Supporting Hot-Swappable Components for System Software

Kevin Hui |
Marc Auslander *
Orran Krieger ¥

Abstract

Supporting hot-swappable components allows compo-
nents to be replaced even while they may be in active
use. This can allow live upgrades to running systems,
more adaptable software that can change its behaviour
at run-time by swapping components, and a simpler soft-
ware structure by allowing distinct policy and imple-
mentation options to be implemented in separate com-
ponents (rather than as a single monolithic component)
and dynamically swapped as needed.

We describe in general the challenges that must be faced
to support hot-swapping, then describe our prototype
in the K42 operating system and provide some initial
results.

1 Introduction

A hot-swappable component is one that can be re-
placed with a new or different implementation while
the system is running and actively using the compo-
nent. For example, a component of a TCP/IP pro-
tocol stack, when hot-swappable, can be replaced—
perhaps to handle new denial-of-service attacks or
improve performance without disturbing existing
network connections. Such a capability offers a
number of potential advantages:

Increased Uptime: Numerous mission-critical
systems require five-nines level uptime, making soft-
ware upgrades extremely challenging. Support for
hot-swappable components would allow software to
be upgraded (i.e., for bug fixes, new features, per-
formance improvements, etc.) without having to
take the system down. Telephony systems, control
systems, operating systems, and database systems
are examples of software systems that are used in
mission-critical settings and would benefit from hot-
swappable component support.

Improved Performance: The best implementa-
tion and policy for a given component often depends

TUniversity of Toronto, Dept of Computer Science

IBM T. J. Watson Research Center

§ University of Toronto, Dept of Electrical and Computer
Engineering

Jonathan Appavoo |
David Edelsohn *
Bryan Rosenburg *

Robert Wisniewski #
Ben Gamsa ¢
Michael Stumm $

on how it is used. For example, to obtain good per-
formance in multiprocessor systems (one of our pri-
mary research areas), components servicing parallel
applications often require fundamentally different
data structures compared to those for sequential ap-
plications. Concurrently accessed components must
support high degrees of concurrency, often at the ex-
pense of more complex data structures and longer
instruction paths compared to components designed
for sequential access. However, when a component
is created (for example, when a file is opened), it is
generally not known how it will be used. With sup-
port for hot-swappable components, a component
designed for sequential applications can be used ini-
tially, and then swapped for one supporting greater
concurrency if contention for the component is de-
tected.

Simplified Software Structure: To support mul-
tiple and adaptable policies, a system component
generally must implement all alternatives, adjusting
its control flow based on the current policy choice
or usage. Adding support for debugging and perfor-
mance monitoring can further complicate the imple-
mentation. With hot-swappable components, each
policy and option can often be implemented as a
separate, independent component, with components
swapped as needed. This separation of concerns can
greatly simplify the overall structure of the software
system.

In order to hot-swap a component, it is necessary to
(7) instantiate the replacement component, (ii) es-
tablish a quiescent state in which the component
is temporarily idle, (iii) transfer state from the old
component to the new component, (iv) swap the
new component for the old, and (v) deallocate the
old component. In doing so, three fundamental
problems need to be addressed:

e The first, and most challenging problem, is to
establish a quiescent state when it is safe to



transfer state and swap components. The swap
can only be done when the component state is
not currently being accessed by any thread in
the system. Perhaps the most straightforward
way to achieve a quiescent state would be to
require all clients of the component to acquire
a reader-writer lock in read mode before any
call to the component. Acquiring this external
lock in write mode would thus establish that
the component is safe for swapping. However,
this would add overhead in the common case,
and cause locality problems in the case of mul-
tiprocessors.

e The second problem is transferring state from
the old component to the new one, both safely
and efficiently. Although the state could be
converted to some canonical, serialized form,
one would like to preserve as much context
as possible during the switch, and handle the
transfer efficiently in the face of components
with potentially megabytes of state accessed
across dozens of processors.

e The final problem is swapping all of the refer-
ences held by client components so that the ref-
erences now refer to the new one. In a system
built around a single, fully typed language, like
Java, this could be done using the same infras-
tructure as used by garbage collection systems.
However, this would be prohibitively expensive
for a single component switch, and would be
overly restrictive in terms of systems language
choice.

We have designed and implemented a mechanism for
supporting hot-swappable components that avoids
the problems alluded to above. More specifically,
our design was driven by the following goals:

e zero performance overhead for components that
will not be swapped

e zero impact on performance when a component
is not being swapped

e complete transparency to client components

¢ minimal code impact on components that wish
to be swappable

e zero impact on other components and the sys-
tem as a whole during the swapping operation

e good performance and scalability; that is, the
swapping operation itself should incur low over-
head and scale well on multiprocessor systems.

