
Supporting Hot-Swappable Components for System SoftwareKevin Hui y Jonathan Appavoo y Robert Wisniewski zMarc Auslander z David Edelsohn z Ben Gamsa xOrran Krieger z Bryan Rosenburg z Michael Stumm xAbstractSupporting hot-swappable components allows compo-nents to be replaced even while they may be in activeuse. This can allow live upgrades to running systems,more adaptable software that can change its behaviourat run-time by swapping components, and a simpler soft-ware structure by allowing distinct policy and imple-mentation options to be implemented in separate com-ponents (rather than as a single monolithic component)and dynamically swapped as needed.We describe in general the challenges that must be facedto support hot-swapping, then describe our prototypein the K42 operating system and provide some initialresults.1 IntroductionA hot-swappable component is one that can be re-placed with a new or di�erent implementation whilethe system is running and actively using the compo-nent. For example, a component of a TCP/IP pro-tocol stack, when hot-swappable, can be replaced|perhaps to handle new denial-of-service attacks orimprove performance|without disturbing existingnetwork connections. Such a capability o�ers anumber of potential advantages:Increased Uptime: Numerous mission-criticalsystems require �ve-nines level uptime, making soft-ware upgrades extremely challenging. Support forhot-swappable components would allow software tobe upgraded (i.e., for bug �xes, new features, per-formance improvements, etc.) without having totake the system down. Telephony systems, controlsystems, operating systems, and database systemsare examples of software systems that are used inmission-critical settings and would bene�t from hot-swappable component support.Improved Performance: The best implementa-tion and policy for a given component often dependsyUniversity of Toronto, Dept of Computer SciencezIBM T. J. Watson Research CenterxUniversity of Toronto, Dept of Electrical and ComputerEngineering

on how it is used. For example, to obtain good per-formance in multiprocessor systems (one of our pri-mary research areas), components servicing parallelapplications often require fundamentally di�erentdata structures compared to those for sequential ap-plications. Concurrently accessed components mustsupport high degrees of concurrency, often at the ex-pense of more complex data structures and longerinstruction paths compared to components designedfor sequential access. However, when a componentis created (for example, when a �le is opened), it isgenerally not known how it will be used. With sup-port for hot-swappable components, a componentdesigned for sequential applications can be used ini-tially, and then swapped for one supporting greaterconcurrency if contention for the component is de-tected.Simpli�ed Software Structure: To support mul-tiple and adaptable policies, a system componentgenerally must implement all alternatives, adjustingits control
ow based on the current policy choiceor usage. Adding support for debugging and perfor-mance monitoring can further complicate the imple-mentation. With hot-swappable components, eachpolicy and option can often be implemented as aseparate, independent component, with componentsswapped as needed. This separation of concerns cangreatly simplify the overall structure of the softwaresystem.In order to hot-swap a component, it is necessary to(i) instantiate the replacement component, (ii) es-tablish a quiescent state in which the componentis temporarily idle, (iii) transfer state from the oldcomponent to the new component, (iv) swap thenew component for the old, and (v) deallocate theold component. In doing so, three fundamentalproblems need to be addressed:� The �rst, and most challenging problem, is toestablish a quiescent state when it is safe to1

transfer state and swap components. The swapcan only be done when the component state isnot currently being accessed by any thread inthe system. Perhaps the most straightforwardway to achieve a quiescent state would be torequire all clients of the component to acquirea reader-writer lock in read mode before anycall to the component. Acquiring this externallock in write mode would thus establish thatthe component is safe for swapping. However,this would add overhead in the common case,and cause locality problems in the case of mul-tiprocessors.� The second problem is transferring state fromthe old component to the new one, both safelyand e�ciently. Although the state could beconverted to some canonical, serialized form,one would like to preserve as much contextas possible during the switch, and handle thetransfer e�ciently in the face of componentswith potentially megabytes of state accessedacross dozens of processors.� The �nal problem is swapping all of the refer-ences held by client components so that the ref-erences now refer to the new one. In a systembuilt around a single, fully typed language, likeJava, this could be done using the same infras-tructure as used by garbage collection systems.However, this would be prohibitively expensivefor a single component switch, and would beoverly restrictive in terms of systems languagechoice.We have designed and implemented a mechanism forsupporting hot-swappable components that avoidsthe problems alluded to above. More speci�cally,our design was driven by the following goals:� zero performance overhead for components thatwill not be swapped� zero impact on performance when a componentis not being swapped� complete transparency to client components� minimal code impact on components that wishto be swappable� zero impact on other components and the sys-tem as a whole during the swapping operation� good performance and scalability; that is, theswapping operation itself should incur low over-head and scale well on multiprocessor systems.

