux, x86_64,
PPC32, PPC64

• Gathering baseline measurements of event
dispatch costs for a USENIX poster

• Developing an Ebb that implements a hash
table

Backup

21

Clustered Object Instance

0

Reps

Global Translation Table

vbase COID=vbase+(i * sizeof(table entry))

i

(tables of Rep pointers)

Root

i

(table of Root pointers)

Local Translation Tables

Application

Application Application

Node NodeNode

Shard Shard Shard Shard

ApplicationCustomizable
System
Libraries

Shard-specific
Hardware

Abstraction
Layer

Application
Specific
Software

...

...Heterogeneous
Nodes

MultiLibOS

BackendBackendRole

Node

System Libraries

HAL

System Libraries

HAL

System Libraries

HAL

LegacyOS

HAL

System
Libraries

BackendFrontend

Background

Component Oriented
Runtime EbbOS

(a) (b)

Figure 1: Blue Gene/P components. (a) compute node with a 4-core PowerPC 450 and 2GB RAM, (b) pop-
ulated node card with 32 compute nodes and 2 IO nodes (two 10G Ethernet connectors on the front). 32
node cards form a rack.

4.3 Control and Management Model
Blue Gene’s original control system was constructed for

a very challenging task: booting a single “task” on 64000
nodes within a few minutes. The unit of allocation is a block
which contains from 16 up to all nodes in an installation.

For a general purpose environment the existing control
system has a primary limitation which is that all nodes run
the same software image. While in many cases we may use
the same kernel image, we want to be able to customize the
boot-strap ramdisk image and command line parameters to
the OS kernel. Instead of taking the obvious approach of
extending the control system we took a different route which
enables a very flexible resource allocation and management
scheme.

Blue Gene’s control network provides access to all parts
of the hardware and is therefore inherently insecure. Expos-
ing it out to many clients requires a sophisticated security
infrastructure, scalable management infrastructure, scalable
storage for storing boot images, scalable network connectiv-
ity etc. We try to push as many of these services as possi-
ble into Blue Gene and use Blue Gene resources themselves
for management and accounting. This approach inherently
scales: every time a new rack comes online a fraction of that
rack’s resources is used for management.

Our node allocation still happens in blocks, however, we
allocate them in large quantities into a standby pool. Each
of the nodes is boot-strapped with a small but powerful
firmware (see also Section 4.5) which allows interaction with
the node over the network. From the standby pool nodes are
then allocated and accounted to individual user accounts.
Upon each node allocation we return a list of node addresses
which are available for use. When the user deallocates a
node, the node is reset, the memory gets scrubbed, and
the node placed back into the pool ready to be handed out
again.2

4.4 Reliability and Failure Model
Reliability is a key problem at scale: machines fail. Here,

Blue Gene has a significant advantage over commodity plat-
forms. Blue Gene was designed for a reliability target of 7

2This scheme also fits seamlessly into the primary use of our
Blue Gene installation, namely scientific computing. Allo-
cating nodes out of a pre-allocated pool makes this pool
appear to be running a scientific application to the other
users of the system.

days mean time between failure for a machine with 72 racks,
which is roughly 73,000 nodes and 146TB of memory. Since
the machine is built to run one application, a single node
failure is considered a machine failure. Hence, individual
node reliability is two orders of magnitudes higher than a
commodity server.

Blue Gene’s control network is also used for failure report-
ing back to the control system. The control system primarily
reports the errors into a central database which is then used
to deactivate faulty components and route around errors.

We are extending the existing infrastructure to allow nodes
to actively react to hardware failures. Node failures are
in many cases non-fatal for the application and recovery is
possible. However, node failures which traditionally do not
affect a node need to be handled due to the high level of
integration. For example, when a node fails which acts as
a forwarding node at the physical layer, a network segment
may become unreachable. While we can easily deallocate
the faulty node from the pool, we must ensure that all nec-
essary nodes still provide networking functionality. Here,
the reliability of a single-chip solution is very advantageous.
The failure of nodes are often due to failing memory mod-
ules. However, each processor chip has 8MB of integrated
eDRAM. If more than one RAM chip fails we can usually
bring the node back into a state where it still acts as a router,
even though normal workloads cannot be run.

The key to handle hardware failures gracefully is a de-
terministic failure model. For example an operating system
may recover from certain RAM failures if the necessary re-
covery code is located in memory with error correction and
higher reliability. Furthermore, networking errors can be
compensated via an out-of-band channel through the con-
trol network. We make each node explicitly aware of the
hardware outages so that the nodes, for example, reconfig-
ure the network links and route around outages.