Our mechanism has been implemented in the con-
text of the K42 operating system [?], in which com-
ponents in the operating system and in applications
that run on K42 have been made hot-swappable.
This paper describes our design and implemen-
tation, presents preliminary performance numbers
with respect to swapping overhead, and illustrates
some of the performance benefits such a facility can
provide.

2 Design Overview

Our approach to hot-swapping components lever-
ages three key features of our system (their im-
portance will become clear shortly); however, each
could be adapted to a more conventional system.
First, because K42 is structured in an object-
oriented manner using C++ [?], a system compo-
nent maps naturally to a language object,! allowing
every object to be swapped for another that imple-
ments the same interface;? a similar approach could
be used in a non-object-oriented system that uses
operations tables, such as vnodes. Second, in sup-
port of a new form of scalable data structure (called
Clustered Objects [?]), K42 provides an extra level of
indirection for all major objects; this would need to
be added explicitly in other systems lacking it. Fi-
nally, the hot-swapping facility targets K42’s kernel
and system servers, in which each service request
is handled by a new, typically short-lived thread
(long-lived daemon threads are treated specially);
any event-driven system in which control frequently
reaches what we call a safe point (such as the com-
pletion of a system call, or entering a long term
sleep) would suffice.

Given the above, the hot-swapping algorithm is as
follows: (i) establish a quiescent state for the com-
ponent; (i7) transfer the component state between
the old and the new object; and (ii7) update the
references to the component.

To establish a quiescent state, in which it is guar-
anteed that no threads are currently accessing the
object to be swapped, we first atomically swap the
indirection pointer so that it points to an interpos-
ing object that initially just tracks all threads mak-
ing calls to the object and passes on the call to the
original object. We next wait for the termination

I'We use the terms component and object interchangeably
throughout the rest of this document.

2More specifically, as long as two objects inherit from a
common base class that defines the exported interface, we
can transparently swap between them by leveraging object
polymorphism.



of all calls that were started before call tracking be-
gan. We use the short-lived nature of the system
threads as a simple way of detecting this point: our
system provides an efficient means of determining
when all threads that were started before a given
point in time have completed (or have reached a
safe point). Next, the interposing object temporar-
ily blocks all new calls from proceeding to the orig-
inal object while it waits for the tracked calls to
complete (recursive calls are detected and allowed
to proceed, however). Once all the tracked calls
have completed, we have reached a quiescent state
for the object.

To make state transfer efficient and preserve as
much of the original state and semantics as pos-
sible, the original and new objects next negotiate a
best common format that they both support. This,
for example, may allow a hash table to be passed
directly through a pointer, rather than converted to
and from some canonical form, such as a list or ar-
ray, as well as, in a large multiprocessor, allow much
of the transfer to occur in parallel across multiple
processors, preserving locality when possible.

Finally, the swap is completed by changing the indi-
rection pointer to refer to the new object, releasing
all the threads blocked in the interposing object, and
deallocating the original object and the temporary
interposing object.

3 Implementation Highlights

One of the most challenging aspects of the hot-
swapping mechanism is establishing the quiescent
state before the state transfer can occur. The pro-
cess is explained in more detail in this section. A
more complete description of the implementation is
available in [?].

Upon swap initiation, the indirection pointer is
modified to point to an interposing object called the
mediator. This mediator object is a generic object
capable of handling the swapping of any component,
regardless of the interface it exports. This object
mediates calls from the time the swap has been ini-
tiated, to when the swap has completed. Depending
on the state of the swapping operation, the media-
tor will either forward the call immediately to the
original component, suspend the thread associated
with the incoming call, or forward the call to the
new component.

There are three phases associated with the swapping
operation: Forward, Block, and Completed. During
the Forward phase, the mediator tracks new incom-

ing calls by their thread identifiers and increments
an in-flight call counter. It decrements the counter
when these invocations return. The mediator stores
the thread identifiers in a hash table so that recur-
sive component invocations by the same thread can
be identified and allowed to continue even during the
next phase. This is required to prevent deadlock,
which would occur if we suspended a component-
recursing thread. The hash table is also used to save
register values used for transparent call forwarding
and call returning. The Forward phase continues
until we have gained knowledge of all in-flight calls
to the object; that is, there are no more in-flight
requests that were started prior to the swap initia-
tion.