Our mechanism has been implemented in the con-text of the K42 operating system [?], in which com-ponents in the operating system and in applicationsthat run on K42 have been made hot-swappable.This paper describes our design and implemen-tation, presents preliminary performance numberswith respect to swapping overhead, and illustratessome of the performance bene�ts such a facility canprovide.2 Design OverviewOur approach to hot-swapping components lever-ages three key features of our system (their im-portance will become clear shortly); however, eachcould be adapted to a more conventional system.First, because K42 is structured in an object-oriented manner using C++ [?], a system compo-nent maps naturally to a language object,1 allowingevery object to be swapped for another that imple-ments the same interface;2 a similar approach couldbe used in a non-object-oriented system that usesoperations tables, such as vnodes. Second, in sup-port of a new form of scalable data structure (calledClustered Objects [?]), K42 provides an extra level ofindirection for all major objects; this would need tobe added explicitly in other systems lacking it. Fi-nally, the hot-swapping facility targets K42's kerneland system servers, in which each service requestis handled by a new, typically short-lived thread(long-lived daemon threads are treated specially);any event-driven system in which control frequentlyreaches what we call a safe point (such as the com-pletion of a system call, or entering a long termsleep) would su�ce.Given the above, the hot-swapping algorithm is asfollows: (i) establish a quiescent state for the com-ponent; (ii) transfer the component state betweenthe old and the new object; and (iii) update thereferences to the component.To establish a quiescent state, in which it is guar-anteed that no threads are currently accessing theobject to be swapped, we �rst atomically swap theindirection pointer so that it points to an interpos-ing object that initially just tracks all threads mak-ing calls to the object and passes on the call to theoriginal object. We next wait for the termination1We use the terms component and object interchangeablythroughout the rest of this document.2More speci�cally, as long as two objects inherit from acommon base class that de�nes the exported interface, wecan transparently swap between them by leveraging objectpolymorphism.2

of all calls that were started before call tracking be-gan. We use the short-lived nature of the systemthreads as a simple way of detecting this point: oursystem provides an e�cient means of determiningwhen all threads that were started before a givenpoint in time have completed (or have reached asafe point). Next, the interposing object temporar-ily blocks all new calls from proceeding to the orig-inal object while it waits for the tracked calls tocomplete (recursive calls are detected and allowedto proceed, however). Once all the tracked callshave completed, we have reached a quiescent statefor the object.To make state transfer e�cient and preserve asmuch of the original state and semantics as pos-sible, the original and new objects next negotiate abest common format that they both support. This,for example, may allow a hash table to be passeddirectly through a pointer, rather than converted toand from some canonical form, such as a list or ar-ray, as well as, in a large multiprocessor, allow muchof the transfer to occur in parallel across multipleprocessors, preserving locality when possible.Finally, the swap is completed by changing the indi-rection pointer to refer to the new object, releasingall the threads blocked in the interposing object, anddeallocating the original object and the temporaryinterposing object.3 Implementation HighlightsOne of the most challenging aspects of the hot-swapping mechanism is establishing the quiescentstate before the state transfer can occur. The pro-cess is explained in more detail in this section. Amore complete description of the implementation isavailable in [?].Upon swap initiation, the indirection pointer ismodi�ed to point to an interposing object called themediator. This mediator object is a generic objectcapable of handling the swapping of any component,regardless of the interface it exports. This objectmediates calls from the time the swap has been ini-tiated, to when the swap has completed. Dependingon the state of the swapping operation, the media-tor will either forward the call immediately to theoriginal component, suspend the thread associatedwith the incoming call, or forward the call to thenew component.There are three phases associated with the swappingoperation: Forward, Block, and Completed. Duringthe Forward phase, the mediator tracks new incom-