4.5 Boot Loader
As mentioned before, the Blue Gene control system only

allows booting a single image on all nodes of a block. Nodes
are completely stateless; there is no flash or ROM in any of
the nodes. Thus, even the initial firmware which initializes
the hardware is loaded via the control network into each
node of the machine.

We take over the node from the firmware via a generic
boot loader which is placed on all nodes by the existing

(a) (b)

Figure 1: Blue Gene/P components. (a) compute node with a 4-core PowerPC 450 and 2GB RAM, (b) pop-
ulated node card with 32 compute nodes and 2 IO nodes (two 10G Ethernet connectors on the front). 32
node cards form a rack.

4.3 Control and Management Model
Blue Gene’s original control system was constructed for

a very challenging task: booting a single “task” on 64000
nodes within a few minutes. The unit of allocation is a block
which contains from 16 up to all nodes in an installation.

For a general purpose environment the existing control
system has a primary limitation which is that all nodes run
the same software image. While in many cases we may use
the same kernel image, we want to be able to customize the
boot-strap ramdisk image and command line parameters to
the OS kernel. Instead of taking the obvious approach of
extending the control system we took a different route which
enables a very flexible resource allocation and management
scheme.

Blue Gene’s control network provides access to all parts
of the hardware and is therefore inherently insecure. Expos-
ing it out to many clients requires a sophisticated security
infrastructure, scalable management infrastructure, scalable
storage for storing boot images, scalable network connectiv-
ity etc. We try to push as many of these services as possi-
ble into Blue Gene and use Blue Gene resources themselves
for management and accounting. This approach inherently
scales: every time a new rack comes online a fraction of that
rack’s resources is used for management.

Our node allocation still happens in blocks, however, we
allocate them in large quantities into a standby pool. Each
of the nodes is boot-strapped with a small but powerful
firmware (see also Section 4.5) which allows interaction with
the node over the network. From the standby pool nodes are
then allocated and accounted to individual user accounts.
Upon each node allocation we return a list of node addresses
which are available for use. When the user deallocates a
node, the node is reset, the memory gets scrubbed, and
the node placed back into the pool ready to be handed out
again.2

4.4 Reliability and Failure Model
Reliability is a key problem at scale: machines fail. Here,

Blue Gene has a significant advantage over commodity plat-
forms. Blue Gene was designed for a reliability target of 7

2This scheme also fits seamlessly into the primary use of our
Blue Gene installation, namely scientific computing. Allo-
cating nodes out of a pre-allocated pool makes this pool
appear to be running a scientific application to the other
users of the system.

days mean time between failure for a machine with 72 racks,
which is roughly 73,000 nodes and 146TB of memory. Since
the machine is built to run one application, a single node
failure is considered a machine failure. Hence, individual
node reliability is two orders of magnitudes higher than a
commodity server.

Blue Gene’s control network is also used for failure report-
ing back to the control system. The control system primarily
reports the errors into a central database which is then used
to deactivate faulty components and route around errors.

We are extending the existing infrastructure to allow nodes
to actively react to hardware failures. Node failures are
in many cases non-fatal for the application and recovery is
possible. However, node failures which traditionally do not
affect a node need to be handled due to the high level of
integration. For example, when a node fails which acts as
a forwarding node at the physical layer, a network segment
may become unreachable. While we can easily deallocate
the faulty node from the pool, we must ensure that all nec-
essary nodes still provide networking functionality. Here,
the reliability of a single-chip solution is very advantageous.
The failure of nodes are often due to failing memory mod-
ules. However, each processor chip has 8MB of integrated
eDRAM. If more than one RAM chip fails we can usually
bring the node back into a state where it still acts as a router,
even though normal workloads cannot be run.

The key to handle hardware failures gracefully is a de-
terministic failure model. For example an operating system
may recover from certain RAM failures if the necessary re-
covery code is located in memory with error correction and
higher reliability. Furthermore, networking errors can be
compensated via an out-of-band channel through the con-
trol network. We make each node explicitly aware of the
hardware outages so that the nodes, for example, reconfig-
ure the network links and route around outages.

4.5 Boot Loader
As mentioned before, the Blue Gene control system only

allows booting a single image on all nodes of a block. Nodes
are completely stateless; there is no flash or ROM in any of
the nodes. Thus, even the initial firmware which initializes
the hardware is loaded via the control network into each
node of the machine.