We can determine that there are no more in-flight
requests by using the K42 thread lifetime tracking
mechanism. In K42, a generation number is associ-
ated with each thread to indicate the moment when
the thread was activated. The current thread gener-
ation is incremented when all the threads activated
prior to the current generation have completed [?].
Observing generations passing away allows us to de-
termine when all the threads activated prior to swap
initiation have finished, and so all pre-swap in-flight
requests have completed.

During the Block phase, new incoming calls are first
checked to see if they belong to one of the in-flight
threads tracked by the hash table. If so, it is a recur-
sive component invocation and is forwarded to the
original component. Otherwise, the thread is a new
incoming thread, and it is suspended by the media-
tor. Once the call count reaches zero, there are no
more threads executing within the original compo-
nent and the mediator has established a quiescent
state. At this point, state transfer is performed so
that subsequent requests to the new component are
serviced using the most recent state of the original
component. The Block phase may seem to add un-
due delay to the responsiveness of the component.
However, in practice the delay depends only on the
number of tracked calls which are generally short
and few in number.

In the final phase, called the Completed phase, the
mediator removes its interception to the indirection
pointer, and future calls will be directly handled
by the new component. All the threads that were
suspended during the Block phase are resumed and
these calls are forwarded to the new component.

Our approach to swapping live components sep-
arates the complexity of swap-time in-flight call



tracking and deadlock avoidance from the imple-
mentation of the component itself. Transparent call
interception and mediation are facilitated by the
component system infrastructure. The mediator is
used only during the swapping process and hence
adds no overhead when not swapping. Structured
as a locality-optimized concurrent object, the medi-
ator has good multiprocessor performance and scal-
ability. Besides the component state transfer, the
rest of the swapping process is automated by the
swapping mechanism, allowing for easy addition of
components that wish to take advantage of the hot-
swapping capability.

4 Preliminary Results

To gain some initial insight into the performance
of hot-swapping components, we measured some
of the base costs and experimented with compo-
nents which are optimized for different multiproces-
sor workloads. We present results for both a toy
component and a more substantial component from
the K42 memory management subsystem. The re-
sults we present in this section were gathered on an
IBM S70 Enterprise Server with 12 PowerPC RS64
processors clocked at 125.9 MHz and a 4MB unified
L2 cache.

The mediation overhead associated with forward-
ing an object method invocation to the original ob-
ject prior to state transfer is about 633 instructions.
This involves: (i) the register saves and restores,
(7i) the mediator prolog (phase check and hash ta-
ble insert), and (iii) the mediator epilog (the hash
table retrieve and delete). While this overhead is
non-negligible, the cost is incurred only for those
method invocations that take place during the For-
ward phase. After the Block phase, the invocations
that are redirected to the new object do not per-
form hash table operations nor do they execute epi-
log code. The delay associated with a swap on an
idle uniprocessor with no active threads and using
an optimized state transfer is 2786 instructions. On
a multiprocessor, this cost occurs in parallel. This
delay will grow with the number of in-flight calls
to the object being swapped. However, due to our
use of thread tracking, the delay will depend on the
number of threads in the address space, and not just
those executing calls to the object.?

Our toy component is a simple counter.* We explore
two implementations: one optimized for concurrent

3 Again, we assume an event driven system in which safe
points are frequently reached.
4Typical components in K42 are of much larger grain.

%‘? 100000 ‘

B

8 10000 |

o

3

£

g

E 1000 |

c

S

a2

o

% 100 | E
£ ol ]
3 Shared Counter —+—
e Partitioned Counter ---x---
kel Adaptive Counter &

g 1 I I I I I

© 0 2 4 6 8 10 12

Number of Processors

Figure 1: Performance of different counter object
implementations

10000 ;
¥
g ;
B
8
Q +
) ;
£
]
8
3 N
@
2 e
<
8
< Simple Shared FCM/Region -+
- Partitioned FCM/Region ---x---
Adaptive FCM/Region —&—
1000 L L L N L
0 2 4 6 8 10 12

Number of Processors

Figure 2: FCM/Region performance comparisons

updates and the other for concurrent reads, referred
to, respectively, as the ‘Partitioned Counter’ and
the ‘Shared Counter’. Figure 77 illustrates the per-
formance of these two counters under a two-phase
multi-threaded workload. Each thread first per-
forms 100000 updates, enters a barrier, and then
performs 100000 reads. Each data point represents
one independent run in which the counter was ac-
cessed concurrently by one thread per processor.
The x-axis indicates the number of processors for
the run and the y-axis (note the log scale) is the
average runtime for a thread divided by 100000. As
can be seen, the overall performance of both ‘Par-
titioned’ and ‘Shared’ counters degrade rapidly as
the number of processors increase since their worst
case behaviour dominates. However, if we start
the experiment with the ‘Partitioned Counter’ and
then after the second phase begins we swap it for
the ‘Shared Counter’, we obtain performance which
reflects the benefit of adapting the counter to the
phase of the workload.