ing calls by their thread identi�ers and incrementsan in-
ight call counter. It decrements the counterwhen these invocations return. The mediator storesthe thread identi�ers in a hash table so that recur-sive component invocations by the same thread canbe identi�ed and allowed to continue even during thenext phase. This is required to prevent deadlock,which would occur if we suspended a component-recursing thread. The hash table is also used to saveregister values used for transparent call forwardingand call returning. The Forward phase continuesuntil we have gained knowledge of all in-
ight callsto the object; that is, there are no more in-
ightrequests that were started prior to the swap initia-tion.We can determine that there are no more in-
ightrequests by using the K42 thread lifetime trackingmechanism. In K42, a generation number is associ-ated with each thread to indicate the moment whenthe thread was activated. The current thread gener-ation is incremented when all the threads activatedprior to the current generation have completed [?].Observing generations passing away allows us to de-termine when all the threads activated prior to swapinitiation have �nished, and so all pre-swap in-
ightrequests have completed.During the Block phase, new incoming calls are �rstchecked to see if they belong to one of the in-
ightthreads tracked by the hash table. If so, it is a recur-sive component invocation and is forwarded to theoriginal component. Otherwise, the thread is a newincoming thread, and it is suspended by the media-tor. Once the call count reaches zero, there are nomore threads executing within the original compo-nent and the mediator has established a quiescentstate. At this point, state transfer is performed sothat subsequent requests to the new component areserviced using the most recent state of the originalcomponent. The Block phase may seem to add un-due delay to the responsiveness of the component.However, in practice the delay depends only on thenumber of tracked calls which are generally shortand few in number.In the �nal phase, called the Completed phase, themediator removes its interception to the indirectionpointer, and future calls will be directly handledby the new component. All the threads that weresuspended during the Block phase are resumed andthese calls are forwarded to the new component.Our approach to swapping live components sep-arates the complexity of swap-time in-
ight call3

tracking and deadlock avoidance from the imple-mentation of the component itself. Transparent callinterception and mediation are facilitated by thecomponent system infrastructure. The mediator isused only during the swapping process and henceadds no overhead when not swapping. Structuredas a locality-optimized concurrent object, the medi-ator has good multiprocessor performance and scal-ability. Besides the component state transfer, therest of the swapping process is automated by theswapping mechanism, allowing for easy addition ofcomponents that wish to take advantage of the hot-swapping capability.4 Preliminary ResultsTo gain some initial insight into the performanceof hot-swapping components, we measured someof the base costs and experimented with compo-nents which are optimized for di�erent multiproces-sor workloads. We present results for both a toycomponent and a more substantial component fromthe K42 memory management subsystem. The re-sults we present in this section were gathered on anIBM S70 Enterprise Server with 12 PowerPC RS64processors clocked at 125.9 MHz and a 4MB uni�edL2 cache.The mediation overhead associated with forward-ing an object method invocation to the original ob-ject prior to state transfer is about 633 instructions.This involves: (i) the register saves and restores,(ii) the mediator prolog (phase check and hash ta-ble insert), and (iii) the mediator epilog (the hashtable retrieve and delete). While this overhead isnon-negligible, the cost is incurred only for thosemethod invocations that take place during the For-ward phase. After the Block phase, the invocationsthat are redirected to the new object do not per-form hash table operations nor do they execute epi-log code. The delay associated with a swap on anidle uniprocessor with no active threads and usingan optimized state transfer is 2786 instructions. Ona multiprocessor, this cost occurs in parallel. Thisdelay will grow with the number of in-
ight callsto the object being swapped. However, due to ouruse of thread tracking, the delay will depend on thenumber of threads in the address space, and not justthose executing calls to the object.3Our toy component is a simple counter.4 We exploretwo implementations: one optimized for concurrent3Again, we assume an event driven system in which safepoints are frequently reached.4Typical components in K42 are of much larger grain.

1

10

100

1000

10000

100000

0 2 4 6 8 10 12C
om

bi
ne

d
2-

Ph
as

e
pe

r
It

er
at

io
n

T
im

e
in

 c
yc

le
s

(l
og

-s
ca

le
)

Number of Processors

Shared Counter
Partitioned Counter

Adaptive CounterFigure 1: Performance of di�erent counter objectimplementations
1000

10000

0 2 4 6 8 10 12

In
-c

or
e

pa
ge

 f
au

lt
co

st
 in

 c
yc

le
s

(l
og

-s
ca

le
)

Number of Processors

Simple Shared FCM/Region
Partitioned FCM/Region

Adaptive FCM/RegionFigure 2: FCM/Region performance comparisonsupdates and the other for concurrent reads, referredto, respectively, as the `Partitioned Counter' andthe `Shared Counter'. Figure ?? illustrates the per-formance of these two counters under a two-phasemulti-threaded workload. Each thread �rst per-forms 100000 updates, enters a barrier, and thenperforms 100000 reads. Each data point representsone independent run in which the counter was ac-cessed concurrently by one thread per processor.The x-axis indicates the number of processors forthe run and the y-axis (note the log scale) is theaverage runtime for a thread divided by 100000. Ascan be seen, the overall performance of both `Par-titioned' and `Shared' counters degrade rapidly asthe number of processors increase since their worstcase behaviour dominates. However, if we startthe experiment with the `Partitioned Counter' andthen after the second phase begins we swap it forthe `Shared Counter', we obtain performance whichre
ects the bene�t of adapting the counter to thephase of the workload.4