We take over the node from the firmware via a generic
boot loader which is placed on all nodes by the existing

(a) (b)

Figure 1: Blue Gene/P components. (a) compute node with a 4-core PowerPC 450 and 2GB RAM, (b) pop-
ulated node card with 32 compute nodes and 2 IO nodes (two 10G Ethernet connectors on the front). 32
node cards form a rack.

4.3 Control and Management Model
Blue Gene’s original control system was constructed for

a very challenging task: booting a single “task” on 64000
nodes within a few minutes. The unit of allocation is a block
which contains from 16 up to all nodes in an installation.

For a general purpose environment the existing control
system has a primary limitation which is that all nodes run
the same software image. While in many cases we may use
the same kernel image, we want to be able to customize the
boot-strap ramdisk image and command line parameters to
the OS kernel. Instead of taking the obvious approach of
extending the control system we took a different route which
enables a very flexible resource allocation and management
scheme.

Blue Gene’s control network provides access to all parts
of the hardware and is therefore inherently insecure. Expos-
ing it out to many clients requires a sophisticated security
infrastructure, scalable management infrastructure, scalable
storage for storing boot images, scalable network connectiv-
ity etc. We try to push as many of these services as possi-
ble into Blue Gene and use Blue Gene resources themselves
for management and accounting. This approach inherently
scales: every time a new rack comes online a fraction of that
rack’s resources is used for management.

Our node allocation still happens in blocks, however, we
allocate them in large quantities into a standby pool. Each
of the nodes is boot-strapped with a small but powerful
firmware (see also Section 4.5) which allows interaction with
the node over the network. From the standby pool nodes are
then allocated and accounted to individual user accounts.
Upon each node allocation we return a list of node addresses
which are available for use. When the user deallocates a
node, the node is reset, the memory gets scrubbed, and
the node placed back into the pool ready to be handed out
again.2

4.4 Reliability and Failure Model
Reliability is a key problem at scale: machines fail. Here,

Blue Gene has a significant advantage over commodity plat-
forms. Blue Gene was designed for a reliability target of 7

2This scheme also fits seamlessly into the primary use of our
Blue Gene installation, namely scientific computing. Allo-
cating nodes out of a pre-allocated pool makes this pool
appear to be running a scientific application to the other
users of the system.

days mean time between failure for a machine with 72 racks,
which is roughly 73,000 nodes and 146TB of memory. Since
the machine is built to run one application, a single node
failure is considered a machine failure. Hence, individual
node reliability is two orders of magnitudes higher than a
commodity server.

Blue Gene’s control network is also used for failure report-
ing back to the control system. The control system primarily
reports the errors into a central database which is then used
to deactivate faulty components and route around errors.

We are extending the existing infrastructure to allow nodes
to actively react to hardware failures. Node failures are
in many cases non-fatal for the application and recovery is
possible. However, node failures which traditionally do not
affect a node need to be handled due to the high level of
integration. For example, when a node fails which acts as
a forwarding node at the physical layer, a network segment
may become unreachable. While we can easily deallocate
the faulty node from the pool, we must ensure that all nec-
essary nodes still provide networking functionality. Here,
the reliability of a single-chip solution is very advantageous.
The failure of nodes are often due to failing memory mod-
ules. However, each processor chip has 8MB of integrated
eDRAM. If more than one RAM chip fails we can usually
bring the node back into a state where it still acts as a router,
even though normal workloads cannot be run.

The key to handle hardware failures gracefully is a de-
terministic failure model. For example an operating system
may recover from certain RAM failures if the necessary re-
covery code is located in memory with error correction and
higher reliability. Furthermore, networking errors can be
compensated via an out-of-band channel through the con-
trol network. We make each node explicitly aware of the
hardware outages so that the nodes, for example, reconfig-
ure the network links and route around outages.

4.5 Boot Loader
As mentioned before, the Blue Gene control system only

allows booting a single image on all nodes of a block. Nodes
are completely stateless; there is no flash or ROM in any of
the nodes. Thus, even the initial firmware which initializes
the hardware is loaded via the control network into each
node of the machine.

We take over the node from the firmware via a generic
boot loader which is placed on all nodes by the existing

(a) (b)

Figure 1: Blue Gene/P components. (a) compute node with a 4-core PowerPC 450 and 2GB RAM, (b) pop-
ulated node card with 32 compute nodes and 2 IO nodes (two 10G Ethernet connectors on the front). 32
node cards form a rack.