Figure 77 illustrates a simple micro-benchmark
which measures the average in-core page fault cost
in K42 for a multi-threaded program across a range
of system sizes. Here, each thread of the program is
accessing an independent portion of a shared region
of its address space. There are two fundamental
components involved in the in-core page fault path:
the Region and the File Cache Manager (FCM).
In the experiment we test three different cases. In
the first, we use the ‘Simple Shared FCM and Re-
gion’ version of the components and observe that
they perform very well on one processor but poorly
on two or more processors (going off our scale in
the figure). In the second case, we use the ‘Parti-
tioned FCM and Region’ components and see that
their performance scales well with increased sys-
tem size but with a 30% higher base uniprocessor
cost. This is illustrative of the uniprocessor per-
formance cost which is common for the more com-
plex data structures and algorithms necessary to
support high levels of concurrency. Motivated by
the previous two cases, the third case starts with
the ‘Simple Shared FCM and Region’ components
but after a fixed number of iterations under high
contention, we initiate a swap to ‘Partitioned FCM
and Region’ components. In this test case, we see
that the swapping facility, even with 12 concurrent
threads inducing contention on the components be-
ing swapped, has minimal impact on the overall per-
formance. This supports our contention that hot-
swapping is a promising mechanism for making per-
formance sensitive changes to adapt to variations in
workload.

5 Conclusion

Although there is a large body of prior work fo-
cusing on the downloading and dynamic binding of
new components, there has been surprisingly little
work on swapping components in a live system while
they are in use. Hjalmtysson and Gray describe
a mechanism for updating C++ objects in a run-
ning program [?], but their client objects need to
be able to recover from broken bindings due to an
object swap and retry the operation, so their mech-
anism is not transparent to client objects. Pu et
al. describe a “replugging mechanism” for incre-
mental and optimistic specialization [?], but they
assume there can be at most one thread executing
in a swappable module at a time. Our method for
reaching a quiescent state is similar to the approach
taken by McKenney and Slingwine [?].

We have described our mechanism for supporting

hot-swappable components that is totally transpar-
ent to the clients of the component and that (in
our system) adds zero overhead when a component
is not in the process of being swapped. The re-
sults of our preliminary experiments show that the
idea and concept is promising and warrants further
investigation. We see significant advantages in be-
ing able to swap components in a live system (es-
pecially in our case for improving performance in
multiprocessor operating systems and servers), and
we are in the process of developing standard, generic
tracing and debugging (interposition) objects that
can be swapped in and out as needed. The limita-
tion of our mechanism is that it assumes an event-
driven (service-oriented) system where threads are
relatively short-lived (and hence is not applicable to
traditional applications), but we argue that many
server-based systems, including operating system
kernels, system servers, database systems, and net-
work servers have this characteristic.

References

[1] M. Auslander, H. Franke, B. Gamsa, O. Krieger,
and M. Stumm. Customization Lite. In Proc. 6th
Workshop on Hot Topics in Operating Systems,
1997.

[2] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: Maximizing Locality and Concurrency in
a Shared Memory Multiprocessor Operating Sys-
tem. In Symp. on Operating Systems Design and
Implementation, 1999.

[3] G. Hjalmtysson and R. Gray. Dynamic C++
Classes: A lightweight mechanism to update code
in a running program. In Proc. USENIX Annual
Technical Conference, 1998.

[4] Kevin Hui. The Design and Implementation of
K42’s Dynamic Clustered Object Switching. M.Sc.
thesis, Dept. of Computer Science, University of
Toronto, 2000.

[6] The K42 Operating System.
http://www.research.ibm.com/K42/

[6] Paul E. McKenney and John D. Slingwine. Read-
Copy Update: Using Execution History to Im-
plement Low-Overhead Solutions to Concurrency
Problems. In Parallel and Distributed Computing
Conference, 1998.

[7] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan,
J. Inouye, L. Kethana, J. Walpole, and K. Zhang.
Optimistic Incremental Specialization: Streamlin-
ing a Commercial Operating System. Proceedings
of the 15th ACM Symposium on Operating Systems
Principles (SOSP 1995).