Figure ?? illustrates a simple micro-benchmarkwhich measures the average in-core page fault costin K42 for a multi-threaded program across a rangeof system sizes. Here, each thread of the program isaccessing an independent portion of a shared regionof its address space. There are two fundamentalcomponents involved in the in-core page fault path:the Region and the File Cache Manager (FCM).In the experiment we test three di�erent cases. Inthe �rst, we use the `Simple Shared FCM and Re-gion' version of the components and observe thatthey perform very well on one processor but poorlyon two or more processors (going o� our scale inthe �gure). In the second case, we use the `Parti-tioned FCM and Region' components and see thattheir performance scales well with increased sys-tem size but with a 30% higher base uniprocessorcost. This is illustrative of the uniprocessor per-formance cost which is common for the more com-plex data structures and algorithms necessary tosupport high levels of concurrency. Motivated bythe previous two cases, the third case starts withthe `Simple Shared FCM and Region' componentsbut after a �xed number of iterations under highcontention, we initiate a swap to `Partitioned FCMand Region' components. In this test case, we seethat the swapping facility, even with 12 concurrentthreads inducing contention on the components be-ing swapped, has minimal impact on the overall per-formance. This supports our contention that hot-swapping is a promising mechanism for making per-formance sensitive changes to adapt to variations inworkload.5 ConclusionAlthough there is a large body of prior work fo-cusing on the downloading and dynamic binding ofnew components, there has been surprisingly littlework on swapping components in a live system whilethey are in use. Hj�almt�ysson and Gray describea mechanism for updating C++ objects in a run-ning program [?], but their client objects need tobe able to recover from broken bindings due to anobject swap and retry the operation, so their mech-anism is not transparent to client objects. Pu etal. describe a \replugging mechanism" for incre-mental and optimistic specialization [?], but theyassume there can be at most one thread executingin a swappable module at a time. Our method forreaching a quiescent state is similar to the approachtaken by McKenney and Slingwine [?].We have described our mechanism for supporting

hot-swappable components that is totally transpar-ent to the clients of the component and that (inour system) adds zero overhead when a componentis not in the process of being swapped. The re-sults of our preliminary experiments show that theidea and concept is promising and warrants furtherinvestigation. We see signi�cant advantages in be-ing able to swap components in a live system (es-pecially in our case for improving performance inmultiprocessor operating systems and servers), andwe are in the process of developing standard, generictracing and debugging (interposition) objects thatcan be swapped in and out as needed. The limita-tion of our mechanism is that it assumes an event-driven (service-oriented) system where threads arerelatively short-lived (and hence is not applicable totraditional applications), but we argue that manyserver-based systems, including operating systemkernels, system servers, database systems, and net-work servers have this characteristic.References[1] M. Auslander, H. Franke, B. Gamsa, O. Krieger,and M. Stumm. Customization Lite. In Proc. 6thWorkshop on Hot Topics in Operating Systems,1997.[2] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.Tornado: Maximizing Locality and Concurrency ina Shared Memory Multiprocessor Operating Sys-tem. In Symp. on Operating Systems Design andImplementation, 1999.[3] G. Hj�almt�ysson and R. Gray. Dynamic C++Classes: A lightweight mechanism to update codein a running program. In Proc. USENIX AnnualTechnical Conference, 1998.[4] Kevin Hui. The Design and Implementation ofK42's Dynamic Clustered Object Switching. M.Sc.thesis, Dept. of Computer Science, University ofToronto, 2000.[5] The K42 Operating System.http://www.research.ibm.com/K42/[6] Paul E. McKenney and John D. Slingwine. Read-Copy Update: Using Execution History to Im-plement Low-Overhead Solutions to ConcurrencyProblems. In Parallel and Distributed ComputingConference, 1998.[7] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,J. Inouye, L. Kethana, J. Walpole, and K. Zhang.Optimistic Incremental Specialization: Streamlin-ing a Commercial Operating System. Proceedingsof the 15th ACM Symposium on Operating SystemsPrinciples (SOSP 1995).5