4.3 Control and Management Model
Blue Gene’s original control system was constructed for

a very challenging task: booting a single “task” on 64000
nodes within a few minutes. The unit of allocation is a block
which contains from 16 up to all nodes in an installation.

For a general purpose environment the existing control
system has a primary limitation which is that all nodes run
the same software image. While in many cases we may use
the same kernel image, we want to be able to customize the
boot-strap ramdisk image and command line parameters to
the OS kernel. Instead of taking the obvious approach of
extending the control system we took a different route which
enables a very flexible resource allocation and management
scheme.

Blue Gene’s control network provides access to all parts
of the hardware and is therefore inherently insecure. Expos-
ing it out to many clients requires a sophisticated security
infrastructure, scalable management infrastructure, scalable
storage for storing boot images, scalable network connectiv-
ity etc. We try to push as many of these services as possi-
ble into Blue Gene and use Blue Gene resources themselves
for management and accounting. This approach inherently
scales: every time a new rack comes online a fraction of that
rack’s resources is used for management.

Our node allocation still happens in blocks, however, we
allocate them in large quantities into a standby pool. Each
of the nodes is boot-strapped with a small but powerful
firmware (see also Section 4.5) which allows interaction with
the node over the network. From the standby pool nodes are
then allocated and accounted to individual user accounts.
Upon each node allocation we return a list of node addresses
which are available for use. When the user deallocates a
node, the node is reset, the memory gets scrubbed, and
the node placed back into the pool ready to be handed out
again.2

4.4 Reliability and Failure Model
Reliability is a key problem at scale: machines fail. Here,

Blue Gene has a significant advantage over commodity plat-
forms. Blue Gene was designed for a reliability target of 7

2This scheme also fits seamlessly into the primary use of our
Blue Gene installation, namely scientific computing. Allo-
cating nodes out of a pre-allocated pool makes this pool
appear to be running a scientific application to the other
users of the system.

days mean time between failure for a machine with 72 racks,
which is roughly 73,000 nodes and 146TB of memory. Since
the machine is built to run one application, a single node
failure is considered a machine failure. Hence, individual
node reliability is two orders of magnitudes higher than a
commodity server.

Blue Gene’s control network is also used for failure report-
ing back to the control system. The control system primarily
reports the errors into a central database which is then used
to deactivate faulty components and route around errors.

We are extending the existing infrastructure to allow nodes
to actively react to hardware failures. Node failures are
in many cases non-fatal for the application and recovery is
possible. However, node failures which traditionally do not
affect a node need to be handled due to the high level of
integration. For example, when a node fails which acts as
a forwarding node at the physical layer, a network segment
may become unreachable. While we can easily deallocate
the faulty node from the pool, we must ensure that all nec-
essary nodes still provide networking functionality. Here,
the reliability of a single-chip solution is very advantageous.
The failure of nodes are often due to failing memory mod-
ules. However, each processor chip has 8MB of integrated
eDRAM. If more than one RAM chip fails we can usually
bring the node back into a state where it still acts as a router,
even though normal workloads cannot be run.

The key to handle hardware failures gracefully is a de-
terministic failure model. For example an operating system
may recover from certain RAM failures if the necessary re-
covery code is located in memory with error correction and
higher reliability. Furthermore, networking errors can be
compensated via an out-of-band channel through the con-
trol network. We make each node explicitly aware of the
hardware outages so that the nodes, for example, reconfig-
ure the network links and route around outages.

4.5 Boot Loader
As mentioned before, the Blue Gene control system only

allows booting a single image on all nodes of a block. Nodes
are completely stateless; there is no flash or ROM in any of
the nodes. Thus, even the initial firmware which initializes
the hardware is loaded via the control network into each
node of the machine.

We take over the node from the firmware via a generic
boot loader which is placed on all nodes by the existing

inc

va
l

dec

inc
Cva

l dec

Proc 0 Proc 1 Proc 2

inc

va
l dec

C

inc

va
l dec

C

Ebb

Events

Research Background

• We have been making large scale applications
by building collections of single node operating
systems stitched together with middleware

• Applications are single user, multi node

Legacy
OS

Applications

High-level Architecture

Legacy
OS

Legacy
OS

Legacy
OS

Legacy
OS

Middleware Middleware Middleware Middleware

Application

High-level Architecture

Lightweight
Kernel

Lightweight
Kernel

Lightweight
Kernel

Lightweight
Kernel

Legacy
OS

Middleware Middleware Middleware Middleware

Application

High-level Architecture

